259 research outputs found

    Emerging role of spectral computed tomography in neurocardiology

    Get PDF
    The complex and reciprocal relationship between the brain and the heart has gained increasing attention under the concept of neurocardiology. Myocardial injury is common in cerebrovascular disease, and cardiovascular complications are the second leading cause of death after stroke. Cardiac computed tomography (CT) is a fast and reliable non-invasive tool for the assessment of cardioembolic sources. Compared to single energy CT, spectral/dual energy cardiac CT improves tissue characterization and also leads to significant reductions in contrast volume. In this review article, we portray the potential clinical applications of spectral CT in neurocardiology, focusing in the enhanced diagnosis of cardioembolic sources and cardiovascular risk assessment of patients with stroke, including improved detection of thrombus, identification of subtle myocardial disease, and pulmonary complications within the same session.Fil: Fontana, Lucia. No especifíca;Fil: Cirio, Juan J.. No especifíca;Fil: Lylyk, Pedro. No especifíca;Fil: Rodriguez Granillo, Gaston Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional - Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini". Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional; Argentin

    Uconnect:Synergistic Spectral CT Reconstruction With U-Nets Connecting the Energy Bins

    Get PDF
    Spectral computed tomography (CT) offers the possibility to reconstruct attenuation images at different energy levels, which can be then used for material decomposition. However, traditional methods reconstruct each energy bin individually and are vulnerable to noise. In this paper, we propose a novel synergistic method for spectral CT reconstruction, namely Uconnect. It utilizes trained convolutional neural networks (CNNs) to connect the energy bins to a latent image so that the full binned data is used synergistically. We experiment on two types of low-dose data: simulated and real patient data. Qualitative and quantitative analysis show that our proposed Uconnect outperforms state-of-art model-based iterative reconstruction (MBIR) techniques as well as CNN-based denoising

    Comparative study of true and virtual non-contrast imaging generated from dual-layer spectral CT in patients with upper aerodigestive tract cancer

    Get PDF
    Purpose: Dual-layer spectral computed tomography (DLSCT) is a novel CT platform of dual-energy CT. Virtual non-contrast (VNC) imaging theoretically resembles true non-contrast (TNC) imaging by subtracting iodine attenuation from post-contrast data. We aimed to compare qualitative and quantitative datasets between TNC and VNC in patients with upper aerodigestive tract cancer (UATC) and to evaluate the potential radiation dose reduction obtained by omitting the TNC phase. Material and methods: The study included 61 patients with UATC who underwent DLSCT. The CT protocol included TNC and post-contrast phases. The VNC images were reconstructed from the post-contrast phase. The differences of mean CT attenuation values, imaging noise, and image quality for TNC and VNC images were compared. The effective radiation doses of a biphasic TNC and post-contrast CT protocol were compared with a single-phase protocol (post-contrast CT with VNC reconstruction). Results: There were a total of 732 ROIs from TNC and VNC. There was no statistical difference in the mean CT attenuation values between TNC and VNC images for all tissue types (p = 0.09-0.44), except for the buccal fat pad. Overall, 85.3% of cases revealed a difference of less than 10 HU. There was no significant difference in mean imaging noise (p = 0.5455) and image quality (p = 0.3214) between 2 acquisitions. All VNC images had acceptable quality for diagnostic purposes. The potential dose reduction by omitting the TNC was 49.5 ± 3.5%. Conclusion: VNC could replace TNC images in patients with UATC, with good image quality and the advantage of radiation dose reduction

    Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies

    Get PDF
    Background: Myocardial perfusion computed tomography (CTP) using conventional single energy (SE) imaging is influenced by the presence of beam hardening artifacts (BHA), occasionally resembling perfusion defects and commonly observed at the left ventricular posterobasal wall (PB). We therefore sought to explore the ability of dual energy (DE) CTP to attenuate the presence of BHA. Methods: Consecutive patients without history of coronary artery disease who were referred for computed tomography coronary angiography due to atypical chest pain and a normal stress-rest SPECT and had absence or mild coronary atherosclerosis constituted the study population. The study group was acquired using DE and the control group using SE imaging. Results: Demographical characteristics were similar between groups, as well as the heart rate and the effective radiation dose. Myocardial signal density (SD) levels were evaluated in 280 basal segments among the DE group (140 PB segments for each energy level from 40 keV to 100 keV; and 140 reference segments), and in 40 basal segments (at the same locations) among the SE group. Among the DE group, myocardial SD levels and myocardial SD ratio evaluated at the reference segment were higher at low energy levels, with significantly lower SD levels at increasing energy levels. Myocardial signal-to-noise ratio was not significantly influenced by the energy level applied, although 70 keV was identified as the energy level with the best overall signal-to-noise ratio. Significant differences were identified between the PB segment and the reference segment among the lower energy levels, whereas at ≥ 70 keV myocardial SD levels were similar. Compared to DE reconstructions at the best energy level (70 keV), SE acquisitions showed no significant differences overall regarding myocardial SD levels among the reference segments. Conclusions: Beam hardening artifacts that influence the assessment of myocardial perfusion can be attenuated using DE at 70 keV or higher.Fil: Rodriguez Granillo, Gaston Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentina. Diagnóstico Maipú; ArgentinaFil: Carrascosa, Patricia. Diagnóstico Maipú; ArgentinaFil: Cipriano, Silvia. Diagnóstico Maipú; ArgentinaFil: De Zan, Macarena. Diagnóstico Maipú; ArgentinaFil: Deviggiano, Alejandro. Diagnóstico Maipú; ArgentinaFil: Capunay, Carlos. Diagnóstico Maipú; ArgentinaFil: Cury, Ricardo C.. Miami Cardiac and Vascular Institute and Baptist Health; Estados Unido
    corecore