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Abstract—In this contribution, a Calderón preconditioned
algorithm for the modeling of scattering of time harmonic
electromagnetic waves by a chiral body is introduced. The
construction of the PMCHWT in the presence of chiral media
is revisited. Since this equation reduces to the classic PMCHWT
equation when the chirality parameter tends to zero, it shares its
spectral properties. More in particular, it suffers from dense grid
breakdown. Based on the work in [1], [2], a regularized version of
the PMCHWT equation is introduced. A discretization scheme is
described. Finally, the validity and spectral properties are studied
numerically. More in particular, it is proven that linear systems
arising in the novel scheme can be solved in a small number of
iterations, regardless the mesh parameter.

I. INTRODUCTION

The scattering of time-harmonic electromagnetic fields by

perfectly conducting and penetrable media can be modeled by

boundary integral equations. In the so-called direct method,

these equations are constructed from the Maxwell equations by

leveraging the Stratton-Chu representation formulas [3]. These

representation formulas represent the electromagnetic field

within a homogeneous body as integral expressions involving

the tangential components of the traces of the electromagnetic

field inside this body. As a special case, the value of the

tangential components of the traces of the electromagnetic

field can be represented, thus yielding equations for these

traces. By combining said representations in the different

domains, different equations that can be solved uniquely for

the traces of the electromagnetic field can be constructed. The

two most widespread equations are the Poggio-Miller-Chang-

Harrington-Wu-Tsai equation and the Müller (PMCHWT)

equation.

In the high conductivity limit, the PMCHWT equation

reduces to the electric field integral equation (EFIE) used to

model scattering by a perfectly conducting body, while the

Müller equation reduces to the magnetic field integral equation

(MFIE). Therefore, it is not surprising that the spectral proper-

ties of the PMCHWT and Müller equations resemble those of

the EFIE and MFIE, respectively. Indeed, like the spectrum of

the EFIE, the spectrum of the PMCHWT equation comprises

two branches, one accumulating at zero and one accumulating

at infinity. The Müller equation, in contrast, is a second kind

equation, and therefore its spectrum accumulates at a finite

non zero value.

The spectral properties of these continuous equations are

reflected in the eigenvalue distribution of the system matrices

resulting upon discretization. The system matrices result-

ing from discretizations of the PMCHWT equation possess

an eigenvalue spectrum comprising to subsets. One subset

stretches along the positive imaginary axis and accumulates

at zero, while the other subset stretches along the negative

imaginary axis and accumulates at infinity. The systems are

thus ill-conditioned, and moreover strongly indefinite. This

renders the solution by iterative algorithms hard to impossible.

The system matrices resulting from discretization of the Müller

equation posses an eigenvalue spectrum comprising only one

set accumulating at a positive real value. The system matrices

are thus both well-conditioned and up to a compact perturba-

tion positive definite. This renders the solution by iterative

algorithms easy. Lamentably, solutions to equations of the

classically discretized Müller equation are less accurate than

those of the classically discretized PMCHWT equation.

One possibility is to seek for more intricate discretization

schemes for the Müller/MFIE equation such that the resulting

linear systems yield more accurate solutions. This possibility

has been investigated in [4], with success. Another possibility

is the preconditioning of the linear system resulting upon

discretization of the PMCHWT/EFIE equation such that the

system matrix of the preconditioned system possesses an

eigenvalue spectrum with beneficial distribution in the com-

plex plane. This method has been investigated in [2] and hinges

on the self-regularizing property of the operator involved. The

work in [2] is an extension of that in [1] where the PEC case

was studied to the case of penetrable bodies.

In this contribution, the methods developed in [1], [2] will

be extended to the case of scattering by chiral media. It

will be clear from the exposition that this extension is non

trivial because the representation formulas involved in the
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construction of the boundary integral equations contain more

contributions.

First, the construction of the aforementioned boundary inte-

gral representations is revisited. From these, the equivalent of

the PMCHWT equation is constructed. Next the discretization

scheme is discussed. The resulting algorithm to model scatter-

ing by chiral bodies will be validated by comparison to the Mie

series. It will be shown numerically that the condition number

grows arbitrarily when the mesh parameter decreases. Finally,

a Calderón multiplicative preconditioner will be introduced. It

will be shown that the preconditioned linear system is well-

conditioned and that it can be solved efficienty by iterative

algorithms.

