743 research outputs found

    Exploiting word embeddings for modeling bilexical relations

    Get PDF
    There has been an exponential surge of text data in the recent years. As a consequence, unsupervised methods that make use of this data have been steadily growing in the field of natural language processing (NLP). Word embeddings are low-dimensional vectors obtained using unsupervised techniques on the large unlabelled corpora, where words from the vocabulary are mapped to vectors of real numbers. Word embeddings aim to capture syntactic and semantic properties of words. In NLP, many tasks involve computing the compatibility between lexical items under some linguistic relation. We call this type of relation a bilexical relation. Our thesis defines statistical models for bilexical relations that centrally make use of word embeddings. Our principle aim is that the word embeddings will favor generalization to words not seen during the training of the model. The thesis is structured in four parts. In the first part of this thesis, we present a bilinear model over word embeddings that leverages a small supervised dataset for a binary linguistic relation. Our learning algorithm exploits low-rank bilinear forms and induces a low-dimensional embedding tailored for a target linguistic relation. This results in compressed task-specific embeddings. In the second part of our thesis, we extend our bilinear model to a ternary setting and propose a framework for resolving prepositional phrase attachment ambiguity using word embeddings. Our models perform competitively with state-of-the-art models. In addition, our method obtains significant improvements on out-of-domain tests by simply using word-embeddings induced from source and target domains. In the third part of this thesis, we further extend the bilinear models for expanding vocabulary in the context of statistical phrase-based machine translation. Our model obtains a probabilistic list of possible translations of target language words, given a word in the source language. We do this by projecting pre-trained embeddings into a common subspace using a log-bilinear model. We empirically notice a significant improvement on an out-of-domain test set. In the final part of our thesis, we propose a non-linear model that maps initial word embeddings to task-tuned word embeddings, in the context of a neural network dependency parser. We demonstrate its use for improved dependency parsing, especially for sentences with unseen words. We also show downstream improvements on a sentiment analysis task.En els darrers anys hi ha hagut un sorgiment notable de dades en format textual. Conseqüentment, en el camp del Processament del Llenguatge Natural (NLP, de l'anglès "Natural Language Processing") s'han desenvolupat mètodes no supervistats que fan ús d'aquestes dades. Els anomenats "word embeddings", o embeddings de paraules, són vectors de dimensionalitat baixa que s'obtenen mitjançant tècniques no supervisades aplicades a corpus textuals de grans volums. Com a resultat, cada paraula del diccionari es correspon amb un vector de nombres reals, el propòsit del qual és capturar propietats sintàctiques i semàntiques de la paraula corresponent. Moltes tasques de NLP involucren calcular la compatibilitat entre elements lèxics en l'àmbit d'una relació lingüística. D'aquest tipus de relació en diem relació bilèxica. Aquesta tesi proposa models estadístics per a relacions bilèxiques que fan ús central d'embeddings de paraules, amb l'objectiu de millorar la generalització del model lingüístic a paraules no vistes durant l'entrenament. La tesi s'estructura en quatre parts. A la primera part presentem un model bilineal sobre embeddings de paraules que explota un conjunt petit de dades anotades sobre una relaxió bilèxica. L'algorisme d'aprenentatge treballa amb formes bilineals de poc rang, i indueix embeddings de poca dimensionalitat que estan especialitzats per la relació bilèxica per la qual s'han entrenat. Com a resultat, obtenim embeddings de paraules que corresponen a compressions d'embeddings per a una relació determinada. A la segona part de la tesi proposem una extensió del model bilineal a trilineal, i amb això proposem un nou model per a resoldre ambigüitats de sintagmes preposicionals que usa només embeddings de paraules. En una sèrie d'avaluacións, els nostres models funcionen de manera similar a l'estat de l'art. A més, el nostre mètode obté millores significatives en avaluacions en textos de dominis diferents al d'entrenament, simplement usant embeddings induïts amb textos dels dominis d'entrenament i d'avaluació. A la tercera part d'aquesta tesi proposem una altra extensió dels models bilineals per ampliar la cobertura lèxica en el context de models estadístics de traducció automàtica. El nostre model probabilístic obté, donada una paraula en la llengua d'origen, una llista de possibles traduccions en la llengua de destí. Fem això mitjançant una projecció d'embeddings pre-entrenats a un sub-espai comú, usant un model log-bilineal. Empíricament, observem una millora significativa en avaluacions en dominis diferents al d'entrenament. Finalment, a la quarta part de la tesi proposem un model no lineal que indueix una correspondència entre embeddings inicials i embeddings especialitzats, en el context de tasques d'anàlisi sintàctica de dependències amb models neuronals. Mostrem que aquest mètode millora l'analisi de dependències, especialment en oracions amb paraules no vistes durant l'entrenament. També mostrem millores en un tasca d'anàlisi de sentiment

    Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI)

    Full text link
    Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, because urban vegetation categories have complex spatial structures and similar spectral properties. Deep neural networks (DNNs) have shown a significant improvement in remote sensing image classification outcomes during the last few years. These methods are promising in this domain, yet unreliable for various reasons, such as the use of irrelevant descriptor features in the building of the models and lack of quality in the labeled image. Explainable AI (XAI) can help us gain insight into these limits and, as a result, adjust the training dataset and model as needed. Thus, in this work, we explain how an explanation model called Shapley additive explanations (SHAP) can be utilized for interpreting the output of the DNN model that is designed for classifying vegetation covers. We want to not only produce high-quality vegetation maps, but also rank the input parameters and select appropriate features for classification. Therefore, we test our method on vegetation mapping from aerial imagery based on spectral and textural features. Texture features can help overcome the limitations of poor spectral resolution in aerial imagery for vegetation mapping. The model was capable of obtaining an overall accuracy (OA) of 94.44% for vegetation cover mapping. The conclusions derived from SHAP plots demonstrate the high contribution of features, such as Hue, Brightness, GLCM_Dissimilarity, GLCM_Homogeneity, and GLCM_Mean to the output of the proposed model for vegetation mapping. Therefore, the study indicates that existing vegetation mapping strategies based only on spectral characteristics are insufficient to appropriately classify vegetation covers

