
The Sensoria Approach
Applied to the Finance Case Study?

Stefania Gnesi1, Rosario Pugliese2, and Francesco Tiezzi2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa
stefania.gnesi@isti.cnr.it

2 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
rosario.pugliese@unifi.it,tiezzi@dsi.unifi.it

Abstract. This chapter provides an effective implementation of (part of) the Sen-
soria approach, specifically modelling and formal analysis of service-oriented
software based on mathematically founded techniques. The ‘Finance case study’
is used as a test bed for demonstrating the feasibility and effectiveness of the use
of the process calculus COWS and some of its related analysis techniques and
tools. In particular, we report the results of an application of a temporal logic and
its model checker for expressing and checking functional properties of services
and a type system for guaranteeing confidentiality properties of services.

1 Introduction

The Sensoria approach encompasses the whole development process of service-
oriented software, from systems specified in high-level languages to deployment and
re-engineering. In fact, as part of the project the partners have developed a large set of
languages, methods, techniques and tools that can be applied during the development
of service-oriented applications. Each of these project’s outcomes has been designed to
solve a certain type of problems and is applicable to some specific situations. It is thus
difficult to identify the ‘best’ technique or tool that solves a particular problem arising
in the development process.

To shepherd the prospective user through the selection procedure, as a result of
a collaboration among several people involved in the project, a catalogue of patterns
has recently started to be developed (see Chapter 7-5). Several patterns have been al-
ready catalogued that address a broad spectrum of SOA engineering aspects such as
modelling, specification, analysis, verification, orchestration, deployment. Besides as
an index to Sensoria outcomes, this catalogue serves as a guidance for using them and
for better understanding relative advantages and disadvantages.

Since we want to demonstrate the feasibility and effectiveness of the use of the pro-
cess calculus COWS [?] (see also Chapter 2-1), we consider relevant to this chapter
those patterns involving process calculi as specification formalisms and their related
techniques for qualitative and quantitative analysis, and present solutions to these pat-
terns in terms of COWS and its related analysis techniques and tools. As a test bed, we
use the ‘Finance case study’ (its UML4SOA modelling can be found in Chapter 7-1).

? This work has been partially sponsored by the project Sensoria, IST-2005-016004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This way the chapter provides an effective implementation of (part of) the Sensoria ap-
proach, specifically modelling and formal analysis of service-oriented software based
on mathematically founded techniques.

Hence, this chapter contains the following contributions. Section 2 presents a
COWS specification of the Finance case study. Section 3 illustrates a solution to the
Functional Service Verification pattern, where service behavioural properties are ex-
pressed using the temporal logic SocL and verified using the model checker CMC [?]
(see also Chapters 4-3 and 4-2). Section 4 illustrates a solution to the Service Specifica-
tion and Analysis pattern, where confidentiality properties are checked using the type
system of [?]. Section 5 reports on an ongoing effort for devising an integrated approach
that can lead to verifiable implementations of service components from abstract archi-
tectural models of business activities. To this aim we are developing software tools that
can provide access to verification functionalities also to users not familiar with formal
methods. Section 6 briefly reviews some feedbacks from an application of COWS and
its related analysis techniques to the Finance case study.

2 A COWS Specification of the Finance Case Study

In this section, we present a relevant part of a COWS specification modelling the Fi-
nance case study (the whole specification is reported in [?]). We will gently introduce
COWS’s syntax and semantics in a step-by-step fashion while commenting upon the
specification and refer the interested reader to Chapter 2-1 for a presentation of COWS’s
syntax and an informal explanation of its semantics.

We start with an informal specification of the scenario. The considered service pro-
vides a customer company with the possibility to ask for a loan to a bank and then
orchestrates the necessary steps for processing the credit request, which may involve
an evaluation by either a clerk or a supervisor before a contract proposal is sent to the
customer. Initially, the customer logins to the credit request service by providing his
username and password, then uploads the necessary data for his request. More specif-
ically, he firstly provides the credit data (e.g. the desired amount), then the securities
of the loan and his balance. When the request is completely filled by the customer, the
service calculates the rating of the customer request, by resorting on a (possibly) exter-
nal service, and takes a decision on it. The decision can be either to immediately accept
the request, if the rating value is “aaa”, or to accept or decline it according to a clerk
or a supervisor evaluation, if the rating value is “bbb” or “ccc”, respectively. In case of
a decline, the possibility to update the data and restart the request processing is given
to the customer. At any moment the customer may require to abort the process. If this
happens, the process terminates and, in case, the request data are deleted. As we will
see later on, this requires execution of compensation activities to semantically rollback
the action of storing the request data performed by the involved services. This prevents
such services from maintaining information of already aborted requests.

The COWS term representing the overall scenario is

CreditInstitute | RatingProvider | BalanceAnalysisProvider
| SecurityAnalysisProvider | Portal

The services above are composed by using the parallel composition operator | that
allows the different components to be concurrently executed and to interact with each
other.

CreditInstitute is defined as follows.

[customerManagement, creditManagement] (CreditRequest
| CustomerManagement
| CreditManagement)

The term is the parallel composition of the (considered) subservices of the
credit institute. The delimitation operator [] is used here to declare that
customerManagement and creditManagement are shared partner names known
to CreditRequest, CustomerManagement and CreditManagement, and only to
them. Basically, this ensures that external services cannot directly interact with
CustomerManagement and CreditManagement, which are indeed ‘internal’ subservices
of CreditInstitute. Service CreditRequest is publicly invocable and can interact with
Portal and other external services, other than with the two above internal services.

