525 research outputs found

    Communication in a Poisson Field of Interferers -- Part II: Channel Capacity and Interference Spectrum

    Full text link
    In Part I of this paper, we presented a mathematical model for communication subject to both network interference and noise, where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We determined the distribution of the aggregate interference and the error performance of the link. In this second part, we characterize the capacity of the link subject to both network interference and noise. Then, we put forth the concept of spectral outage probability (SOP), a new characterization of the aggregate radio-frequency emission generated by communicating nodes in a wireless network. We present some applications of the SOP, namely the establishment of spectral regulations and the design of covert military networks. The proposed framework captures all the essential physical parameters that affect the aggregate network emission, yet is simple enough to provide insights that may be of value in the design and deployment of wireless networks.Comment: To appear in IEEE Transactions on Wireless Communication

    Communication in a Poisson Field of Interferers -- Part I: Interference Distribution and Error Probability

    Full text link
    We present a mathematical model for communication subject to both network interference and noise. We introduce a framework where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We consider both cases of slow and fast-varying interferer positions. The paper is comprised of two separate parts. In Part I, we determine the distribution of the aggregate network interference at the output of a linear receiver. We characterize the error performance of the link, in terms of average and outage probabilities. The proposed model is valid for any linear modulation scheme (e.g., M-ary phase shift keying or M-ary quadrature amplitude modulation), and captures all the essential physical parameters that affect network interference. Our work generalizes the conventional analysis of communication in the presence of additive white Gaussian noise and fast fading, allowing the traditional results to be extended to include the effect of network interference. In Part II of the paper, we derive the capacity of the link when subject to network interference and noise, and characterize the spectrum of the aggregate interference.Comment: To appear in IEEE Transactions on Wireless Communication

    Covert Wireless Communication with a Poisson Field of Interferers

    Get PDF
    In this paper, we study covert communication in wireless networks consisting of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a Poisson field of interferers. Bob and Willie are subject to uncertain shot noise due to the ambient signals from interferers in the network. With the aid of stochastic geometry, we analyze the throughput of the covert communication between Alice and Bob subject to given requirements on the covertness against Willie and the reliability of decoding at Bob. We consider non-fading and fading channels. We analytically obtain interesting findings on the impacts of the density and the transmit power of the concurrent interferers on the covert throughput. That is, the density and the transmit power of the interferers have no impact on the covert throughput as long as the network stays in the interference-limited regime, for both the non-fading and the fading cases. When the interference is sufficiently small and comparable with the receiver noise, the covert throughput increases as the density or the transmit power of the concurrent interferers increases

    On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

    Full text link
    Future wireless networks are required to support 1000 times higher data rate, than the current LTE standard. In order to meet the ever increasing demand, it is inevitable that, future wireless networks will have to develop seamless interconnection between multiple technologies. A manifestation of this idea is the collaboration among different types of network tiers such as macro and small cells, leading to the so-called heterogeneous networks (HetNets). Researchers have used stochastic geometry to analyze such networks and understand their real potential. Unsurprisingly, it has been revealed that interference has a detrimental effect on performance, especially if not modeled properly. Interference can be correlated in space and/or time, which has been overlooked in the past. For instance, it is normally assumed that the nodes are located completely independent of each other and follow a homogeneous Poisson point process (PPP), which is not necessarily true in real networks since the node locations are spatially dependent. In addition, the interference correlation created by correlated stochastic processes has mostly been ignored. To this end, we take a different approach in modeling the interference where we use non-PPP, as well as we study the impact of spatial and temporal correlation on the performance of HetNets. To illustrate the impact of correlation on performance, we consider three case studies from real-life scenarios. Specifically, we use massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; we use the random medium access protocol to examine the temporal correlation; and we use cooperative relay networks to illustrate the spatial-temporal correlation. We present several numerical examples through which we demonstrate the impact of various correlation types on the performance of HetNets.Comment: Submitted to IEEE Communications Magazin
    corecore