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Abstract

The increasing size and complexity of modern software-intensive systems present
novel challenges when engineering high-integrity artifacts within aggressive budgetary
constraints. Among these challenges, ensuring confidence in the engineered system,
through validation and verification activities, represents the high cost item on many
projects. The expensive nature of engineering high-integrity systems using traditional
approaches can be partly attributed to the lack of analysis facilities during the early
phases of the lifecycle, causing the validation and verification activities to begin too
late in the engineering lifecycle. Other challenges include the management of com-
plexity, opportunities for reuse without compromising confidence, and the ability to
trace system features across lifecycle phases. The use of models as a specification
mechanism provides an approach to mitigate complexity through abstraction. Fur-
thermore, if the specification approach has formal underpinnings, the use of models
can be leveraged to automate engineering activities such as formal analysis and test
case generation. The research presented in this thesis proposes an engineering frame-
work which addresses the high cost of validation and verification activities through
specification-based system engineering. More specifically, the framework provides an
integrated approach to embedded real-time system engineering which incorporates
specification, simulation, formal verification, and test-case generation. The frame-
work aggregates the state-of-the-art in individual software engineering disciplines to
provide an end-to-end approach to embedded real-time system engineering. The key
aspects of the framework include:

* A novel specification language, the Timed Abstract State Machine (TASM)
language, which extends the theory of Abstract State Machines (ASM). The
TASM language is a literate formal specification language which can be applied
and multiple levels of abstraction and which can express the three key aspects
of embedded real-time systems - function, time, and resources.



* Automated verification capabilities achieved through the integration of mature
analysis engines, namely the UPPAAL tool suite and the SAT4J SAT solver. The
verification capabilities provided by the framework include completeness and
consistency verification, model checking, execution time analysis, and resource
consumption analysis.

* Bi-directional traceability of model features across levels of abstraction and
lifecycle phases. Traceability is achieved syntactically through archetypical re-
finement types; each refinement type provides correctness criteria, which, if met,
guarantee semantic integrity through the refinement.

* Automated test case generation capabilities for unit testing, integration test-
ing, and regression testing. Unit test cases are generated to achieve TASM
specification coverage through the rule coverage criterion. Integration test case
generation is achieved through the hierarchical composition of unit test cases.
Regression test case generation is achieved by leveraging the bi-directional trace-
ability of model features.

The framework is implemented into an integrated tool suite, the TASM toolset,
which incorporates the UPPAAL tool suite and the SAT4J SAT solver. The toolset and
framework are evaluated through experimentation on three industrial case studies
- an automated manufacturing system, a "drive-by-wire" system used at a major
automotive manufacturer, and a scripting environment used on the International
Space Station.
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Chapter 1

Introduction

This chapter serves as an "executive summary" of the work presented in this thesis.

The chapter contains information about the motivations for the presented research,

the contributidns of the research, the list of presentations, posters, technical reports

and refereed publications related to the research, and the roadmap of the thesis. Each

chapter in the thesis follows a template structure, as explained in Section 1.5.

1.1 Motivations

In modern society, software systems can be found everywhere, including in airplanes,

in automobiles, and in consumer electronics. The proliferation of software increases

the dependency on the correct functioning of software and yields a new set of chal-

lenges in the engineering of software-intensive systems. The growing size and com-

plexity of modern software systems exacerbates the difficulty of delivering reliable

systems within aggressive budgetary constraints. In various engineering disciplines,

the use of models has proven a viable approach to mitigate complexity through ab-

straction [40]. However the use of models in the engineering of software is a relatively

novel approach to building software systems. The use of models not only helps to

control complexity, but if the models have formal underpinnings, the models can

be used to automate certain engineering activities such as verification and test case

generation.



The research presented in this thesis seeks to address five key challenges in the

engineering of embedded real-time systems:

* The high complexity of modern software systems, by providing a model-based

approach to software-intensive system engineering.

* The high cost of Verification and Validation (V & V) activities by leveraging

the use of models to automate engineering activities.

* The challenges in using formal methods in an engineering context by providing

a novel literate specification language and abstracting verification details in a

push-button approach.

* The lack of integration between disparate models by providing bi-directional

traceability across levels of abstraction.

* The lack of integration of the state-of-the art in individual disciplines by pro-

viding an overarching engineering framework.

These five challenges form the base motivation for the research presented in this

thesis. These challenges are addressed individually in subsequent chapters. In ad-

dressing these challenges, the research presented in this thesis makes a number of

research contributions in various areas. These contributions are outlined in the fol-

lowing section.

