2,405 research outputs found

    An open access database for the evaluation of heart sound algorithms

    Full text link
    This is an author-created, un-copyedited version of an article published in Physiological Measurement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/0967-3334/37/12/2181In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.This work was supported by the National Institutes of Health (NIH) grant R01-EB001659 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and R01GM104987 from the National Institute of General Medical Sciences.Liu, C.; Springer, DC.; Li, Q.; Moody, B.; Abad Juan, RC.; Li, Q.; Moody, B.... (2016). An open access database for the evaluation of heart sound algorithms. Physiological Measurement. 37(12):2181-2213. doi:10.1088/0967-3334/37/12/2181S21812213371

    Automatic analysis and classification of cardiac acoustic signals for long term monitoring

    Get PDF
    Objective: Cardiovascular diseases are the leading cause of death worldwide resulting in over 17.9 million deaths each year. Most of these diseases are preventable and treatable, but their progression and outcomes are significantly more positive with early-stage diagnosis and proper disease management. Among the approaches available to assist with the task of early-stage diagnosis and management of cardiac conditions, automatic analysis of auscultatory recordings is one of the most promising ones, since it could be particularly suitable for ambulatory/wearable monitoring. Thus, proper investigation of abnormalities present in cardiac acoustic signals can provide vital clinical information to assist long term monitoring. Cardiac acoustic signals, however, are very susceptible to noise and artifacts, and their characteristics vary largely with the recording conditions which makes the analysis challenging. Additionally, there are challenges in the steps used for automatic analysis and classification of cardiac acoustic signals. Broadly, these steps are the segmentation, feature extraction and subsequent classification of recorded signals using selected features. This thesis presents approaches using novel features with the aim to assist the automatic early-stage detection of cardiovascular diseases with improved performance, using cardiac acoustic signals collected in real-world conditions. Methods: Cardiac auscultatory recordings were studied to identify potential features to help in the classification of recordings from subjects with and without cardiac diseases. The diseases considered in this study for the identification of the symptoms and characteristics are the valvular heart diseases due to stenosis and regurgitation, atrial fibrillation, and splitting of fundamental heart sounds leading to additional lub/dub sounds in the systole or diastole interval of a cardiac cycle. The localisation of cardiac sounds of interest was performed using an adaptive wavelet-based filtering in combination with the Shannon energy envelope and prior information of fundamental heart sounds. This is a prerequisite step for the feature extraction and subsequent classification of recordings, leading to a more precise diagnosis. Localised segments of S1 and S2 sounds, and artifacts, were used to extract a set of perceptual and statistical features using wavelet transform, homomorphic filtering, Hilbert transform and mel-scale filtering, which were then fed to train an ensemble classifier to interpret S1 and S2 sounds. Once sound peaks of interest were identified, features extracted from these peaks, together with the features used for the identification of S1 and S2 sounds, were used to develop an algorithm to classify recorded signals. Overall, 99 features were extracted and statistically analysed using neighborhood component analysis (NCA) to identify the features which showed the greatest ability in classifying recordings. Selected features were then fed to train an ensemble classifier to classify abnormal recordings, and hyperparameters were optimized to evaluate the performance of the trained classifier. Thus, a machine learning-based approach for the automatic identification and classification of S1 and S2, and normal and abnormal recordings, in real-world noisy recordings using a novel feature set is presented. The validity of the proposed algorithm was tested using acoustic signals recorded in real-world, non-controlled environments at four auscultation sites (aortic valve, tricuspid valve, mitral valve, and pulmonary valve), from the subjects with and without cardiac diseases; together with recordings from the three large public databases. The performance metrics of the methodology in relation to classification accuracy (CA), sensitivity (SE), precision (P+), and F1 score, were evaluated. Results: This thesis proposes four different algorithms to automatically classify fundamental heart sounds – S1 and S2; normal fundamental sounds and abnormal additional lub/dub sounds recordings; normal and abnormal recordings; and recordings with heart valve disorders, namely the mitral stenosis (MS), mitral regurgitation (MR), mitral valve prolapse (MVP), aortic stenosis (AS) and murmurs, using cardiac acoustic signals. The results obtained from these algorithms were as follows: • The algorithm to classify S1 and S2 sounds achieved an average SE of 91.59% and 89.78%, and F1 score of 90.65% and 89.42%, in classifying S1 and S2, respectively. 87 features were extracted and statistically studied to identify the top 14 features which showed the best capabilities in classifying S1 and S2, and artifacts. The analysis showed that the most relevant features were those extracted using Maximum Overlap Discrete Wavelet Transform (MODWT) and Hilbert transform. • The algorithm to classify normal fundamental heart sounds and abnormal additional lub/dub sounds in the systole or diastole intervals of a cardiac cycle, achieved an average SE of 89.15%, P+ of 89.71%, F1 of 89.41%, and CA of 95.11% using the test dataset from the PASCAL database. The top 10 features that achieved the highest weights in classifying these recordings were also identified. • Normal and abnormal classification of recordings using the proposed algorithm achieved a mean CA of 94.172%, and SE of 92.38%, in classifying recordings from the different databases. Among the top 10 acoustic features identified, the deterministic energy of the sound peaks of interest and the instantaneous frequency extracted using the Hilbert Huang-transform, achieved the highest weights. • The machine learning-based approach proposed to classify recordings of heart valve disorders (AS, MS, MR, and MVP) achieved an average CA of 98.26% and SE of 95.83%. 99 acoustic features were extracted and their abilities to differentiate these abnormalities were examined using weights obtained from the neighborhood component analysis (NCA). The top 10 features which showed the greatest abilities in classifying these abnormalities using recordings from the different databases were also identified. The achieved results demonstrate the ability of the algorithms to automatically identify and classify cardiac sounds. This work provides the basis for measurements of many useful clinical attributes of cardiac acoustic signals and can potentially help in monitoring the overall cardiac health for longer duration. The work presented in this thesis is the first-of-its-kind to validate the results using both, normal and pathological cardiac acoustic signals, recorded for a long continuous duration of 5 minutes at four different auscultation sites in non-controlled real-world conditions.Open Acces

