2 research outputs found

    Spectral Discrimination Thresholds Comparing Audio and Haptics for Complex Stimuli

    No full text
    International audienceIndividuals with normal hearing are generally able to discriminate auditory stimuli that have the same fundamental frequency but different spectral content. This study concerns to what extent it is possible to perform the same differentiation considering vibratory tactile stimuli. Three perceptual experiments have been carried out in an attempt to compare discrimination thresholds in terms of spectral differences between auditory and vibratory tactile stimulations. The first test consists of assessing the subject’s ability in discriminating between three signals with distinct spectral content. The second test focuses on the measurement of the discrimination threshold between a pure tone signal and a signal composed of two pure tones, varying the amplitude and frequency of the second tone. Finally, in the third test the discrimination threshold is measured between a tone with even harmonic components and a tone with odd ones. The results show that it is indeed possible to discriminate between haptic signals having the same fundamental frequency but different spectral. The threshold of sensitivity for detection is markedly less than for audio stimuli

    Human-Computer interaction methodologies applied in the evaluation of haptic digital musical instruments

    Get PDF
    Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface
    corecore