Hereafter we only focus on service CreditRequest, which is defined as follows.

∗ [k, raise, xId, xName, xPassword]
creditReq • initialize?〈xId, xName, xPassword〉.

(customerManagement • checkUser!〈xId, xName, xPassword〉

| [xUserOK] creditReq • checkUser?〈xId, xUserOK〉.
({| portal • initialize!〈xId, xUserOK〉 |}

| [i f , then]
(if • then!〈xUserOK〉

| if • then?〈false〉. (kill(k) | {| raise • abort!〈〉 |})
+ if • then?〈true〉.

(customerManagement • getCustomerData!〈xId, xName, xPassword〉

| [xLoginName, xFirstName, xLastName]
creditReq • getCustomerData?〈xId, xLoginName, xFirstName, xLastName〉.

Main))))

The replication operator ∗ , that spawns in parallel as many copies of its argument
term as necessary, is exploited to model the fact that, whenever prompted by a cus-
tomer request, CreditRequest creates an instance to serve that specific request and
is immediately ready to concurrently serve other requests. Each such instance has
a private name k, a reserved partner name raise to raise fault signals, and its own
copies of variables xId, xName and xPassword. Name k introduces a named scope that
groups together all the activities of the instance, making it possible to associate with
such scope suitable termination activities, as well as ad hoc fault and compensation
handlers. Each interaction with the service starts with a receive activity of the form
creditReq • initialize?〈xId, xName, xPassword〉 corresponding to reception of a request emit-
ted by Portal on behalf of a customer. The receive activity creates a new service instance
and initializes the variables xId, xName and xPassword, declared local to the instance by the
delimitation operator, with data provided by a customer. In particular, variable xId is
used to store a fresh datum, generated by Portal, univocally identifying a session of

the process (which, in COWS, coincides with an instance of the service). The identi-
fier allows CreditRequest to safely communicate with the involved services. In fact, in
each interaction among them, the identifier is used as a correlation datum, i.e. it appears
within each message. Pattern-matching permits locating such datum in the messages
and, therefore, delivering the messages to the instances identified by the same datum.

Once created, a CreditRequest’s instance requires CustomerManagement to check
the customer login data, by invoking the operation checkUser provided by the ‘internal’
partner name customerManagement through the invoke activity customerManagement •
checkUser!〈xId, xName, xPassword〉, and waits for a reply. The answer is forwarded to the
customer by means of the invoke activity portal • initialize!〈xId, xUserOK〉. To guaran-
tee eventual execution of this invoke, it is protected by the protection operator {| |} that
prevents it to be cancelled due to an abrupt termination of its enclosing scope k. Con-
currently, by exploiting the receive-guarded choice operator + and the private names
if and then, the instance can make a conditional choice based on the answer. A neg-
ative answer forces the immediate termination of the instance, through the execution
of the activity kill(k), and the emission of an (internal) fault signal raise • abort!〈〉.
Notice that, in this specific case, the fault signal is not caught and dealt with by any
fault handler. In case of a positive answer, the service instance gets the customer data
from CustomerManagement, by means of a pair of invoke-receive activities over the
operation getCustomerData, and activates the term Main, which is defined as follows.

[raise, comp]
([kMain]

([repeat, until, update, desired]
(repeat • until!〈〉
| ∗ repeat • until?〈〉.

[kloop]
(Creation
| update • desired?〈true〉. (kill(kloop) | {| repeat • until!〈〉 |})
+ update • desired?〈false〉.Finalize))

| creditReq • cancel?〈xId〉. (kill(kMain) | {| raise • abort!〈〉 |}))
| raise • abort?〈〉.

[end]
(comp • creation!〈creation, end〉
| comp • end?〈〉.

(comp • handleBalanceAndSecurityData!〈handleBalanceAndSecurityData, end〉
| comp • end?〈〉. portal • abortProcess!〈xId〉)))

| ∗ [x, y] comp • creation?〈x, y〉. comp • y!〈〉
| ∗ [x, y] comp • handleBalanceAndSecurityData?〈x, y〉. comp • y!〈〉)

This term models a ‘scope’ activity named kMain which is equipped with an event and
a fault handler. When the scope starts, the handlers are enabled. The event handler
(highlighted by a dark gray background) is activated by an invocation of the operation
cancel; this forces the immediate termination of all (unprotected) activities representing
the normal behaviour of the scope, by means of activity kill(kMain), and the execution

of activity raise • abort!〈〉, which activates the fault handler. Then, the fault handler
(highlighted by a light gray background) sends two compensation signals along end-
points of the form comp • scopeName, where scopeName is replaced by creation and
handleBalanceAndSecurityData, and terminates by sending a message notifying the
customer that the process has correctly aborted. The private name end permits sequen-
tializing the above activities. It is worth noticing that, if no compensation handler has yet
been installed, the compensation activities have to immediately terminate without do-
ing nothing. To this aim, the two (replicated) receive activities comp • scopeName?〈x, y〉
catch the compensation signals, only if no compensation handlers are ready to do so1,
and reply with the corresponding termination signals.

The normal behaviour of the scope consists of a repeat-until loop, implemented
by using the replication operator together with the private names repeat and until. At
each iterative step, the term Creation is executed which upon termination allows a
conditional choice to be taken: if the customer has requested an update (i.e. activity
update • desired?〈true〉 is executed), the remaining activities of the current iterative
step are stopped (by the activity kill(kloop)) and the loop is restarted (by the signal
repeat • until!〈〉); if no update has been requested (i.e. activity update • desired?〈false〉 is
executed), the term Finalize is activated.

