1,137 research outputs found

    Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues

    Get PDF
    The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits

    Multimodal Optical Imaging by Microendoscope

    Get PDF
    In the past decades, optical imaging field has been developing rapidly. Noninvasive imaging enabled by microendoscopes has become a promising tool for early cancer detection and imaging-guided surgery. In this chapter, we will mainly introduce most advances in the miniaturized microendoscope development, including photoacoustic, confocal fluorescence, multiphoton fluorescence, second-harmonic generation (SHG) label-free imaging, wide-field fluorescence, surface-enhanced Raman scattering (SERS) nanoparticle-based Raman spectroscopy. Enabled by the frontier micromachining techniques, micro-opto-electromechanical system (MOEMS)-based novel microendoscopes with various imaging modalities have been prototyped and further translated into clinics. The working principle of representative microendoscopes and optical imaging modalities will be introduced in detail

    Minimally invasive photoacoustic imaging:Current status and future perspectives

    Get PDF
    Photoacoustic imaging (PAI) is an emerging biomedical imaging modality that is based on optical absorption contrast, capable of revealing distinct spectroscopic signatures of tissue at high spatial resolution and large imaging depths. However, clinical applications of conventional non-invasive PAI systems have been restricted to examinations of tissues at depths less than a few cm due to strong light attenuation. Minimally invasive photoacoustic imaging (miPAI) has greatly extended the landscape of PAI by delivering excitation light within tissue through miniature fibre-optic probes. In the past decade, various miPAI systems have been developed with demonstrated applicability in several clinical fields. In this article, we present an overview of the current status of miPAI and our thoughts on future perspectives.status: publishe

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    Raman Spectroscopy Applied to Health Sciences

    Get PDF
    Raman spectroscopy has remarkable analytical abilities to scientists who want to study biological samples. The use of Raman spectroscopy within biologic samples has been increasing in the last years because it can provide biochemical information, allows discrimination between two or more sample groups, and, contrary to what happens with other spectroscopic techniques, water has no interference in the spectra. Biological samples typically do not require extensive preparation, and biochemical and structural information extracted from spectroscopic data can be used to characterize different groups. This chapter presents the general features of Raman spectroscopy and Raman spectroscopic tools relevant to the application in health sciences. In order to emphasize the potential of Raman in this research field, examples of its application in oncology, in bacterial identification and in dementia diagnosis are given

    Role of narrow band imaging (NBI), in the treatment of non-polypoid colorectal lesions, with endoscopic mucosal resection (EMR). A single-center experience

    Get PDF
    BACKGROUND: In this study, the authors evaluated the role of narrow band imaging endoscopy in the early detection of infiltration of the colon wall by flat and depressed lesions, highlighted during colonoscopy, to confirm the possibility of removal with Endoscopic Mucosal Resection (EMR). METHODS: 67 patients (37 males and 30 females) with non-polypoid colorectal lesions were included in this study. The location of the lesions, the size and possible infiltration of the colon wall were performed with a colonoscopy with NBI. Lesions without massive invasion were treated with an EMR. RESULTS: NBI was found to be a sensitive, specific, and accurate technique in assessing any infiltration of the colon wall. Endoscopic resection of the mucous membrane was successfully performed in 62 patients, it was not possible to perform it in 5 patients, due to the lack of dissection, and they underwent surgery. CONCLUSIONS: Non-polypoid colorectal lesions and early tumors can be treated with EMR. Certainly, early detection with Narrow Band Imaging endoscopy and subsequent endoscopic resection can reduce colorectal cancer mortality. Many studies have confirmed that these two methods have achieved important results comparable with surgical procedures. KEY WORDS: Endoscopic Mucosal Resection, Narrow Band Imaging, Therapy
    • …
    corecore