33,771 research outputs found

    A formal framework for specification-based embedded real-time system engineering

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (v. 2, p. 517-545).The increasing size and complexity of modern software-intensive systems present novel challenges when engineering high-integrity artifacts within aggressive budgetary constraints. Among these challenges, ensuring confidence in the engineered system, through validation and verification activities, represents the high cost item on many projects. The expensive nature of engineering high-integrity systems using traditional approaches can be partly attributed to the lack of analysis facilities during the early phases of the lifecycle, causing the validation and verification activities to begin too late in the engineering lifecycle. Other challenges include the management of complexity, opportunities for reuse without compromising confidence, and the ability to trace system features across lifecycle phases. The use of models as a specification mechanism provides an approach to mitigate complexity through abstraction. Furthermore, if the specification approach has formal underpinnings, the use of models can be leveraged to automate engineering activities such as formal analysis and test case generation. The research presented in this thesis proposes an engineering framework which addresses the high cost of validation and verification activities through specification-based system engineering. More specifically, the framework provides an integrated approach to embedded real-time system engineering which incorporates specification, simulation, formal verification, and test-case generation. The framework aggregates the state-of-the-art in individual software engineering disciplines to provide an end-to-end approach to embedded real-time system engineering. The key aspects of the framework include: * A novel specification language, the Timed Abstract State Machine (TASM) language, which extends the theory of Abstract State Machines (ASM).(cont.) The TASM language is a literate formal specification language which can be applied and multiple levels of abstraction and which can express the three key aspects of embedded real-time systems - function, time, and resources. * Automated verification capabilities achieved through the integration of mature analysis engines, namely the UPPAAL tool suite and the SAT4J SAT solver. The verification capabilities provided by the framework include completeness and consistency verification, model checking, execution time analysis, and resource consumption analysis. * Bi-directional traceability of model features across levels of abstraction and lifecycle phases. Traceability is achieved syntactically through archetypical refinement types; each refinement type provides correctness criteria, which, if met, guarantee semantic integrity through the refinement. * Automated test case generation capabilities for unit testing, integration testing, and regression testing. Unit test cases are generated to achieve TASM specification coverage through the rule coverage criterion. Integration test case generation is achieved through the hierarchical composition of unit test cases. Regression test case generation is achieved by leveraging the bi-directional traceability of model features. The framework is implemented into an integrated tool suite, the TASM toolset, which incorporates the UPPAAL tool suite and the SAT4J SAT solver. The toolset and framework are evaluated through experimentation on three industrial case studies - an automated manufacturing system, a "drive-by-wire" system used at a major automotive manufacturer, and a scripting environment used on the International Space Station.by Martin Ouimet.Ph.D

    Development of a framework for automated systematic testing of safety-critical embedded systems

    Get PDF
    ā€œThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." ā€œCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.ā€In this paper we introduce the development of a framework for testing safety-critical embedded systems based on the concepts of model-based testing. In model-based testing the test cases are derived from a model of the system under test. In our approach the model is an automaton model that is automatically extracted from the C-source code of the system under test. Beside random test data generation the test case generation uses formal methods, in detail model checking techniques. To find appropriate test cases we use the requirements defined in the system specification. To cover further execution paths we developed an additional, to our best knowledge, novel method based on special structural coverage criteria. We present preliminary results on the model extraction using a concrete industrial case study from the automotive domain

    Functional Requirements-Based Automated Testing for Avionics

    Full text link
    We propose and demonstrate a method for the reduction of testing effort in safety-critical software development using DO-178 guidance. We achieve this through the application of Bounded Model Checking (BMC) to formal low-level requirements, in order to generate tests automatically that are good enough to replace existing labor-intensive test writing procedures while maintaining independence from implementation artefacts. Given that existing manual processes are often empirical and subjective, we begin by formally defining a metric, which extends recognized best practice from code coverage analysis strategies to generate tests that adequately cover the requirements. We then formulate the automated test generation procedure and apply its prototype in case studies with industrial partners. In review, the method developed here is demonstrated to significantly reduce the human effort for the qualification of software products under DO-178 guidance

    FORTEST: Formal methods and testing

    Get PDF
    Formal methods have traditionally been used for specification and development of software. However there are potential benefits for the testing stage as well. The panel session associated with this paper explores the usefulness or otherwise of formal methods in various contexts for improving software testing. A number of different possibilities for the use of formal methods are explored and questions raised. The contributors are all members of the UK FORTEST Network on formal methods and testing. Although the authors generally believe that formal methods are useful in aiding the testing process, this paper is intended to provoke discussion. Dissenters are encouraged to put their views to the panel or individually to the authors

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page
    • ā€¦
    corecore