Finalize is simply the invoke activity

portal • goodbye!〈xId〉

that informs the portal that the process is concluded.
Creation is defined as follows.

[xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment]
creditReq • createNewCreditRequest?〈xId, xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment〉.
(creditManagement • initCreditData!〈xId, xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment〉

| creditReq • initCreditData?〈xId〉.
(portal • createNewCreditRequest!〈xId,working〉
| HandleBalanceAndSecurityData
| [xEnd] {| comp • creation?〈creation, xEnd〉.

(creditManagement • removeData!〈xId〉

| creditReq • removeData?〈xId〉. comp • xEnd!〈〉) |})))

After the data for a new credit request have been received, the service forwards them
to the credit management service and waits for an acknowledgement. Then, it replies
to the portal to notify that the system is working on the request, activates the term
HandleBalanceAndSecurityData, and installs a compensation handler for undoing the
activities previously performed along the operation initCreditData. The compensation
handler (highlighted by a gray background) is a protected term waiting for a compen-
sation request, i.e. a signal along comp • creation. When this signal is received, the
compensation handler becomes active and invokes the operation removeData provided
by creditManagement.

1 Indeed, because of the semantics of parallel composition, the receives comp •

scopeName?〈x, y〉 are assigned a lower priority than that assigned to the receives comp •

scopeName?〈scopeName, xEnd〉 performed by the compensation handlers.

HandleBalanceAndSecurityData is defined as follows.

[flow, end]
((portal • enterBalanceData!〈xId〉

| [xBalancePackage]
creditReq • enterBalanceData?〈xId, xBalancePackage〉.

(balance • updateBalanceRating!〈xId, xLoginName, xFirstName, xLastName, xBalancePackage〉

| creditReq • updateBalanceRating?〈xId〉. flow • end!〈〉))
| (portal • enterSecurityData!〈xId〉

| [xSecurityPackage]
creditReq • enterSecurityData?〈xId, xSecurityPackage〉.

(security • updateSecurityRating!〈xId, xLoginName, xFirstName, xLastName, xSecurityPackage〉

| creditReq • updateSecurityRating?〈xId〉. flow • end!〈〉))
| flow • end?〈〉.

flow • end?〈〉.
(RatingCalculation
| [xEnd]
{| comp • handleBalanceAndSecurityData?〈handleBalanceAndSecurityData, xEnd〉.

[completed]
(balance • clearData!〈xId〉 | creditReq • clearData?〈xId, b〉. comp • completed!〈〉
| security • clearData!〈xId〉 | creditReq • clearData?〈xId, s〉. comp • completed!〈〉
| comp • completed?〈〉. comp • completed?〈〉. comp • xEnd!〈〉) |}))

It requires the customer to enter (in parallel) balance and security data and, then, sends
them to the balance and security services that store such data and, when requested,
will compute the corresponding ratings. When the parallel computation ends, i.e. after
that two signals along flow • end have been consumed, the term RatingCalculation is
activated and a compensation handler (highlighted by a gray background) for undoing
the already executed activities is installed. Notably, since the compensation activities
share the same operation name clearData, names b and s are used in the receiving
activities to distinguish the responses.

RatingCalculation is defined as follows.

rating • calculateRating!〈xId, xLoginName, xFirstName, xLastName〉

| [xResult, xRatingData] creditReq • calculateRating?〈xId, xResult, xRatingData〉.Decision

It invokes the service rating for getting the rating of the customer request. When an
answer is returned, it activates the term Decision, which is defined as follows.

[if , then, end, xManualAcceptance, x]
(if • then!〈xResult〉

| (if • then?〈aaa〉.
[var, set] (var • set!〈undef 〉 | var • set?〈xManualAcceptance〉. approval • end!〈〉)

+ if • then?〈x〉.Approval)
| approval • end?〈〉.

(if • then!〈xResult, xManualAcceptance〉

| [x1, x2, x3, x4]
(if • then?〈aaa, x1〉.Accept

+ if • then?〈x2, true〉.Accept
+ if • then?〈x3, x4〉.Decline)))

Firstly, it checks the rating result. If it is aaa, the service assigns the value undef
to xManualAcceptance and skips the approval phase; otherwise, the term Approval starts.
Then, if the rating result is aaa or xManualAcceptance has been set to true (i.e. either
if • then?〈aaa, x1〉 or if • then?〈x2, true〉 is executed), the term Accept is activated; other-
wise, Decline is executed.

Approval is defined as follows.

[i f , then, x]
(if • then!〈xResult〉

| (if • then?〈bbb〉.
portal • requestClerkApproval!〈xId, xRatingData〉

+ if • then?〈x〉.
portal • requestSupervisorApproval!〈xId, xRatingData〉)

| [xApprovalData]
creditReq • approvalResult?〈xId, xManualAcceptance, xApprovalData〉. approval • end!〈〉)

It checks if the rating result is equal to bbb. In the positive case, it requests a clerk
approval, otherwise a supervisor approval. After a response from either a clerk or a
supervisor, it terminates the approval phase by sending the signal approval • end!〈〉.

Decline is defined as follows.
creditManagement • generateDecline!〈xId, xRatingData〉

| [xDeclineData] creditReq • generateDecline?〈xId, xDeclineData〉.
(portal • declineToClient!〈xId, xDeclineData〉

| [xUpdateDesired] creditReq • declineToClient?〈xId, xUpdateDesired〉.
update • desired!〈xUpdateDesired〉)

It requires the credit management service to generate the decline data and forwards
them to the customer. The customer will reply by indicating if he desires or not a data
update, and such response will be sent to the main scope (see the definition of the term
Main) by means of the invoke activity update • desired!〈xUpdateDesired〉.