1.2 Thesis Contributions

The research presented in this thesis makes five key contributions to address the

challenges enumerated in the previous section:

* A new specification language for embedded real-time systems, the Timed Ab-

stract State Machine (TASM) language, which extends the theory of Abstract

State Machines (ASM). The TASM language integrates the specification of func-

tional and non-functional properties - function, time, and resources.



* A set of verification procedures for automated analysis of models, using generally

available analysis engines. The procedures include the analysis of completeness

and consistency, the analysis of execution time, and the analysis of resource

consumption.

* An approach to traceability of system models that incorporates syntactic change

and semantic integrity.

* A generic and extensible approach to automatically generate test cases for unit

testing, integration testing, and regression testing.

* An integrated framework for modeling, simulation, verification, and test-case

generation for embedded real-time systems.

* An integrated toolset implementing the capabilities of the framework.

1.3 Relevant Publications

The research presented in this thesis has led to presentations and poster sessions

presented at the "Real-Time System Symposium (RTSS)" in December 2006 [189], at

the "ARTIST Workshop on Tool Platforms for Embedded System Modeling, Analysis

and Validation" of the "Computer-Aided Verification Conference (CAV)" in July

2007 [196], at the "Real-Time in Sweden Conference (RTiS)" in August 2007 [197],

and at the "Asia-Pacific Software Engineering Conference (APSEC)" in December

2007 [204].

The presented research has also yielded a number of Technical Reports released

through the Embedded Systems Laboratory (ESL) at the Massachusetts Institute of

Technology [190, 195, 201, 202, 206]. A reference manual for the Timed Abstract State

Machine (TASM) language [185], as well as a user guide for the TASM toolset [186]

are also available through the Embedded Systems Laboratory [88].

The Timed Abstract State Machine language was presented to the real-time sys-

tem community at the "Real-Time and Network Systems Conference (RTNS)" in



March 2007 [199] and to the ASM community at the "Abstract State Machines Work-

shop (ASM)" in June 2007 [198]. A journal article about the TASM language is set

to appear in Volume 14 of the Journal of Universal Computer Science (JUCS) in July

2008 [205]. A critical look on how time is treated in modeling languages, motivating

the TASM approach to modeling time, was presented at the "Modeling in Software

Engineering (MiSE) Workshop" of the "International Conference on Software Engi-

neering (ICSE)" in May 2007 [194].

The case study involving the Electronic Throttle Controller (ETC) was presented

at the "Critical System Development using Modeling Languages Workshop (CS-

DUML)" of the "Model Driven Engineering Languages and Systems Conference (MoD-

ELS)" in October 2006 [187] and was selected as one of two best papers to appear

in Volume 4364 of Lecture Notes in Computer Science (LNCS) entitled "Models in

Software Engineering" [188]. The analysis of TASM models using a SAT Solver

was presented at the "Model-Based Testing Workshop (MBT)" of the "European

Joint Conferences on Theory and Practice of Software (ETAPS)" in May 2007 [192]

and appears in Volume 190 of "Electronics Notes in Theoretical Computer Science

(ENTCS)" [193]. The TASM toolset was presented at the "Computer-Aided Verifi-

cation Conference (CAV)" in July 2007 [200].

An overview of the framework will be presented at the "International Symposium

on Quality Engineering for Embedded Systems (QEES)" [203], a symposium held

jointly with the "European Conference on Model Driven Architecture Foundations

and Applications (ECMDA)", in June 2008. A follow-up article will be submitted to

the journal entitled "Software Tools for Technology Transfer".

1.4 Thesis Outline

This section provides an overview of the content of each chapter contained in this

thesis.

* Chapter 1: Introduction



This Chapter provides an "executive summary" of the thesis and should be read

before other chapters.

* Chapter 2: Background Information

This chapter provides background information necessary to understand the ma-

terial contained in the research. This chapter covers a wide range of topics such

as information about real-time systems, software engineering, and descriptions

of the analysis engines used to implement the framework. The reader is invited

to browse sections of this chapter as needed.

* Chapter 3: Framework Overview

This chapter provides an overview of the capabilities of the framework as well

as the tool architecture used in the implementation of the framework.

* Chapter 4: The Timed Abstract State Machine Specification Lan-

guage

This chapter describes the Timed Abstract State Machine (TASM) Language,

its syntax, semantics, and modeling facilities, including how time and resources

are treated, hierarchical composition, and parallel composition. Throughout

the chapter, illustrative examples are provided to depict the concepts as they

are introduced.

