57 research outputs found

    Strict Positive Realness of Descriptor Systems in State Space

    Get PDF
    In this paper we give necessary and sufficient spectral conditions for various notions of strict positive realness for single input single output, impulse free Descriptor Systems. These conditions only require calculation of eigenvalues of a single matrix. A characterization of a KYP-like lemma for descriptor systems is also derived, and its implications for the stability of a class of switched descriptor systems are briefly discussed

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis

    An efficient projector-based passivity test for descriptor systems

    Get PDF
    An efficient passivity test based on canonical projector techniques is proposed for descriptor systems (DSs) widely encountered in circuit and system modeling. The test features a natural flow that first evaluates the index of a DS, followed by possible decoupling into its proper and improper subsystems. Explicit state-space formulations for respective subsystems are derived to facilitate further processing such as model order reduction and/or passivity enforcement. Efficient projector construction and a fast generalized Hamiltonian test for the proper-part passivity are also elaborated. Numerical examples then confirm the superiority of the proposed method over existing passivity tests for DSs based on linear matrix inequalities or skew-Hamiltonian/Hamiltonian matrix pencils. © 2010 IEEE.published_or_final_versio

    New Results on Negative Imaginary Systems Theory with Application to Flexible Structures and Nano-Positioning

    Full text link
    Flexible structure systems arise in many important applications such as ground and aerospace vehicles, atomic force microscopes, rotating flexible spacecraft, rotary cranes, robotics and flexible link manipulators, hard disk drives and other nano-positioning systems. In control systems design for these flexible systems, it is important to consider the effect of highly resonant modes. Such resonant modes are known to adversely affect the stability and performance of flexible structure control systems, and are often very sensitive to changes in environmental variables. These can lead to vibrational effects which limit the ability of control systems in achieving desired levels of performance. These problems are simplified to some extend by using force actuators combined with colocated measurements of velocity, position, or acceleration. Using force actuators combined with colocated measurements of velocity can be studied using positive real systems theory, which has received a great attention since 1962. Using force actuators combined with colocated measurements of position and acceleration can be studied using negative imaginary (NI) systems theory. In this thesis, we provide a generalization and development of negative imaginary systems theory to include a wider class of systems. In the generalization of NI systems theory, we provide a new negative imaginary definition that allows for flexible systems with free body motion. Also, we provide a new stability condition for a positive feedback control system where the plant is NI according to the new definition and the controller is strictly negative imaginary (SNI). This general stability result captures all previous NI stability results which have been developed. This thesis also presents analytical tools for negative imaginary systems theory, which can be useful in the practical applications of the theory. Two methods that can be used for checking the negative imaginary property for a given system are presented. Also, methods for enforcing NI dynamics on mathematical system models to satisfy an NI Property are explored. A systematic method to design controllers for NI systems with guaranteed robust stability also is presented. A practical application of control system design for a three-mirror cavity locking system is presented in the end of the thesis

    Model Reduction Using Semidefinite Programming

    Get PDF
    In this thesis model reduction methods for linear time invariant systems are investigated. The reduced models are computed using semidefinite programming. Two ways of imposing the stability constraint are considered. However, both approaches add a positivity constraint to the program. The input to the algorithms is a number of frequency response samples of the original model. This makes the computational complexity relatively low for large-scale models. Extra properties on a reduced model can also be enforced, as long as the properties can be expressed as convex conditions. Semidefinite program are solved using the interior point methods which are well developed, making the implementation simpler. A number of extensions to the proposed methods were studied, for example, passive model reduction, frequency-weighted model reduction. An interesting extension is reduction of parameterized linear time invariant models, i.e. models with state-space matrices dependent on parameters. It is assumed, that parameters do not depend on state variables nor time. This extension is valuable in modeling, when a set of parameters has to be chosen to fit the required specifications. A good illustration of such a problem is modeling of a spiral radio frequency inductor. The physical model depends nonlinearly on two parameters: wire width and wire separation. To chose optimally both parameters a low-order model is usually created. The inductor modeling is considered as a case study in this thesis

    System- and Data-Driven Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques
    • …
    corecore