5,925 research outputs found

    Calderon multiplicative preconditioner for the PMCHWT equation applied to chiral media

    Get PDF
    In this contribution, a Calderon preconditioned algorithm for the modeling of scattering of time harmonic electromagnetic waves by a chiral body is introduced. The construction of the PMCHWT in the presence of chiral media is revisited. Since this equation reduces to the classic PMCHWT equation when the chirality parameter tends to zero, it shares its spectral properties. More in particular, it suffers from dense grid breakdown. Based on the work in [1], [2], a regularized version of the PMCHWT equation is introduced. A discretization scheme is described. Finally, the validity and spectral properties are studied numerically. More in particular, it is proven that linear systems arising in the novel scheme can be solved in a small number of iterations, regardless the mesh parameter

    GEMPIC: Geometric ElectroMagnetic Particle-In-Cell Methods

    Full text link
    We present a novel framework for Finite Element Particle-in-Cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from Finite Element Exterior Calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the Finite Element basis, as long as the corresponding Finite Element spaces satisfy certain compatibility conditions.Comment: 57 Page

    High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    Get PDF
    Copyright @ 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685ā€“6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (rā€‰+ā€‰1)D and is usually regarded as being too large when rā€‰>ā€‰1. Werder et al. found that the space-time coupling matrices are diagonalizable over inline image for r ā©½100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvinā€“Voigt and Maxwellā€“Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease

    A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equations

    Full text link
    We consider the discretization of electromagnetic wave propagation problems by a discontinuous Galerkin Method based on Trefftz polynomials. This method fits into an abstract framework for space-time discontinuous Galerkin methods for which we can prove consistency, stability, and energy dissipation without the need to completely specify the approximation spaces in detail. Any method of such a general form results in an implicit time-stepping scheme with some basic stability properties. For the local approximation on each space-time element, we then consider Trefftz polynomials, i.e., the subspace of polynomials that satisfy Maxwell's equations exactly on the respective element. We present an explicit construction of a basis for the local Trefftz spaces in two and three dimensions and summarize some of their basic properties. Using local properties of the Trefftz polynomials, we can establish the well-posedness of the resulting discontinuous Galerkin Trefftz method. Consistency, stability, and energy dissipation then follow immediately from the results about the abstract framework. The method proposed in this paper therefore shares many of the advantages of more standard discontinuous Galerkin methods, while at the same time, it yields a substantial reduction in the number of degrees of freedom and the cost for assembling. These benefits and the spectral convergence of the scheme are demonstrated in numerical tests
    • ā€¦
    corecore