9,694 research outputs found

    Measurement scheme for the Lamb shift in a superconducting circuit with broadband environment

    Full text link
    Motivated by recent experiments on quantum mechanical charge pumping in a Cooper pair sluice, we present a measurement scheme for observing shifts of transition frequencies in two-level quantum systems induced by broadband environmental fluctuations. In contrast to quantum optical and related set-ups based on cavities, the impact of a thermal phase reservoir is considered. A thorough analysis of Lamb and Stark shifts within weak-coupling master equations is complemented by non-perturbative results for the model of an exactly solvable harmonic system. The experimental protocol to measure the Lamb shift in experimentally feasible superconducting circuits is analysed in detail and supported by numerical simulations.Comment: 8 pages, 4 figure

    Dynamics of multiply charged ions in intense laser fields

    Get PDF
    We numerically investigate the dynamics of multiply charged hydrogenic ions in near-optical linearly polarized laser fields with intensities of order 10^16 to 10^17 W/cm^2. Depending on the charge state Z of the ion the relation of strength between laser field and ionic core changes. We find around Z=12 typical multiphoton dynamics and for Z=3 tunneling behaviour, however with clear relativistic signatures. In first order in v/c the magnetic field component of the laser field induces a Z-dependent drift in the laser propagation direction and a substantial Z-dependent angular momentum with repect to the ionic core. While spin oscillations occur already in first order in v/c as described by the Pauli equation, spin induced forces via spin orbit coupling only appear in the parameter regime where (v/c)^2 corrections are significant. In this regime for Z=12 ions we show strong splittings of resonant spectral lines due to spin-orbit coupling and substantial corrections to the conventional Stark shift due to the relativistic mass shift while those to the Darwin term are shown to be small. For smaller charges or higher laser intensities, parts of the electronic wavepacket may tunnel through the potential barrier of the ionic core, and when recombining are shown to give rise to keV harmonics in the radiation spectrum. Some parts of the wavepacket do not recombine after ionisation and we find very energetic electrons in the weakly relativistic regime of above threshold ionization.Comment: submitte

    Heavy quarkonium correlators at finite temperature: QCD sum rule approach

    Full text link
    We investigate the properties of heavy quarkonia at finite temperature in detail using QCD sum rules. Extending previous analyses, we take into account a temperature dependent effective continuum threshold and derive constraints on the mass, the width, and the varying effective continuum threshold. We find that at least one of these quantities of a charmonium changes abruptly in the vicinity of the phase transition. We also calculate the ratio of the imaginary time correlator to its reconstructed one, G/GrecG/G_{\text{rec}}, by constructing a model spectral function and compare it to the corresponding lattice QCD results. We demonstrate that the almost constant unity of G/GrecG/G_{\text{rec}} can be obtained from the destructive interplay of the changes in each part of the spectral modification which are extracted from QCD sum rules.Comment: Revised version to appear in PRD. 31 pages, 31 figures. Title is change

    Exact numerical methods for a many-body Wannier Stark system

    Full text link
    We present exact methods for the numerical integration of the Wannier-Stark system in a many-body scenario including two Bloch bands. Our ab initio approaches allow for the treatment of a few-body problem with bosonic statistics and strong interparticle interaction. The numerical implementation is based on the Lanczos algorithm for the diagonalization of large, but sparse symmetric Floquet matrices. We analyze the scheme efficiency in terms of the computational time, which is shown to scale polynomially with the size of the system. The numerically computed eigensystem is applied to the analysis of the Floquet Hamiltonian describing our problem. We show that this allows, for instance, for the efficient detection and characterization of avoided crossings and their statistical analysis. We finally compare the efficiency of our Lanczos diagonalization for computing the temporal evolution of our many-body system with an explicit fourth order Runge-Kutta integration. Both implementations heavily exploit efficient matrix-vector multiplication schemes. Our results should permit an extrapolation of the applicability of exact methods to increasing sizes of generic many-body quantum problems with bosonic statistics

    Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Full text link
    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far they were limited to measurements of instantaneous correlation functions of the form ⟹O^(t)⟩\langle \hat{O}(t) \rangle, even though extensions to frequency-resolved response functions ⟹O^(t)O^(0)⟩\langle \hat{O}(t) \hat{O}(0) \rangle would provide important information about the elementary excitations in a many-body system. For example, single particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t−Jt-J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean field theory. The key properties of the spectra are visible at currently accessible temperatures.Comment: 16+7 pages, 10+2 figure

    Two-photon coherent control of femtosecond photoassociation

    Full text link
    Photoassociation with short laser pulses has been proposed as a technique to create ultracold ground state molecules. A broad-band excitation seems the natural choice to drive the series of excitation and deexcitation steps required to form a molecule in its vibronic ground state from two scattering atoms. First attempts at femtosecond photoassociation were, however, hampered by the requirement to eliminate the atomic excitation leading to trap depletion. On the other hand, molecular levels very close to the atomic transition are to be excited. The broad bandwidth of a femtosecond laser then appears to be rather an obstacle. To overcome the ostensible conflict of driving a narrow transition by a broad-band laser, we suggest a two-photon photoassociation scheme. In the weak-field regime, a spectral phase pattern can be employed to eliminate the atomic line. When the excitation is carried out by more than one photon, different pathways in the field can be interfered constructively or destructively. In the strong-field regime, a temporal phase can be applied to control dynamic Stark shifts. The atomic transition is suppressed by choosing a phase which keeps the levels out of resonance. We derive analytical solutions for atomic two-photon dark states in both the weak-field and strong-field regime. Two-photon excitation may thus pave the way toward coherent control of photoassociation. Ultimately, the success of such a scheme will depend on the details of the excited electronic states and transition dipole moments. We explore the possibility of two-photon femtosecond photoassociation for alkali and alkaline-earth metal dimers and present a detailed study for the example of calcium
    • 

    corecore