    A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals

    Get PDF
    The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors

    DIGITAL ANALYSIS OF CARDIAC ACOUSTIC SIGNALS IN CHILDREN

    Get PDF
    DIGITAL ANALYSIS OF CARDIAC ACOUSTIC SIGNALS IN CHILDREN Milad El-Segaier, MD Division of Paediatric Cardiology, Department of Paediatrics, Lund University Hospital, Lund, Sweden SUMMARY Despite tremendous development in cardiac imaging, use of the stethoscope and cardiac auscultation remains the primary diagnostic tool in evaluation of cardiac pathology. With the advent of miniaturized and powerful technology for data acquisition, display and digital signal processing, the possibilities for detecting cardiac pathology by signal analysis have increased. The objective of this study was to develop a simple, cost-effective diagnostic tool for analysis of cardiac acoustic signals. Heart sounds and murmurs were recorded in 360 children with a single-channel device and in 15 children with a multiple-channel device. Time intervals between acoustic signals were measured. Short-time Fourier transform (STFT) analysis was used to present the acoustic signals to a digital algorithm for detection of heart sounds, define systole and diastole and analyse the spectrum of a cardiac murmur. A statistical model for distinguishing physiological murmurs from pathological findings was developed using logistic regression analysis. The receiver operating characteristic (ROC) curve was used to evaluate the discriminating ability of the developed model. The sensitivities and specificities of the model were calculated at different cut-off points. Signal deconvolution using blind source separation (BSS) analysis was performed for separation of signals from different sources. The first and second heart sounds (S1 and S2) were detected with high accuracy (100% for the S1 and 97% for the S2) independently of heart rates and presence of a murmur. The systole and diastole were defined, but only systolic murmur was analysed in this work. The developed statistical model showed excellent prediction ability (area under the curve, AUC = 0.995) in distinguishing a physiological murmur from a pathological one with high sensitivity and specificity (98%). In further analyses deconvolution of the signals was successfully performed using blind separation analysis. This yielded two spatially independent sources, heart sounds (S1 and S2) in one component, and a murmur in another. The study supports the view that a cost-effective diagnostic device would be useful in primary health care. It would diminish the need for referring children with cardiac murmur to cardiac specialists and the load on the health care system. Likewise, it would help to minimize the psychological stress experienced by the children and their parents at an early stage of the medical care

