74 research outputs found

    On the use of Pseudo-Noise Ranging with high-rate spectrally-efficient modulations

    Get PDF
    In this paper, we study the feasibility of coupling the PN ranging with filtered high-order modulations, and investigate the simultaneous demodulation of a high-rate telemetry stream while tracking the PN ranging sequence. Accordingly, we design a receiver scheme that is able to perform a parallel cancellation, in closedloop, of the ranging and the telemetry signal reciprocally. From our analysis, we find that the non-constant envelope property of the modulation causes an additional jitter on the PN ranging timing estimation that, on the other hand, can be limited by properly sizing the receiver loop bandwidth. Our study proves that the use of filtered high-order modulations combined with PN ranging outperforms the state-of-the-art in terms of spectral efficiency and achievable data rate, while having comparable ranging performanc

    Spectrum control and iterative coding for high capacity multiband OFDM

    Get PDF
    The emergence of Multiband Orthogonal Frequency Division Modulation (MB-OFDM) as an ultra-wideband (UWB) technology injected new optimism in the market through realistic commercial implementation, while keeping promise of high data rates intact. However, it has also brought with it host of issues, some of which are addressed in this thesis. The thesis primarily focuses on the two issues of spectrum control and user capacity for the system currently proposed by the Multiband OFDM Alliance (MBOA). By showing that line spectra are still an issue for new modulation scheme (MB-OFDM), it proposes a mechanism of scrambling the data with an increased length linear feedback shift register (compared to the current proposal), a new set of seeds, and random phase reversion for the removal of line spectra. Following this, the thesis considers a technique for increasing the user capacity of the current MB-OFDM system to meet the needs of future wireless systems, through an adaptive multiuser synchronous coded transmission scheme. This involves real time iterative generation of user codes, which are generated over time and frequency leading to increased capacity. With the assumption of complete channel state information (CSI) at the receiver, an iterative MMSE algorithm is used which involves replacement of each users s signature with its normalized MMSE filter function allowing the overall Total Squared Correlation (TSC) of the system to decrease until the algorithm converges to a fixed set of signature vectors. This allows the system to be overloaded and user\u27s codes to be quasi-orthogonal. Simulation results show that for code of length nine (spread over three frequency bands and three time slots), ten users can be accommodated for a given QoS and with addition of single frequency sub-band which allows the code length to increase from nine to twelve (four frequency sub-bands and three time slots), fourteen users with nearly same QoS can be accommodated in the system. This communication is overlooked by a central controller with necessary functionalities to facilitate the process. The thesis essentially considers the uplink from transmitting devices to this central controller. Furthermore, analysis of this coded transmission in presence of interference is carried to display the robustness of this scheme through its adaptation by incorporating knowledge of existing Narrowband (NB) Interference for computing the codes. This allows operation of sub-band coexisting with NB interference without substantial degradation given reasonable interference energy (SIR=-l0dB and -5dB considered). Finally, the thesis looks at design implementation and convergence issues related to code vector generation whereby, use of Lanczos algorithm is considered for simpler design and faster convergence. The algorithm can be either used to simplify design implementation by providing simplified solution to Weiner Hopf equation (without requiring inverse of correlation matrix) over Krylov subspace or can be used to expedite convergence by updating the signature sequence with eigenvector corresponding to the least eigenvalue of the signature correlation matrix through reduced rank eigen subspace search