    Streaming and Sketch Algorithms for Large Data NLP

    Get PDF
    The availability of large and rich quantities of text data is due to the emergence of the World Wide Web, social media, and mobile devices. Such vast data sets have led to leaps in the performance of many statistically-based problems. Given a large magnitude of text data available, it is computationally prohibitive to train many complex Natural Language Processing (NLP) models on large data. This motivates the hypothesis that simple models trained on big data can outperform more complex models with small data. My dissertation provides a solution to effectively and efficiently exploit large data on many NLP applications. Datasets are growing at an exponential rate, much faster than increase in memory. To provide a memory-efficient solution for handling large datasets, this dissertation show limitations of existing streaming and sketch algorithms when applied to canonical NLP problems and proposes several new variants to overcome those shortcomings. Streaming and sketch algorithms process the large data sets in one pass and represent a large data set with a compact summary, much smaller than the full size of the input. These algorithms can easily be implemented in a distributed setting and provide a solution that is both memory- and time-efficient. However, the memory and time savings come at the expense of approximate solutions. In this dissertation, I demonstrate that approximate solutions achieved on large data are comparable to exact solutions on large data and outperform exact solutions on smaller data. I focus on many NLP problems that boil down to tracking many statistics, like storing approximate counts, computing approximate association scores like pointwise mutual information (PMI), finding frequent items (like n-grams), building streaming language models, and measuring distributional similarity. First, I introduce the concept of approximate streaming large-scale language models in NLP. Second, I present a novel variant of the Count-Min sketch that maintains approximate counts of all items. Third, I conduct a systematic study and compare many sketch algorithms that approximate count of items with focus on large-scale NLP tasks. Last, I develop fast large-scale approximate graph (FLAG), a system that quickly constructs a large-scale approximate nearest-neighbor graph from a large corpus

    Selecting and Generating Computational Meaning Representations for Short Texts

    Full text link
    Language conveys meaning, so natural language processing (NLP) requires representations of meaning. This work addresses two broad questions: (1) What meaning representation should we use? and (2) How can we transform text to our chosen meaning representation? In the first part, we explore different meaning representations (MRs) of short texts, ranging from surface forms to deep-learning-based models. We show the advantages and disadvantages of a variety of MRs for summarization, paraphrase detection, and clustering. In the second part, we use SQL as a running example for an in-depth look at how we can parse text into our chosen MR. We examine the text-to-SQL problem from three perspectives—methodology, systems, and applications—and show how each contributes to a fuller understanding of the task.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143967/1/cfdollak_1.pd

    Probabilistic and Deep Learning Algorithms for the Analysis of Imagery Data

    Get PDF
    Accurate object classification is a challenging problem for various low to high resolution imagery data. This applies to both natural as well as synthetic image datasets. However, each object recognition dataset poses its own distinct set of domain-specific problems. In order to address these issues, we need to devise intelligent learning algorithms which require a deep understanding and careful analysis of the feature space. In this thesis, we introduce three new learning frameworks for the analysis of both airborne images (NAIP dataset) and handwritten digit datasets without and with noise (MNIST and n-MNIST respectively). First, we propose a probabilistic framework for the analysis of the NAIP dataset which includes (1) an unsupervised segmentation module based on the Statistical Region Merging algorithm, (2) a feature extraction module that extracts a set of standard hand-crafted texture features from the images, (3) a supervised classification algorithm based on Feedforward Backpropagation Neural Networks, and (4) a structured prediction framework using Conditional Random Fields that integrates the results of the segmentation and classification modules into a single composite model to generate the final class labels. Next, we introduce two new datasets SAT-4 and SAT-6 sampled from the NAIP imagery and use them to evaluate a multitude of Deep Learning algorithms including Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Autoencoders (SAE) for generating class labels. Finally, we propose a learning framework by integrating hand-crafted texture features with a DBN. A DBN uses an unsupervised pre-training phase to perform initialization of the parameters of a Feedforward Backpropagation Neural Network to a global error basin which can then be improved using a round of supervised fine-tuning using Feedforward Backpropagation Neural Networks. These networks can subsequently be used for classification. In the following discussion, we show that the integration of hand-crafted features with DBN shows significant improvement in performance as compared to traditional DBN models which take raw image pixels as input. We also investigate why this integration proves to be particularly useful for aerial datasets using a statistical analysis based on Distribution Separability Criterion. Then we introduce a new dataset called noisy-MNIST (n-MNIST) by adding (1) additive white gaussian noise (AWGN), (2) motion blur and (3) Reduced contrast and AWGN to the MNIST dataset and present a learning algorithm by combining probabilistic quadtrees and Deep Belief Networks. This dynamic integration of the Deep Belief Network with the probabilistic quadtrees provide significant improvement over traditional DBN models on both the MNIST and the n-MNIST datasets. Finally, we extend our experiments on aerial imagery to the class of general texture images and present a theoretical analysis of Deep Neural Networks applied to texture classification. We derive the size of the feature space of textural features and also derive the Vapnik-Chervonenkis dimension of certain classes of Neural Networks. We also derive some useful results on intrinsic dimension and relative contrast of texture datasets and use these to highlight the differences between texture datasets and general object recognition datasets
    • …
    corecore