882 research outputs found

    A M\"untz-Collocation spectral method for weakly singular volterra integral equations

    Get PDF
    In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel (x−s)−μ,0<μ<1(x-s)^{-\mu},0<\mu<1. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both L∞L^{\infty}- and weighted L2L^{2}-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change x→x1/λx\rightarrow x^{1/\lambda} for a suitable real number λ\lambda. Finally a series of numerical examples are presented to demonstrate the efficiency of the method

    Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel

    Get PDF
    The Jacobi pseudo-spectral Galerkin method for the Volterra integro-differential equations of the second kind with a weakly singular kernel is proposed in this paper. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors (in the Lωα,β2-norm and the L∞-norm) will decay exponentially provided that the source function is sufficiently smooth. Numerical examples are given to illustrate the theoretical results

    Spectral collocation method for compact integral operators

    Get PDF
    We propose and analyze a spectral collocation method for integral equations with compact kernels, e.g. piecewise smooth kernels and weakly singular kernels of the form 1∣t−s∣μ,  03˘cμ3˘c1.\frac{1}{|t-s|^\mu}, \; 0\u3c\mu\u3c1. We prove that 1) for integral equations, the convergence rate depends on the smoothness of true solutions y(t)y(t). If y(t)y(t) satisfies condition (R): ∥y(k)∥L∞[0,T]≤ck!R−k\|y^{(k)}\|_{L^\infty[0,T]}\leq ck!R^{-k}}, we obtain a geometric rate of convergence; if y(t)y(t) satisfies condition (M): ∥y(k)∥L∞[0,T]≤cMk\|y^{(k)}\|_{L^{\infty}[0,T]}\leq cM^k , we obtain supergeometric rate of convergence for both Volterra equations and Fredholm equations and related integro differential equations; 2) for eigenvalue problems, the convergence rate depends on the smoothness of eigenfunctions. The same convergence rate for the largest modulus eigenvalue approximation can be obtained. Moreover, the convergence rate doubles for positive compact operators. Our numerical experiments confirm our theoretical results
    • …
    corecore