Finally, Accept is defined as follows.

creditManagement • generateOffer!〈xId, xRatingData〉

| [xAgreementData]
creditReq • generateOffer?〈xId, xAgreementData〉.
(portal • offerToClient!〈xId, xAgreementData〉

| [xAccepted]
creditReq • offerToClient?〈xId, xAccepted〉.

[if , then, end]
(if • then!〈xAccepted〉

| if • then?〈false〉. update • desired!〈false〉
+ if • then?〈true〉.

(creditManagement • acceptOffer!〈xId, xAccepted〉

| portal • acceptOffer?〈xId〉. update • desired!〈false〉)))

It behaves similarly to the previous term, except for the fact that an offer is generated
instead of a decline and, moreover, the acceptance of the offer by the customer is sent to
the credit management service. Notice that, whether the customer accepted or not, the
activity update • desired!〈false〉 is executed to indicate to the main scope that the data
update is not desired.

3 A Logical Methodology for Checking Functional Properties

In this section, we present a solution to the Functional Service Verification pattern
(see Chapter 7-5), where service behavioural properties are expressed using the action-
and state-based, branching-time, temporal logic SocL and verified using the on-the-fly
model checker CMC. Both SocL and CMC are part of a methodology for verifying
functional properties of services introduced in [?] and also described in Chapters 4-3
and 4-2; there, among many other Sensoria tools, the tool UMC is also described which
is based on the same CMC’s underlying computational model but uses UML statecharts,
rather than COWS, as an input specification language. Here we briefly report the main
ingredients of the logic and refer the interested reader to [?] (and Chapter 4-2) for a
formal account of the semantics of SocL formulae.

This approach takes an abstract point of view: services are thought of as software en-
tities which may have an internal state and can perform actions, by which they can also
interact with each other. A service is thus characterized in terms of states and atomic
propositions that are true over them, and of state changes and actions performed when
moving from one state to another. Atomic propositions express the potential capability
of the service to perform a specific action, i.e. that in a given state the action is enabled.

An action has a type, e.g. accept a request, provide a response, etc., and is part
of a possibly long-running interaction started when a client firstly invokes one of the
operations exposed by the service. Thus, according to this view, an interaction identifies
a collection of actions, each of them corresponding to a single invocation of a service
operation. Since service operations can be independently invoked by several clients,
multiple instances of a same interaction can be simultaneously active. To univocally
identify an action, correlation data are used as a third attribute of service actions.

Correspondingly, the actions of the logic are characterised by three attributes: type,
interaction name, and correlation data. They may also contain variables, called cor-
relation variables, to enable capturing correlation data used to link together actions
executed as part of the same interaction. For a given correlation variable var, its bind-
ing occurrence is denoted by var; all remaining occurrences, that are called free, are
denoted by var. Formally, SocL actions have the form t(i, c), where t is the type of
the action, i is the name of the interaction which the action is part of, and c is a tuple
of correlation values and variables identifying the interaction (i and c can be omitted
whenever do not play any role). We use α as a generic action (notation · emphasises
the fact that the action may contain variable binders), and α as a generic action without
variable binders. SocL atomic propositions have the form p(i, c), where p is the name,
while i and c are as above. We will use π as a generic atomic proposition.

For example, action request(cr, 1234, 1) could stand for a request action for start-
ing an (instance of the) interaction cr which will be identified through the correlation

tuple 〈1234, 1〉. A response action corresponding to the request above could be writ-
ten as, e.g. response(cr, 1234, 1). If some correlation value is unknown at design time,
e.g. the identifier 1, a (binder for a) correlation variable id can be used instead, as in
the action request(cr, 1234, id). A corresponding response action could be written as
response(cr, 1234, id), where the (free) occurrence of the correlation variable id indi-
cates the connection with the action where the variable is bound. Similarly, actions like
cancel(cr, 1234, id), fail(cr, 1234, id) and undo(cr, 1234, id) could indicate cancellation,
failure and compensation notification for the same request. As regards atomic proposi-
tions, accepting request(login) indicates that a state can accept requests for interaction
login, while proposition accepting cancel(cr, 1234, id) indicates that a state permits to
cancel those requests for interaction cr identified by the correlation tuple 〈1234, id〉.

The syntax of SocL formulae is defined as follows:

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

(path formulae) Ψ ::= Xγφ | φ χUγ φ
′ | φ χWγ φ

′

(action formulae) γ ::= α | χ χ ::= tt | α | τ | ¬χ | χ ∧ χ

where state formulae are the main syntactic category.
We comment on salient points. Action formulae are simply boolean compositions of

actions, where tt is the action formula always satisfied, τ denotes unobservable actions,
¬ and ∧ are the standard logical operators for negation and conjunction, respectively.
As usual, we will use ff to abbreviate ¬tt, χ∨χ′ to abbreviate ¬(¬χ∧¬χ′) and φ1 ⇒ φ2
to abbreviate ¬φ1 ∨ φ2. π denotes an atomic proposition, that is a property that can be
true over the states of services. Atomic propositions have the form p(i, c), where p is
the name, i is an interaction name, and c is a tuple of correlation values and variables
identifying i (as before, i and c can be omitted whenever do not play any role). E and
A are existential and universal (respectively) path quantifiers. X and U are the next
and (strong) until operators [?], while W is the weak until operator [?]. Intuitively, the
formula Xγφ says that in the next state of the path, reached by an action satisfying γ,
the formula φ holds. The formula φ χUγ φ

′ says that φ′ holds at some future state of the
path reached by a last action satisfying γ, while φ holds from the current state until that
state is reached and all the actions executed in the meanwhile along the path satisfy χ.
The formula φ χWγ φ

′ holds on a path either if the corresponding formula with strong
until operator holds or if for all the states of the path the formula φ holds and all the
actions of the path satisfy χ.

