22,162 research outputs found

    Real time clustering of time series using triangular potentials

    Full text link
    Motivated by the problem of computing investment portfolio weightings we investigate various methods of clustering as alternatives to traditional mean-variance approaches. Such methods can have significant benefits from a practical point of view since they remove the need to invert a sample covariance matrix, which can suffer from estimation error and will almost certainly be non-stationary. The general idea is to find groups of assets which share similar return characteristics over time and treat each group as a single composite asset. We then apply inverse volatility weightings to these new composite assets. In the course of our investigation we devise a method of clustering based on triangular potentials and we present associated theoretical results as well as various examples based on synthetic data.Comment: AIFU1

    Performance Analysis of Spectral Clustering on Compressed, Incomplete and Inaccurate Measurements

    Full text link
    Spectral clustering is one of the most widely used techniques for extracting the underlying global structure of a data set. Compressed sensing and matrix completion have emerged as prevailing methods for efficiently recovering sparse and partially observed signals respectively. We combine the distance preserving measurements of compressed sensing and matrix completion with the power of robust spectral clustering. Our analysis provides rigorous bounds on how small errors in the affinity matrix can affect the spectral coordinates and clusterability. This work generalizes the current perturbation results of two-class spectral clustering to incorporate multi-class clustering with k eigenvectors. We thoroughly track how small perturbation from using compressed sensing and matrix completion affect the affinity matrix and in succession the spectral coordinates. These perturbation results for multi-class clustering require an eigengap between the kth and (k+1)th eigenvalues of the affinity matrix, which naturally occurs in data with k well-defined clusters. Our theoretical guarantees are complemented with numerical results along with a number of examples of the unsupervised organization and clustering of image data

    How to Round Subspaces: A New Spectral Clustering Algorithm

    Full text link
    A basic problem in spectral clustering is the following. If a solution obtained from the spectral relaxation is close to an integral solution, is it possible to find this integral solution even though they might be in completely different basis? In this paper, we propose a new spectral clustering algorithm. It can recover a kk-partition such that the subspace corresponding to the span of its indicator vectors is O(opt)O(\sqrt{opt}) close to the original subspace in spectral norm with optopt being the minimum possible (opt1opt \le 1 always). Moreover our algorithm does not impose any restriction on the cluster sizes. Previously, no algorithm was known which could find a kk-partition closer than o(kopt)o(k \cdot opt). We present two applications for our algorithm. First one finds a disjoint union of bounded degree expanders which approximate a given graph in spectral norm. The second one is for approximating the sparsest kk-partition in a graph where each cluster have expansion at most ϕk\phi_k provided ϕkO(λk+1)\phi_k \le O(\lambda_{k+1}) where λk+1\lambda_{k+1} is the (k+1)st(k+1)^{st} eigenvalue of Laplacian matrix. This significantly improves upon the previous algorithms, which required ϕkO(λk+1/k)\phi_k \le O(\lambda_{k+1}/k).Comment: Appeared in SODA 201

    Hierarchical Pancaking: Why the Zel'dovich Approximation Describes Coherent Large-Scale Structure in N-Body Simulations of Gravitational Clustering

    Full text link
    To explain the rich structure of voids, clusters, sheets, and filaments apparent in the Universe, we present evidence for the convergence of the two classic approaches to gravitational clustering, the ``pancake'' and ``hierarchical'' pictures. We compare these two models by looking at agreement between individual structures -- the ``pancakes'' which are characteristic of the Zel'dovich Approximation (ZA) and also appear in hierarchical N-body simulations. We find that we can predict the orientation and position of N-body simulation objects rather well, with decreasing accuracy for increasing large-kk (small scale) power in the initial conditions. We examined an N-body simulation with initial power spectrum P(k)k3P(k) \propto k^3, and found that a modified version of ZA based on the smoothed initial potential worked well in this extreme hierarchical case, implying that even here very low-amplitude long waves dominate over local clumps (although we can see the beginning of the breakdown expected for k4k^4). In this case the correlation length of the initial potential is extremely small initially, but grows considerably as the simulation evolves. We show that the nonlinear gravitational potential strongly resembles the smoothed initial potential. This explains why ZA with smoothed initial conditions reproduces large-scale structure so well, and probably why our Universe has a coherent large-scale structure.Comment: 17 pages of uuencoded postscript. There are 8 figures which are too large to post here. To receive the uuencoded figures by email (or hard copies by regular mail), please send email to: [email protected]. This is a revision of a paper posted earlier now in press at MNRA

    Magnification bias as a novel probe for primordial magnetic fields

    Full text link
    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 0.0005 nG for values of the PMF power spectral index ~0.Comment: 21 pages, 9 figures; published on JCA
    corecore