II. EQUATIONS

Consider a scatterer with surface Γ and outward pointing

normal n̂. The scatterer is illuminated by a time harmonic

electromagnetic field
(

einc,hinc
)

varying with angular fre-

quency ω. The medium surrounding the scatterer is char-

acterized by a permittivity ǫ0 and a permeability µ0. Let

η0 =
√

µ0/ǫ0 and k0 = ω
√
µ0ǫ0 be the corresponding

impedance and wave number, respectively. The electromag-

netic fields outside the scatterer are solutions of the Stratton-

Chew representation formulas for the tangential components

of the traces of the electric and magnetic fields:

(

ẽ0 × n̂

n̂× h̃0

)

=

(

ẽinc × n̂

n̂× h̃
inc

)

+

(

−K0 + 1

2
η0T

0

−T 0/η0 −K0 + 1

2

)(

ẽ0 × n̂

n̂× h̃0

)

(1)

where

T0f(r) =
1

jk0

∫

Γ

n̂×∇e−jk0R

4πR
∇′ · f(r′)dγ(r′)

= −jk0

∫

Γ

n̂× e−jk0R

4πR
f(r′), dγ(r′), (2)

K0f(r) =

∫

Γ

n̂×∇e−jk0R

4πR
× f(r′)dγ(r′). (3)

The scatterer is filled with a chiral medium characterized by

a permittivity ǫ, a permeability µ, and a chirality parameter κ.

A number of different models exist to describe chiral materials

[5]. For time-harmonic fields, most of these models result in

Maxwell equations of the following form:

∇× e = −jω (−jκ
√
ǫµe+ µh) , (4)

∇× h = jω (ǫe+ jκ
√
ǫµh) . (5)

Although these equations are more involved than the classic

Maxwell equations, they can be brought in the same form

following the reasoning in described in [6]. First, the Bohren

transformation [5] is applied to the fields:
(

ẽ1
ẽ2

)

=

(

1 −jη
1 jη

)(

e

h

)

. (6)

Here, η =
√

µ/ǫ. Note that in general this quantity looses its

physical meaning of an impedance. Substitution of the electric

and magnetic field in favor of these auxiliary electric fields

diagonalizes the Maxwell equations, yielding

∇× ẽ1 = γ1ẽ1, (7)

∇× ẽ2 = −γ2ẽ2, (8)

with

γ1 = ω
√
ǫµ (1− κ) , (9)

γ2 = ω
√
ǫµ (1 + κ) (10)

(11)

the propagation coefficient of their respective modes. Although

at first inspection is seems that the two equations are com-

pletely decoupled, in practice they cannot be solved separately

since the complete space is not filled with the same chiral

medium, and these contributions couple through the continuity

conditions imposed at the boundaries of the medium. Finally,

introduce the following auxiliary magnetic fields:

h̃1 = − 1

jω1µ
∇× ẽ1, (12)

h̃2 = − 1

jω2µ
∇× ẽ2. (13)

(14)

with ω1 = (1− κ)ω and ω2 = (1 + κ)ω. Taking into account

(7-8) and (13-14), the inversion of (6) can written as
(

e

h

)

=
1

2

(

ẽ1

h̃1

)

+
1

2

(

ẽ2

h̃2

)

. (15)

The auxiliary electric and magnetic field can be seen to fulfill

to following set of formal Maxwell equations:

∇× ẽi = −jωih̃i, (16)

∇× h̃i = jωiẽi, (17)

for i = 1, 2. Let ki = ωi
√
ǫµ, i = 1, 2 be the effective wave

numbers. Since the auxiliary field pairs obey formal Maxwell

equations, it can be immediately concluded that they can be

represented by the Stratton-Chu representation formulas. In

particular, for the tangential components of their traces,
(

ẽi × n̂

n̂× h̃i

)

=

(

−Ki + 1

2
ηT i

−T i/η −Ki + 1

2

)(

ẽi × n̂

n̂× h̃i

)

(18)

for i = 1, 2. The definitions of (T i,Ki) are analogous to those

of (T 0,K0). The representation formulas for the original fields

can be constructed from these using (6) and (15):
(

e× n̂

n̂× h

)

= (19)

(

−(K+ − jT−) + 1

2
η(T+ + jK−)

−(T+ + jK−)/η −(K+ − jT−) + 1

2

)(

e× n̂

n̂× h

)

with K± = (K1 −K2)/2 and T± = (T 1 − T 2)/2.