Other useful operators can be derived as usual; those that we use in the sequel are:

– [γ] φ stands for ¬ EXγ ¬ φ and means that no matter how a process performs an
action satisfying γ, the state it reaches in doing so will necessarily satisfy φ.

– EFφ stands for φ ∨ E(true tt Utt φ) and means that there is some path that leads to a
state at which φ holds; i.e., φ potentially holds.

– EFγ φ stands for E(true tt Uγ φ) and means that there is some path that leads to a
state at which φ holds reached by a last action satisfying γ; if φ is true, we say that
an action satisfying γ will eventually be performed.

– AFγ φ stands for A(true tt Uγ φ) and means that an action satisfying γ will be per-
formed in the future along every path and at the reached states φ holds; if φ is true,
we say that an action satisfying γ is inevitable.

– AGφ stands for ¬ EF ¬ φ and means that φ holds at every state on every path; i.e.,
φ holds globally.

Properties of the case study specified with SocL. In [?] we have singled out many
significant classes of desirable properties of the externally observable behaviour of ser-
vices. Over the COWS specification presented in Section 2, by using the model checker
CMC, we have checked the following properties:

Availability:
AG(accepting request(login))
This formula means that the service CreditRequest is available, i.e. it is always
capable to accept a login request.

Responsiveness:
AG [request(cr, id)] AFresponse(cr,id)∨cancel(cr,id) true
This formula means that CreditRequest is responsive, i.e. it always guarantees an
answer (i.e. an offer or a decline, sent by means of action response(cr, id)) to each
received credit request, unless the customer cancels his own request (by means of
action cancel(cr, id)). The answer from CreditRequest and the request of cancel-
lation from Portal belong to the same interaction cr of the credit request and are
properly correlated by variable id.

Interruptibility:
AG [request(cr, id)] A(accepting cancel(cr, id) tt Ucancel(cr,id)∨response(cr,id) true)
The system can accept a cancellation of a credit request, after that the customer has
sent his credit request and until he cancels the request or receives an answer.

Compensability:
AG [request(rating, id)] EFcancel(cr,id) AFundo(cr,id) AFundo(cr,id) AFundo(cr,id) true
We want to ensure that if a cancellation is requested after the rating calcula-
tion has started, then all compensation activities of services balance, security and
creditManagement will be executed. Each such compensation corresponds to per-
forming action undo(cr, id). Thus, by exploiting the fact that any compensation ac-
tivity can be executed at most once (this can be easily checked separately for each
compensation activity), we require all computations after a cancellation to contain
three occurrences of undo(cr, id).

Fault handling:
AG (raising abort(cr) ⇒ AFfail(cr) true)
Whenever an abort exception is raised (atomic proposition raising abort(cr)), the
failure is notified to the customer (by means of action fail(cr)).

Model checking SocL formulae. The formulae presented in Section 3 are stated in terms
of abstract actions and atomic propositions, meaning that, e.g., a credit is requested
or the system is ready to accept a login. In other words, the properties we want to
verify are formalized as SocL formulae in a completely independent way of the service
specification. This is a key feature of the verification methodology introduced in [?].
To perform the verification, these formulae must be tailored to the COWS specification
of Section 2 that is expressed in terms of concrete actions, i.e. communication of data
tuples along endpoints. This is done by defining an appropriate set of abstraction rules

that relate the actions in the specification to the actions and atomic propositions in
the SocL formulae. These rules are provided as an input to CMC, together with the
COWS specification and the SocL formula to be checked, and are used by the tool to
transform the labels of the Doubly Labelled Transition System (L2TS) corresponding
to the COWS specification during its on-the-fly generation. It is worth noticing that in
the L2TS corresponding to a COWS term, each transition is labelled with the actions
performed when moving from the source state to the target one, while each state is
labelled with the actions enabled in that state. CMC supports the overall verification
process.

The abstraction rules we have used for our analysis are

Action createNewCreditRequest〈$id, ∗, ∗, ∗, ∗〉 → request(cr, $id)
Action offerToClient〈$id, ∗〉 → response(cr, $id)

Action declineToClient〈$id, ∗〉 → response(cr, $id)
Action cancel〈$id〉 → cancel(cr, $id)

Action calculateRating〈$id, ∗, ∗, ∗〉 → request(rating, $id)
Action clearData〈$id〉 → undo(cr, $id)

Action removeData〈$id〉 → undo(cr, $id)
Action abortProcess→ fail(cr)

State abort!→ raising abort(cr)
State initialize?→ accepting request(login)

State cancel?〈$id〉 → accepting cancel(cr, $id)

The metavariable “$id” is used to capture the corresponding argument of the opera-
tion so that it can be used in the abstract action, while the wildcard “∗” is used as a
placeholder for any argument.