    High-Performance Accelerometer Based On Asymmetric Gapped Cantilevers For Physiological Acoustic Sensing

    Get PDF
    Continuous or mobile monitoring of physiological sounds is expected to play important role in the emerging mobile healthcare field. Because of the miniature size, low cost, and easy installation, accelerometer is an excellent choice for continuous physiological acoustic signal monitoring. However, in order to capture the detailed information in the physiological signals for clinical diagnostic purpose, there are more demanding requirements on the sensitivity/noise performance of accelerometers. In this thesis, a unique piezoelectric accelerometer based on the asymmetric gapped cantilever which exhibits significantly improved sensitivity is extensively studied. A meso-scale prototype is developed for capturing the high quality cardio and respiratory sounds on healthy people as well as on heart failure patients. A cascaded gapped cantilever based accelerometer is also explored for low frequency vibration sensing applications such as ballistocardiogram monitoring. Finally, to address the power issues of wireless sensors such as wireless wearable health monitors, a wide band vibration energy harvester based on a folded gapped cantilever is developed and demonstrated on a ceiling air condition unit

    The transmission of music into the human uterus and the response to music of the human fetus and neonate

    Get PDF
    The aim of this study was to investigate whether music influences human life before birth. In order to determine the existence and character of music in the uterine acoustic environment, a study was conducted involving the insertion of a hydrophone through the cervix, next to the fetal head. The investigation was conducted on eight women in early labour. The average residual uterine sound of the eight subjects was measured at 65 dBA (A-weighted) re 20 µ.Pa in a 1 O KHz band, RMS averaged over 32-second records. Above this emerged the maternal voice, an external female voice and a male voice presented at approximately 65 dB (linear weighted). Pure tones between 50 Hz and 1 O KHz and orchestral music, all presented at 80 dB (linear weighted), were also shown to emerge above the residual uterine sound. Attenuation of external sound was observed to vary as a function of frequency, with less attenuation of lower frequencies. It was determined that the music was transmitted into the uterus without sufficient distortion to significantly alter the recognisable characteristics of the music. The fetal heart rate (FHA) response to a music stimulus (MS) and a vibroacoustic stimulus (VS) was measured in 40 subjects. Gestational age of the fetuses ranged from 32 to 42 weeks. The study included a control period with no acoustic stimulation; a period with the presentation of 5 music stimuli; and a period with the presentation of 5 vibroacoustic stimuli. A change in the FHA of 15 beats per minute or greater, lasting 15 seconds and occurring within 15 seconds of at least 2 of the 5 stimuli (or a tachycardia of greater than 15 beats per minute above the resting baseline, sustained for one minute or longer) was considered to be a positive response. The MS elicited a positive response in 35 of the fetuses (the 5 non-responses occurring in a period of low FHA variability) and all 40 fetuses responded to the VS (regardless of arousal state). In the third study, mothers attending childbirth education classes volunteered to listen to a prescribed music excerpt twice daily from the 34th week of pregnancy. Ten neonates (all clinically normal) were tested betw~en the 2nd and 5th day after birth. Investigators observed the effect of two music sti:Tiuli, the prescribed stimulus and a non-prescribed stimulus, on neonatal sucking of a non-nutritive nipple. A five-minute control period with no stimulation was compared with a ten-minute period during which two music stimuli were presented. By random allocation, either the prescribed music stimulus (PM) or the nonprescribed music (NM) was presented contingent upon sucking pressure. If a sucking burst was initiated, the PM stimulus was activated. On cessation of sucking, the NM stimulus was activated. Randomly, the procedure would be reversed for some of the subjects, where initiation of sucking activated the NM stimulus and cessation of sucking activated the PM stimulus. It was determined that the inter-burst intervals during the music period were significantly extended when coinciding with the PM stimulus and significantly shortened when coinciding with the NM stimulus.The studies indicated that music is transmitted into the uterus with insufficient distortion to alter the character of the music; that the normal fetus responds to a music stimulus from at least the 32nd week of gestation; and that the neonate alters the normal sucking pattern to activate longer periods of a music stimulus which has been repeatedly presented during the intrauterine stage and shorter periods of a novel music stimulus
    • …
    corecore