* Chapter 5: Static Analysis

This chapter presents the types of analysis that can be performed in the frame-

work. The analysis procedures include completeness and consistency analysis,

execution time analysis, and resource consumption analysis. This chapter also

contains illustrative examples to demonstrate the analysis algorithms. The im-

plementation of the analysis facilities, performed in the TASM toolset, are also

described.

* Chapter 6: Bi-Directional Traceability



This chapter explains the bi-directional traceability capabilities of the proposed

framework. The approach to traceability establishes a relationship between

two or more TASM models and combines syntactic change management with

notions of semantic equivalence for the models.

* Chapter 7: Test Case Generation

This chapter presents the automated test case generation capabilities of the

framework for unit, integration, and regression test case generation. The re-

gression test case generation strategy uses the traceability approach described

in Chapter 6. Examples and implementation details are also presented.

* Chapter 8: Case Studies

This chapter contains the results of the three case studies used to evaluate the

research presented in this thesis - the production cell case study, an Electronic

Throttle Controller (ETC), and the Timeliner Script Executor. The case studies

are introduced in Section 2.8 but the models and analysis results are presented

in Chapter 8. The complete TASM models for each case study are provided in

the appendices.

* Chapter 9: Conclusion

This chapter provides a critical evaluation of the presented research, draws con-

clusions for the thesis, and describes directions for possible future developments

of the research.

* Appendix A: TASM Language Reference

This appendix contains the concepts involved with the implementation of the

TASM language in the TASM toolset. These concepts include the complete

Context-Free Grammar (CFG) for the TASM language and various implemen-

tation topics such as operator precedence and typing.

* Appendix B: Translating TASM Models to SAT



This appendix contains the details of the mapping from the TASM language to

SAT, for the purpose of static analysis, as explained in Chapter 5, and for test

case generation, as explained in Chapter 7.

* Appendix C: Translating TASM Models to UPPAAL

This appendix contains the complete mapping from the TASM language to

UPPAAL , for the purpose of timing analysis, as explained in Section 5.3. The

mapping to UPPAAL is also used for model checking of functional properties.

* Appendix D: Production Cell TASM Model

This appendix contains the complete TASM model for the production cell case

study, explained in Section 2.8.1 and studied in Section 8.1.

* Appendix E: Electronic Throttle Controller TASM Model

This appendix contains the complete TASM model for the electronic throttle

controller for the case study, explained in Section 2.8.2 and studied in Sec-

tion 8.2, in Section 8.3, and in Section 8.4.

* Appendix F: Timeliner Plant Simulator TASM Model

This appendix contains the complete TASM model for the Timeliner case study

involving the plant control system, explained in Section 2.8.3 and studied in

Section 8.5.

1.5 Chapter Structure

Individual chapters in this thesis follow a common template. At the beginning of

each chapter a paragraph explains the information contained in the chapter. The

last section of each chapter is named "Segue into Chapter N" and provides a brief

summary of the information provided in the current chapter and how it leads to the

following chapter. All chapters follow this template except for the appendices. Unlike

the thesis chapters, individual appendices do not follow a common pattern. However,



the first paragraph of each appendix contains a brief description of its content. The

content of the appendices is summarized in Section 1.4. Appendices do not follow a

linear progression and serve as a reference that can be read in any order.

1.6 Notational Conventions

In order to enhance the readability of the thesis, special fonts are used to clarify

meaning in certain situations:

* Italic font is used for definitions and when referring to abstract syntax, such as

the names of machines or the names of rules.

* Teletype font is used when referring directly to the concrete syntax of a model,

such as a variable.

* "Quotation marks" are used to emphasize blocks of text that should be grouped

together.

Furthermore, the listings for models expressed in the Timed Abstract State Ma-

chine (TASM) language are expressed in teletype font.

1.7 Segue into Chapter 2

This chapter presented an "executive summary" of the content of the thesis. The

following chapters expand on this summary. The next chapter, Chapter 2, provides

background information about the topics covered throughout the thesis.



Chapter 2

Background Information

This chapter presents background information related to the concepts explained in

the following chapters. The information contained in this chapter includes details

about the types of systems targeted by the presented research, details about how

the current work integrates into software engineering practice, information about the

analysis engines used in the framework, and descriptions of the case studies used to

evaluate the presented framework.

2.1 Real-Time Embedded Systems

The primary goal of a computer system is to provide value, as defined by a user of the

system, by performing a set of functions. More specifically, a computer system must

provide a correct response (output) based on a given stimulus (input). The concept

of correctness is comprised of multiple facets such as functional correctness and non-

functional correctness. The functional correctness of a computer system is defined

through a set of requirements that the input-output behavior of the system must

satisfy [853. The requirements describing the functional correctness of a computer

system can be described through safety properties, that is, statements about behavior

that should never occur, and liveness properties, that is, statements about behavior

that should eventually occur [30]. All functional behavior of computer systems can

be described in terms of safety and liveness properties [154].