The PMCHWT equation can be constructed by subtracting

the outer and inner representation formulas, giving rise to [6]

−
(

einc × n̂

n̂× hinc

)

= P

(

e× n̂

n̂× h

)

(20)



with

P =

(

K0 + (K+ − jT−) −ηoT
0 − η(T+ + jK−)

T 0/η0 + (T+ + jK−)/η K0 + (K+ − jT−)

)

(21)

Notice that the structure of the operator involved is signifi-

cantly more intricate than in the case of non chiral materials.

More in particular, both the single layer potential T and

double layer potential K operators appear in every block of

the operator. In the numerical example section, it will be

shown that linear systems resulting upon discretization of this

system are ill-conditioned, creating the need for a regularized

equation. Inspired by the results in [2] and [1], the following

regularized equation is proposed:

−P

(

einc × n̂

n̂× h
inc

)

= P 2

(

e× n̂

n̂× h

)

. (22)

III. DISCRETIZATION

Following literature, equation (20) is discretized by approx-

imating Γ by a triangular mesh comprising N edges. The

largest among the triangle’s diameters is dubbed the mesh

parameter h. Subordinate to this mesh, the Rao-Wilton-Glisson

divergence conforming basis functions fn, n = 1, ..., N
are defined. The unknown current densities are approximated

by expansions in these basis functions. The expansions are

substituted in (20). Finally, (20) is tested by curl conforming

Rao-Wilton-Glisson functions n̂ × fn, N = 1, ..., N . The

following linear system arises:

Pff ·
(

Mf

Jf

)

= −
(

M
inc
f

J
inc
f

)

. (23)

where Pff is
(

K
0

ff + (K+

ff − jT−
ff ) −η0T

0

ff − η(T+

ff + jK−
ff )

T
0
ff/η0 + (T+

ff + jK−
ff )/η K

0
ff + (K+

ff − jT−
ff )

)

.

(24)

Here,

Off =

∫

Γ

dγ(r) (n̂× f ) (r) · Of (r), (25)

with O any of the operators in (21). Furthermore Mf and Jf

contain the expansion coefficients of e × n̂ and n̂ × h with

regards to fn, n = 1, ..., N , respectively, and

(

M
inc
f

)

n
=

∫

Γ

dγ(r)
(

×̂fn

)

·
(

einc × n̂
)

, (26)

(

J
inc
f

)

n
=

∫

Γ

dγ(r)
(

×̂fn

)

·
(

n̂× hinc
)

. (27)

To stably discretize (22), Buffa-Christiansen functions [7]

gn and n̂ × gn subordinate to the same mesh need to

be introduced in addition to the Rao-Wilton-Glisson basis

functions. The resulting Calderón preconditioned PMCHWT

equation is

Pgg · S−1

fg · Pff ·
(

M

J

)

= −Pgg · S−1

fg ·
(

M
inc

J
inc

)

, (28)

where Sfg is
(

G
−1

fg 0

0 G
−1

fg

)

. (29)

and (Gfg)m,n
=
∫

Γ
dγ(r) (n̂× fm(r)) · gn(r).

IV. NUMERICAL RESULTS
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Fig. 1. Comparison of the far field resulting from the PMCHWT and CP-
PMCHWT solvers with that predicted by the Mie series
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Fig. 2. Condition number and iteration count as a function of the mesh
parameter.

In this section, both the classic discretization of the PM-

CHWT for scattering by chiral media as the discretization of

the Calderón preconditioned PMCHWT described above will

be used to model scattering by a sphere.

The sphere is illuminated by a plane wave

einc = p̂e−j
√
ǫ0µ0ωz (30)

with ω = 1.884 · 109 per second, and p̂ the polarization.

Both left handed (p̂ = x̂ + jŷ) and right handed excitations

(p̂ = x̂ − jŷ) were used. The sphere is characterized by a

permittivity ǫ = 2ǫ0, a permeability µ = µ0 and a chirality



parameter κ = 0.5. The simulation was performed at mesh

parameters decreasing from 0.225 meter to 0.075 meter.

First, to validate the method, the far field was compared

to the far field predicted by the Mie series. Simulations were

performed at a mesh parameter of 0.13 meter. There is a clear

influence of chirality (Fig. 1). Results from both polarization

and from both the PMCHWT and the Calderón preconditioned

PMCHWT solvers agree with the Mie series.

Next, at each mesh parameter, the condition number of the

system matrix and the number of iterations needed to reach a

relative error of 1·10−6 was recorded. It is clear that while both

the condition number and iteration count of the PMCHWT

solver increases quadratically, the condition number and itera-

tion count of the CP-PMCHWT solver remains stable (Fig. 2).
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