3,618 research outputs found

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above

    The Sensoria Approach Applied to the Finance Case Study

    Get PDF
    This chapter provides an effective implementation of (part of) the Sensoria approach, specifically modelling and formal analysis of service-oriented software based on mathematically founded techniques. The ‘Finance case study’ is used as a test bed for demonstrating the feasibility and effectiveness of the use of the process calculus COWS and some of its related analysis techniques and tools. In particular, we report the results of an application of a temporal logic and its model checker for expressing and checking functional properties of services and a type system for guaranteeing confidentiality properties of services

    Towards a flexible service integration through separation of business rules

    Get PDF
    Driven by dynamic market demands, enterprises are continuously exploring collaborations with others to add value to their services and seize new market opportunities. Achieving enterprise collaboration is facilitated by Enterprise Application Integration and Business-to-Business approaches that employ architectural paradigms like Service Oriented Architecture and incorporate technological advancements in networking and computing. However, flexibility remains a major challenge related to enterprise collaboration. How can changes in demands and opportunities be reflected in collaboration solutions with minimum time and effort and with maximum reuse of existing applications? This paper proposes an approach towards a more flexible integration of enterprise applications in the context of service mediation. We achieve this by combining goal-based, model-driven and serviceoriented approaches. In particular, we pay special attention to the separation of business rules from the business process of the integration solution. Specifying the requirements as goal models, we separate those parts which are more likely to evolve over time in terms of business rules. These business rules are then made executable by exposing them as Web services and incorporating them into the design of the business process.\ud Thus, should the business rules change, the business process remains unaffected. Finally, this paper also provides an evaluation of the flexibility of our solution in relation to the current work in business process flexibility research

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Aspect-based approach to modeling access control policies, An

    Get PDF
    Department Head: L. Darrell Whitley.2007 Spring.Includes bibliographical references (pages 119-126).Access control policies determine how sensitive information and computing resources are to be protected. Enforcing these policies in a system design typically results in access control features that crosscut the dominant structure of the design (that is, features that are spread across and intertwined with other features in the design). The spreading and intertwining of access control features make it difficult to understand, analyze, and change them and thus complicate the task of ensuring that an evolving design continues to enforce access control policies. Researchers have advocated the use of aspect-oriented modeling (AOM) techniques for addressing the problem of evolving crosscutting features. This dissertation proposes an approach to modeling and analyzing crosscutting access control features. The approach utilizes AOM techniques to isolate crosscutting access control features as patterns described by aspect models. Incorporating an access control feature into a design involves embedding instantiated forms of the access control pattern into the design model. When composing instantiated access control patterns with a design model, one needs to ensure that the resulting composed model enforces access control policies. The approach includes a technique to verify that specified policies are enforced in the composed model. The approach is illustrated using two well-known access control models: the Role- Based Access Control (RBAC) model and the Bell-LaPadula (BLP) model. Features that enforce RBAC and BLP models are described by aspect models. We show how the aspect models can be composed to create a new hybrid access control aspect model. We also show how one can verify that composition of a base (primary) design model and an aspect model that enforces specified policies produces a composed model in which the policies are still enforced
    • 

    corecore