    Analysis of Offset Pulse Position Modulation

    Get PDF
    This work presents the performance analysis of the offset pulse position modulation (PPM) scheme using graded-index plastic optical fibre with a Gaussian impulse response. The aim of this analysis is to predict how sensitivity, error, number of required photons, threshold voltage, and the effect of inter-symbol interference will change with the change in the number of data bits encoded at a rate of 1 Gbit/s. An information theory analysis is presented in detail and also the band-utilization efficiency is determined. Results are compared to equivalent digital PPM and multiple PPM schemes and it is also shown that offset PPM gives an advantage over on-off keying (OOK). Bit error rate (BER) analysis has been presented numerically. The errors due to different coding techniques are compared. It has also been shown that offset pulse position modulation is more power efficient than multiple pulse position modulation. The spectral analysis of offset pulse position modulation coding scheme has been carried out. For an offset PPM sequence the spectral characteristics is presented both theoretically and numerically. The results show strong frequency components at the frame rate and, if return-to-zero pulses are used, the slot rate. Slot synchronisation has been taken into consideration for the first time as offset PPM spectrum exhibits discrete slot rate component. The effect of pulse shaping and modulating index on the spectrum has been shown. The dependency of slot component on the pulse shape is examined. The results show that the frame synchronisation is possible for offset PPM as this coding exhibits a strong frame rate component. A comparison of spectral characteristics has been presented considering digital, multiple and shortened PPM. For ease of implementation an offset PPM coder has been designed. In this work an efficient clock recovery topology is presented for offset PPM data sequence at the receiver end. For clock recovery, a phase locked loop is designed. Data recovery has also been presented. It is shown that a frame clock can be extracted from the data sequence that yields the possibility of frame synchronization. A detailed noise analysis has been performed for random offset PPM input. It has been shown that the proposed clock recovery system is also effective for extracting other data sequence. To elucidate, a multiple Pulse Position Modulation (MPPM) data sequence is considered. The MPPM data sequence has also been synchronised with the recovered clock. A noise analysis is carried out for multiple PPM

    Investigation into synchronization for partial response signals and the development of a clock recovery scheme for 49QPRS signals

    Get PDF
    ThesisData communication is used increasingly in modern society. It is against this background that research is conducted worldwide toward the improvement of existing, as well as the development of new, improved communication techniques. Correlative encoding of data before transmission IS a very frequency-effective communication technique. The extent to which any communication technique is used, however, is dependent on a wide variety of factors. This study regarding the synchronisation of 49QPRS signals was undertaken with this in mind. Since digital signal processing (DSP) is used increasingly in modern communication systems, both a data transmitter and receiver were implemented by making use of this technique. Not only would this result in a system with all the desirable characteristics inherent to DSP, but, by making limited changes to the supporting software, the evaluation of a wide variety of alternatives became feasible. During the study a system making use of a pilot tone at one third the frequency of the carrier frequency was developed. The receiver recovers this signal by means of DSP techniques and its frequency is tripled. The phase of this recovered signal is crosscorrelated every 650 ~s in time with a locally generated signal of the correct frequency - and the phase of the locally generated signal is adjusted accordingly. It was found that the accuracy and stability of the locally generated signal were such that sufficient synchronisation was obtained in this manner. The quality of synchronisation is a function of the level of the pilot tone and if this tone should decrease to below a certain value, unacceptably large phase adjustments have to be made. This results in a senous degradation of the spectral purity of the recovered signal. However, the system as described exhibits extremely good noise immunity. During the development of the clock frequency recovery system, a baseband filter with a unique frequency response was defined. Making use of this, in conjunction with a limited amount of pre-processing, and an absolute value rectifier, recovery of the clock frequency becomes possible. In order to limit the amount of processing by the receiver, the baseband filter was implemented in its entirety in the transmitter. The recovered signal showed a moderate amount of amplitude variation, but an extremely stable synchronising signal could be derived from this. During the study both levels of synchronisation required by a hypothetical 49QPRS data communication system were therefore investigated fully and solutions found

    New advances in synchronization of digital communication receivers

    Get PDF
    Synchronization is a challenging but very important task in communications. In digital communication systems, a hierarchy of synchronization problems has to be considered: carrier synchronization, symbol timing synchronization and frame synchronization. For bandwidth efficiency and burst transmission reasons, the former two synchronization steps tend to favor non-data aided (NDA or blind) techniques, while in general, the last one is usually solved by inserting repetitively known bits or words into the data sequence, and is referred to as a data-aided (DA) approach. Over the last two decades, extensive research work has been carried out to design nondata-aided timing recovery and carrier synchronization algorithms. Despite their importance and spread use, most of the existing blind synchronization algorithms are derived in an ad-hoc manner without exploiting optimally the entire available statistical information. In most cases their performance is evaluated by computer simulations, rigorous and complete performance analysis has not been performed yet. It turns out that a theoretical oriented approach is indispensable for studying the limit or bound of algorithms and comparing different methods. The main goal of this dissertation is to develop several novel signal processing frameworks that enable to analyze and improve the performance of the existing timing recovery and carrier synchronization algorithms. As byproducts of this analysis, unified methods for designing new computationally and statistically efficient (i.e., minimum variance estimators) blind feedforward synchronizers are developed. Our work consists of three tightly coupled research directions. First, a general and unified framework is proposed to develop optimal nonlinear least-squares (NLS) carrier recovery scheme for burst transmissions. A family of blind constellation-dependent optimal "matched" NLS carrier estimators is proposed for synchronization of burst transmissions fully modulated by PSK and QAM-constellations in additive white Gaussian noise channels. Second, a cyclostationary statistics based framework is proposed for designing computationally and statistically efficient robust blind symbol timing recovery for time-selective flat-fading channels. Lastly, dealing with the problem of frame synchronization, a simple and efficient data-aided approach is proposed for jointly estimating the frame boundary, the frequency-selective channel and the carrier frequency offset