We comment on some of the rules, the remaining ones can be interpreted simi-
larly. The first rule prescribes that whenever a concrete action involving the operation
createNewCreditRequest (with any five arguments) occurs in the label of a transition,
then it is replaced by the abstract action request(cr, 1234) (where we suppose that 1234
is the value passed as the first argument to createNewCreditRequest). This way, while
the first datum exchanged when executing operation createNewCreditRequest is pre-
served (that is the session identifier), the other four data are discharged in the ‘abstrac-
tion process’. Similarly, the second rule prescribes that whenever an action involving
the operation offerToClient (with any pair of arguments) occurs in the label of a transi-
tion, then it is replaced by the abstract action response(cr, 1234). Again, the preserved
datum is the session identifier which is used to correlate responses from the contacted
CreditRequest service. To correlate cancellations to the corresponding credit requests,
the fourth rule permits replacing an action involving the operation cancel (with one ar-
gument) by the abstract action cancel(cr, 1234). The last three rules work similarly, but
they relate concrete actions labelling states (rather than transitions) to atomic proposi-
tions. The symbols “!” and “?” permit specifying if a rule applies to invoke actions or
to receive ones, respectively.

The verification process shows that all the abstract properties we presented in
Section 3 do hold for the COWS specification of the Finance case study pre-
sented in Section 2, except for the last property. Indeed, if during the login phase

CustomerManagement replies to CreditRequest that the customer username and pass-
word are not correct, CreditRequest raises a fault that is not caught by any fault handler.
Thus, no message is sent to the customer to notify him that the process has been aborted.
This can be remedied by associating a fault handler behaving as the Main’s fault handler
to the activities for initialization performed within the term CreditReq.

4 A Type System for Checking Confidentiality Properties

In this section, we present a solution to the Service Specification and Analysis (see
Chapter 7-5) through the type system for COWS introduced in [?]. This type system
permits expressing and forcing policies regulating the exchange of data among inter-
acting services and ensuring that, in that respect, services do not manifest unexpected
behaviours. This enables us to check confidentiality properties, e.g., that critical data
such as personal information are shared only with authorized partners.

The types express the policies for data exchange in terms of regions, i.e. sets of
service partner names attachable to each single datum. Service programmers can thus
settle the partners usable to exchange any given datum (and, then, the services that can
share it), thus avoiding the datum being accessed (by unwanted services) through unau-
thorised partners. Then, a type inference system (statically) performs some coherence
checks (e.g. the service used in an invocation must belong to the regions of all data
occurring in the argument of the invocation) and annotates variable declarations with
the minimal regions that ensure consistency of services initial configuration. COWS
operational semantics uses these annotations in very efficient checks (i.e. subset inclu-
sions) to authorise or block transitions, in order to guarantee that computations proceed
according to them. This property, called soundness, can be stated as follows: a service
s is sound if, for any datum v in s associated to region r and for all evolutions of s, it
holds that v can be exchanged only by using services in r. As a consequence of the type
soundness of the language, it follows that well-typed services always comply with the
policies regulating the exchange of data among interacting services.

We illustrate now some relevant properties for the Finance case study. We first con-
sider the point of view of the customer, then that of the service.

From the customer point of view, the service programmer can specify policies
stating that the customer’s personal information and the credit request data can-
not become available to unauthorised users. Thus, for example, the balance data
balancePackage, communicated by Portal to CreditRequest and, then, forwarded to
service BalanceAnalysisProvider, gets annotated with the policy {creditReq, balance},
that allows CreditRequest and BalanceAnalysisProvider to receive the datum but pre-
vents them from transmitting the datum to other services. Other non-critical data, e.g.
customerId, can be transmitted without an attached policy. The service invocations per-
formed by Portal get annotated as follows:

creditReq • createNewCreditRequest!〈id, customerId, {amount}{creditReq, xcreditMng},
{mortgage}{creditReq, xcreditMng},{instalment}{creditReq, xcreditMng}〉

creditReq • enterBalanceData!〈id, {balancePackage}{creditReq, balance}〉

creditReq • enterSecurityData!〈id, {securityPackage}{creditReq, security}〉

Notice that, while it is perfectly reasonable to assume that the partner names balance
and security are known a priori by Portal, the partner name of the credit manage-
ment service, since it is private, must be communicated by CreditRequest to Portal
at runtime. Indeed, besides policies fixed at design time, the type system permits to ex-
press also policies that depend on values discovered at runtime. Thus, in our example,
to support communication of the partner name initially unknown, the invoke activity
portal • initialize!〈xId, xUserOK〉 performed by CreditRequest, which notifies the result of
the login check to the customer, has to be modified as follows

portal • initialize!〈xId, xUserOK , customerManagement〉

The annotations set by programmers are written as a subscript of the datum to which
they refer to. Instead, the annotations put by the type inference, to better distinguish
them from those put by the programmers, are written as a superscript of the variable
declaration to which they refer to. Thus, the syntax of variable delimitation becomes
[{x}r] s, which means that the datum that dynamically will replace x will be used in s at
most by the partners belonging to the region r. Hence, for example, once the type infer-
ence phase ends, the term HandleBalanceAndSecurityData (subterm of CreditRequest)
gets annotated as follows
[flow, end]
((portal • enterBalanceData!〈xId〉

| [{xBalancePackage}
{creditReq,balance}]

creditReq • enterBalanceData?〈xId, xBalancePackage〉.
(balance • updateBalanceRating!〈xId, {xLoginName}{balance}, {xFirstName}{balance},

{xLastName}{balance}, {xBalancePackage}{balance}〉

| creditReq • updateBalanceRating?〈xId〉. flow • end!〈〉))
| (portal • enterSecurityData!〈xId〉

| [{xSecurityPackage}
{creditReq,security}]

creditReq • enterSecurityData?〈xId, xSecurityPackage〉.
(security • updateSecurityRating!〈xId, {xLoginName}{security}, {xFirstName}{security},

{xLastName}{security}, {xSecurityPackage}{security}〉

| creditReq • updateSecurityRating?〈xId〉. flow • end!〈〉))
| flow • end?〈〉. . . .)