While functional correctness is a critical aspect of all computer systems, certain

types of systems also require that non-functional aspects of the system, such as tim-

ing behavior, conform to stringent correctness criteria. The research presented in this

work addresses the engineering of embedded real-time systems, a class of systems

where non-functional properties are central to the system's value. More specifically,

embedded real-time systems represent a special class of computer systems where

time plays a critical role in the correctness of the system. In a real-time system,

the system must not only produce a correct answer, but must also do so in an ade-

quately bounded amount of time [58]. The amount of time under which the system

must produce a response is termed a deadline. If a real-time system provides an

answer after a deadline has elapsed, the system is said to have missed a deadline.

With regards to correctness, the implications of missing a deadline depends on the

type of system. Real-time systems fall into two categories - hard real-time systems,

where missing a deadline is unacceptable, and soft real-time systems, where missing a

deadline may be acceptable under certain circumstances, depending on performance

requirements [155]. Nevertheless, time plays a critical role in defining the correctness

of a real-time system since a correct answer provided too late can be as erroneous as

providing an incorrect answer [49]. The timing analysis provided by the framework

does not make assumptions about whether the system being analyzed is hard or soft.

The framework provides generic timing analysis to determine the best and worst case

timing behavior, and it is up to the system behavior to decide whether the analysis

results are acceptable for the system being engineered.

In practice, real-time systems are also typically reactive, meaning that they do not

terminate, but are in continuous interaction with the environment, until the system

is switched off. Reactive systems are different than transformational system, where

the system terminates after producing an answer. In a reactive real-time system,

the timing correctness of the system is defined as the absence of missed deadlines

while taking into account the continuous interaction of the system with its environ-

ment. The types of systems targeted by the proposed framework are of the mostly

periodic nature [164], meaning that they operate in a continuous loop that samples



the environment through sensors, makes a decision on what action the system should

take based on the sensor values, and affects the environment by executing the action

through an actuator. A sample loop for the systems targeted by the proposed frame-

work is shown in Figure 2-1. It is important to note that which steps of the loop are

executed at each iteration is implementation dependent. As will be described in the

electronic throttle controller case study, the sampling of the state through sensors

could be done at a lower frequency than, for example, the frequency of deciding on

the action to be taken by the controller.

Sensors Actuators

Figure 2-1: High level view of a mostly periodic reactive real-time system

In traditional real-time system theory, the concept of a deadline refers to the

Worst-Case Execution Time (WCET) [89] also sometimes called the worst-case com-

putation time, that is, the maximum time that can elapse when an individual task or

an individual process executes [58]. In this research, the traditional WCET definition

is made more general to include system properties. In the remainder of this work, the

term WCET is used to denote the maximum amount of time that can elapse when the

system completes a path between two states. The definition used in this thesis also

stipulates that such a path can consist of any two states. In this definition, the notion

of state can include both the state of the engineering artifact such as the program

counter and values of system variables, and, the value of environment variables. This

definition is more general than the traditional definition and can capture important

concepts such as end-to-end latency all the while being able to express the traditional

definition. End-to-end latency refers to the longest reaction time of a system to an

environment stimulus, taking into account system properties such as environment



interaction, task interference, and delay in response. For example, in the loop of

Figure 2-1, the value of an environment variable could change while the system is

deciding on which action to take. Depending on the frequency of sensor readings, a

significant delay could result in the system taking a corrective action since there could

be a delay before the change is detected. Figure 2-2 shows a symbolic view of the

time that can elapse between an event occurring and the system taking a corrective

action. The verification problem to ensure that there are no missed deadlines can be

summarized as:

dt = t2 - t l < Required Deadline

The response latency, dt, refers to how much time elapses between the event and

the response. The proposed framework provides necessary facilities to calculate the

maximum value of dt, for any event and action modeled. The Required Deadline is

system-dependent and is provided by the performance requirements. It is also the

responsibility of the system designer to decide on which course of action to take if the

designed system does not meet the required deadline. The proposed system provides

only the necessary modeling and analysis facilities. Additional definitions related to

execution time are given in Section 5.3.

tl ---------------- t2

event system takes
occurs corrective action

Figure 2-2: Delay in system responding to an event of interest

Most real-time systems also fall into the category of embedded systems. Embedded

systems represent a special class of real-time systems where the software system is

not stand-alone, but is part of a larger system and must work with other components

to achieve the system's goals [155]. Vehicle controllers, such as automotive electronics



and avionics, are typical examples of embedded real-time systems. In an embedded

system, resources such as communication bandwidth and memory are typically limited

and must be shared across multiple components. Consequently, the correctness of an

embedded real-time system is also dependent on the resource usage being adequately

bounded. In summary, for an embedded real-time computer system, the correctness

of the system is defined in terms of three key aspects - functional correctness, timing

behavior, and resource usage. These three aspects form the fundamental motivation

of the modeling and analysis capabilities provided by the proposed framework.

