3 research outputs found

    Constrained Spectral Uplifting

    Get PDF
    Fyzikálne založený spektrálny rendering sa stáva čoraz viac populárnym ako v komerčnej, tak aj v akademickej sfére kvôli jeho schopnosti presne simulovať prírodné fenomény. Bohužiaľ, vytváranie materiálov definovaných ich spektrálnymi vlastnosťami je drahý a zdĺhavý proces, a teda využívanie materiálov založených na RGB reprezentácii je žiadaná vlastnosť v spektrálnych rendereroch. Na konvertovanie RGB hodnôt do ich spektrálnych variánt sa využíva proces nazývaný spektrálny uplifting. Nakoľko je RGB farebný priestor konečnou podmnožinou viditeľného gamutu, existuje mnoho konvertovacích techník dodávajúcich rôzne výsledky, ktoré môžu za odlišných svetelných podmienok spôsobovať farebné nezrovnalosti. Táto práca navrhuje metódu na obmedzenie procesu spektrálneho upliftingu. Presne povedané, preddefinované mapovania z RGB hodnôt na ich spektrálne reprezentácie sú zachované a zvyšok RGB gamutu je vierohodne konvertovaný. Na to, aby sme posúdili správnosť tejto techniky, ju implementujeme a evaluujeme v spektrálnom rendereri. Obrázky konvertované našou metódou vykazujú v porovnaní s pôvodnými textúrami minimálne nezrovnalosti.Physically-based spectral rendering is becoming increasingly popular in both commercial and academic areas due to its ability to accurately simulate natural phenomena. However, the production of materials defined by their spectral properties is a tedious and expensive process, which makes the utilization of RGB-based assets in spectral renderers a desired feature. To convert RGB values to their spectral representations, a process called spectral uplifting is employed. As the RGB color space is a finite subset of the visible gamut, there exist multiple conversion techniques producing distinct results, which may cause color inconsistencies under various lighting conditions. This thesis proposes a method for constraining the spectral uplifting process. To be specific, pre-defined mappings of RGB values to their spectral representations are preserved and the rest of the RGB gamut is plausibly uplifted. In order to assess its correctness, this technique is then implemented and evaluated in a spectral renderer. The renders uplifted via our method show minimal discrepancies when compared to the original textures.Department of Software and Computer Science EducationKatedra softwaru a výuky informatikyMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further
    corecore