Indeed, the annotations inferred for variables xBalancePackage and xSecurityPackage are de-
rived from the use of these variables made by HandleBalanceAndSecurityData. Thus,
they are assigned regions {creditReq, balance} and {creditReq, security}, respectively,
because they are only used in the receives along creditReq • enterBalanceData and
creditReq • enterSecurityData, and in the invokes along balance • updateBalanceRating
and security • updateSecurityRating. Hence, the partner name of such endpoints must
belong to the region of the corresponding variables.

Now, Portal can safely communicate balance data (respectively, security
data) to CreditRequest, since the region {creditReq, balance} (resprespectively
{creditReq, security}) of the data contains the region of the receiving variable (in fact,
they coincide). More in general, the typed version of the credit request service, respects
all above defined policies.

Suppose instead that service CreditRequest (accidentally or maliciously) attempts to
reveal the balance data through some internal operation such as int • o!〈{xBalancePackage}r〉,

for some region r. For CreditRequest to successfully complete the type inference
phase, we should have int ∈ r. Then, as result of the inference, we would get the
annotated variable declaration [{xBalancePackage}

r′] , for some region r′ with r ⊆ r′.
Now, the interaction between the typed terms Portal and CreditRequest would be
blocked by the runtime checks because the datum sent by Portal would be anno-
tated as {balancePackage}{creditReq, balance} while the region r′ of the receiving variable
xBalancePackage is such that int ∈ r ⊆ r′ * {creditReq, balance}.

From the CreditRequest’s point of view, the service programmer can require the
customer not to pass to other services the offer that has been specifically computed
for the customer demands. Therefore, the corresponding invocation performed by
CreditRequest gets annotated as follows:

portal • offerToClient!〈xId, {xAgreementData}{portal}〉

For what concerns the type inference of the involved terms we can reason as before.

5 Automated Verification of UML4SOA Models of Services

Although the logical verification methodology described in Section 3 is effective and
automated, people willing to use it are required to be able to understand and deal with
algebraic and logical tools, i.e. the process calculus COWS and the temporal logic
SocL. Sometimes this may not be the case, especially within industrial contexts. To
make the verification of service properties more accessible, we then put forward the
idea of exploiting translations of languages at different abstraction levels, i.e. modelling
languages and process calculi, as those defined in [?,?]. Here, we report on an ongo-
ing effort for devising an approach that integrates our verification methodology with
language translations aiming at obtaining verifiable implementations of service com-
ponents from abstract architectural models of business activities. To this aim, we are
developing two software tools2: UStoC, that supports translation from UML4SOA to
COWS, and Venus, that, by closely integrating UStoC and CMC, provides access to
verification functionalities also to those users not familiar with formal methods.

In Section 2, the UML4SOA activity diagrams specifying the behaviour of the ser-
vices involved in the Finance case study (presented in Chapters 0-2 and 7-1) are trans-
lated ‘by hand’ into COWS terms to enable a subsequent analysis phase. By accom-
plishing this task, we have experimented how the specific mechanisms and primitives
of COWS are particularly suitable for encoding services specified by UML4SOA activ-
ity diagrams. This is not surprising if one considers that both UML4SOA and COWS
are inspired by WS-BPEL. To formalize those intuitions and support a more system-
atic and mathematically well-founded approach to engineering of SOA systems, we
have defined a compositional encoding of UML4SOA activity diagrams into COWS
terms. This way, developers can concentrate on modelling the high-level behaviour of
the system and use the encoding for analysis purposes. Such encoding is implemented
by UStoC, a software tool that given a UML4SOA specification, consisting of a set
of XMI files [?] automatically generated by the UML editor MagicDraw [?], returns a

2 Both tools are freely downloadable from http://rap.dsi.unifi.it/cows/ and can be
redistributed and/or modified under the terms of the GNU General Public License.

Fig. 1. Verification process of UML4SOA models of services

COWS term written in the syntax accepted by CMC. UStoC’s workflow is graphically
depicted in Fig. 1.

UStoC works properly with activity diagrams specified by using version 1.2 of the
UML4SOA profile. Therefore, to use the tool for translating the Finance case study,
we need to specify the case study using the profile mentioned above. For the sake of
simplicity, we consider here just an excerpt of the scenario, which is composed of three
services: creditRequest that performs the initialization activities and terminates upon
receiving the data for a new credit request, customerManagementService that, when
invoked, non-deterministically replies either yes or no to every request, and portalSer-
vice that, if the login succeeds, non-deterministically sends either a credit request or
a cancellation request. The UML4SOA diagram modelling service creditRequest is
shown in Fig. 2. To analyse this scenario, firstly we generate a file XMI (saved with
extension .uml) for each UML4SOA diagram by using MagicDraw. Then, we load the
three created files into UStoC (by pushing the ‘Add’ button on the right-hand side of the
graphical interface, a screenshot of which is shown in Fig. 3) and encode them into a
COWS term (by pushing the ‘Start encoding’ button). Finally, we can export the COWS
term from UStoC to CMC and start to analyse it exactly as described in Section 3.