    Deep Space Telecommunications Systems Engineering

    Get PDF
    Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed

    High-performance signal acquisition algorithms for wireless communications receivers

    Get PDF
    Due to the uncertainties introduced by the propagation channel, and RF and mixed signal circuits imperfections, digital communication receivers require efficient and robust signal acquisition algorithms for timing and carrier recovery, and interfer- ence rejection. The main theme of this work is the development of efficient and robust signal synchronization and interference rejection schemes for narrowband, wideband and ultra wideband communications systems. A series of novel signal acquisition schemes together with their performance analysis and comparisons with existing state-of-the- art results are introduced. The design effort is first focused on narrowband systems, and then on wideband and ultra wideband systems. For single carrier modulated narrowband systems, it is found that conventional timing recovery schemes present low efficiency, e.g., certain feedback timing recov- ery schemes exhibit the so-called hang-up phenomenon, while another class of blind feedforward timing recovery schemes presents large self-noise. Based on a general re- search framework, we propose new anti-hangup algorithms and prefiltering techniques to speed up the feedback timing recovery and reduce the self-noise of feedforward tim- ing estimators, respectively. Orthogonal frequency division multiplexing (OFDM) technique is well suited for wideband wireless systems. However, OFDM receivers require high performance car-rier and timing synchronization. A new coarse synchronization scheme is proposed for efficient carrier frequency offset and timing acquisition. Also, a novel highly accurate decision-directed algorithm is proposed to track and compensate the residual phase and timing errors after the coarse synchronization step. Both theoretical analysis and computer simulations indicate that the proposed algorithms greatly improve the performance of OFDM receivers. The results of an in-depth study show that a narrowband interference (NBI) could cause serious performance loss in multiband OFDMbased ultra-wideband (UWB) sys- tems. A novel NBI mitigation scheme, based on a digital NBI detector and adaptive analog notch filter bank, is proposed to reduce the effects of NBI in UWB systems. Simulation results show that the proposed NBI mitigation scheme improves signifi- cantly the performance of a standard UWB receiver (this improvement manifests as a signal-to-noise ratio (SNR) gain of 9 dB)

    Blind Demodulation of Pass Band OFDMA Signals and Jamming Battle Damage Assessment Utilizing Link Adaptation

    Get PDF
    This research focuses on blind demodulation of a pass band OFDMA signal so that jamming effectiveness can be assessed; referred to in this research as BDA. The research extends, modifies and collates work within literature to perform a new method of blindly demodulating of a passband OFDMA signal, which exhibits properties of the 802.16 Wireless MAN OFDMA standard, and presents a novel method for performing BDA via observation of SC LA. Blind demodulation is achieved by estimating the carrier frequency, sampling rate, pulse shaping filter roll off factor, synchronization parameters and CFO. The blind demodulator\u27s performance in AWGN and a perfect channel is evaluated where it improves using a greater number OFDMA DL symbols and increased CP length. Performance in a channel with a single multi-path interferer is also evaluated where the blind demodulator\u27s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the blindly demodulated signal between successive OFDMA DL sub frames in two scenarios. The first is where modulation signaling can be used to observe change of SC modulation. The second assumes modulation signaling is not available and the SC\u27s modulation must be classified. Classification of SC modulation is performed using sixth-order cumulants where performance increases with the number of OFDMA symbols. The SC modulation classi er is susceptible to the CFO caused by blind demodulation. In a perfect channel it is shown that SC modulation can be classified using a variety of OFDMA DL sub frame lengths in symbols. The SC modulation classifier experienced degraded performance in a multi-path channel and it is recommended that it is extended to perform channel equalization in future work

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity
    • …
    corecore