The above example shows how UStoC simplifies the modelling phase of the ver-
ification process by enabling the use of the abstract modelling language UML4SOA.
However, the problem of making more accessible our verification methodology to peo-
ple without significative expertise on process calculi and logics is not resolved. To rem-
edy this, we are developing Venus, a software tool that integrates UStoC and CMC
in order to hide the use of COWS and SocL and, hence, make the verification process
as much transparent as possible for developers. The issue of tailoring and reflecting
the (low-level) results obtained by the verification of COWS terms to the correspond-
ing (high-level) UML4SOA specifications is tackled by exploiting abstraction rules that
permit specifying a ‘bridge’ between the two specification levels.

Let us see how Venus can be used to analyse the excerpt of the Finance case study
previously introduced. First of all, similarly to UStoC, Venus requires the user to pro-
vide the XMI files storing the UML4SOA diagrams (Fig. 4). Then, it requires the user
to select the properties that he wants to verify out of a list of predefined general proper-
ties written in natural language (Fig. 5). Notably, expert users can add in the text area at
the bottom of the window further properties directly expressed as SocL formulae. Now,
the user has to define the intuitive semantics of the relevant operations of the loaded
UML4SOA specification. This is done by specifying the operations representing ini-
tial requests, positive responses, negative responses, cancellations, . . . , and by possibly
indicating the corresponding correlation data (Fig. 6). In our example, we specify that

creditRequest creditRequestactivity []

<<scope>>

initialization

<<scope>>

main

<<receive>>

createNewCreditRequestportalService

<id,customerId,creditAmount,creditType,monthlyInstalment>

<<scope>>

<<raise>>

processCanceled

<<receive>>

cancel
portalService id

<<scope>>

<<compensate all>>

<<send>>

abortProcess
portalService id

<<send>>

goodbyeportalService id

<<send&receive>>

getCustomerData
customerManagementService

<id,name,password>

<id,loginName,firstName,lastName>

<<receive>>

initializeportalService <id,name,password>

<<send&receive>>

checkUsercustomerManagementService
<id,name,password>

<id,userOk>

<<send>>

initialize <id,userOk>portalService

<<raise>>

abort

e9

e8

e10

e11

e13

e14

e12

e4 [userOk=no]

e6

e3 [userOk=yes]

e5

<<exception>><<event>>

e7

e0

e15

e1

e2

e16

Fig. 2. Excerpt of the Finance case study: creditRequest

Fig. 3. A screenshot of UStoC interface

Fig. 4. Venus interface: loading of UML4SOA diagrams

an invocation of operation initialize corresponds to sending an initial request to the ser-
vice and the value that will be assigned to variable id will be used to correlate positive
and negative responses to such request. Notice that Venus requires to specify such op-
erations only for the categories that are needed for checking the properties previously

Fig. 5. Venus interface: selection of service properties

selected (in this case, e.g., initial request, positive response and negative response).
Moreover, for each category, more than one operation can be specified by using the as-
sociated ‘Add’ button. The information provided at this step are used, on the one hand,
to express the selected general properties as SocL formulae and, on the other hand, to
generate the abstraction rules that will be applied to the COWS term resulting from the
translation of the UML4SOA diagrams provided at the initial step. Expert users can
also provide here custom abstraction rules. Finally, Venus properly arranges all data,
loads them into CMC, and allows the user to check the validity of each property and,
possibly, to require an explanation in case of a negative result (Fig. 7).

6 Concluding Remarks

We have presented a COWS specification of the Finance case study and two analysis
techniques, namely a temporal logic and its model checker for expressing and checking
functional properties and a type system for guaranteeing confidentiality properties.

The specification of the case study demonstrates that COWS’s distinctive features,
as e.g. the termination constructs and the correlation mechanism, are effective tools for
specifying service-oriented systems. In fact, kill activities are suitable for representing
ordinary and exceptional process terminations, while protection permits to naturally

Fig. 6. Venus interface: definition of the intuitive semantics of the relevant operations

represent exception and compensation handlers that are supposed to run after normal
computations terminate. Even more crucially, the correlation mechanism permits to au-
tomatically correlate messages belonging to the same long-running interaction, prevent-
ing to mix messages from different service instances. Also the encoding of UML4SOA
in COWS, which is at the basis of the tools UStoC and Venus, has greatly benefitted
from COWS’s distinctive features. The definition of such an encoding appears to be
problematic and less intuitive if one use a different, e.g. session-based, calculus.

There are several requirements and properties concerning to liveness, correctness,
and security that an implementation of the Finance case study is expected to fulfill.
The methodology reported in Section 3, and then exploited by the tools presented in
Section 5, has proven to be very effective to check a large spectrum of behavioural
properties. With respect to the many other temporal logics proposed in the literature,
one important advantage of SocL is that the service properties can be formulated in a
way which is independent from individual service domains and specifications. Security
properties regarding the exchange of data among service components can be instead
insured by means of the type system reported in Section 4. Since it is not realistic to
assume complete knowledge of the whole system and access to the internal implemen-
tation of all the involved services, a practical implementation of this approach would
require services to declare how they use the data they exchange and should rely on a

Fig. 7. Venus interface: verification of the service properties

mechanism ensuring that service behaviours do comply with their declaration. The run-
time support should also take charge of performing the checks described in Section 4 to
authorise or block transitions.

Some other analysis techniques for COWS terms have been developed as a result of
the Sensoria project. In particular, a Flow Logic for checking information flow prop-
erties is presented in [?], a stochastic extension of COWS that enables verification of
quantitative properties is presented in [?] (see also Chapter 5-5), and a few observational
semantics for checking interchangeability of COWS terms and conformance against
service specifications are presented in [?] (see also Chapter 2-2). However, we have
not yet results on the application of these techniques to the COWS specification of the
Finance case study.