2.1.1 The Nature of Time in Real-Time Systems

Since time plays an important role in defining the correctness of a real-time system, it

is paramount to understand the role of time in the systems of interest. On a general

and global level, the time axis is a monotonic function that is used to order events

linearly according to some concept of progression [101]. A large body of research

has been devoted to establish that a computer system satisfies a correct ordering of

events [49]. This correct ordering of events, also called qualitative time, refers to the

ordering of events with respect to one another and is not concerned with the temporal

distance between events [212]. For example, in the well-known Simple Mail Transfer

Protocol (SMTP), an acknowledgement message (ACK) shall not be received before a

synchronization request (SYN) has been emitted. In other words, an ACK must occur

after a SYN and never before. However, in real-time systems, timing correctness does

not depend only on the ordering of events, but also depends on the numerical distance

between events, a concept called quantitative time [155]. For example, in the SMTP

protocol, after a SYN has been emitted, a timer is typically started while waiting for

the ACK. If, after a prespecified amount of time, the ACK has not been received, the

SYN sender might assume that the SYN request was lost. In such a situation, the

precise amount of time between the SYN and the ACK is of particular importance,

in addition to the messages occurring in the correct order.

Quantitative time appears in real-time system problems either explicitly or im-

plicitly. Examples of where quantitative time appears explicitly include performance



Table 2.1: Examples of sources of explicit quantitative time

requirements, local clocks, timeouts, scheduling, the physics of the problem, and

constraints of the components of the system. Examples of explicit instances of quan-

titative time are shown in Table 2.1. Examples where time appears implicitly, as

a side-effect, include software execution time and hardware execution time. List-

ing 2.1 shows a brief example of software code, written in the Timeliner scripting

language [61], borrowed from the Timeliner case study. The code represents a se-

quence used to maintain cabin temperature between 20 and 25 Celsius degrees [238].

In order to determine how long this snippet of Timeliner code takes to execute, many

other questions need to be answered. For example, the execution time of the script

depends on:

* The properties of the execution platform

* The semantics of the language

* The assumptions on the behavior of the environment

Once the code has been written and the system is implemented, these concerns

can typically be addressed to a satisfactory degree of confidence. For example, in [62],

precise timing measurements of each statement of the Timeliner language have been

measured through laboratory experiments for a specific execution environment. How-

ever, determining these execution times a priori remains a challenging endeavor.

Source Example
Requirements The data in the operator

console shall be refreshed 10
times per second

Physics It takes approximately 5 sec-
onds for a projectile shot
straight up in the air at a ve-
locity of 50 m/s to come to
rest at its apogee

Components Pressure sensors can put
data on the system bus at a
rate of 10Hz



Listing 2.1 Sequence TEMPMONITOR [238]
SEQUENCE TEMP_MONITOR

EVERY i
IF TEMPERATURE >= 26 THEN

SET TRYING.TO.COOLSYSTEM TO TRUE
COMMAND COOLING, NEWSTATE=>ON
WHEN TEMPERATURE <= 22

SET TRYING_TO_COOLSYSTEM TO FALSE
COMMAND COOLING, NEW_STATE=>OFF

END WHEN
END IF
IF TEMPERATURE <= 19 THEN

COMMAND HEATING, NEWSTATE=>ON
WHEN TEMPERATURE >= 22

COMMAND HEATING, NEWSTATE=>OFF
END WHEN

END IF
END EVERY

CLOSE SEQUENCE

Even for software and hardware execution, time can also appear implicitly and

explicitly. For example, the code in Listing 2.1 contains one explicit timing state-

ment, the "EVERY 1" statement. This statement tells the runtime system that the

sequence shall execute at most once per second. Other examples of explicit timing

statements include the statements sleep and wait, which are present in many pro-

gramming languages such as C++ and Java [239]. In real-time system engineering,

the explicit sources of quantitative time, outside of software and hardware, define the

timing constraints of the system that is to be built. One of the goals of real-time

system engineering is to build a system which meets these constraints.

2.2 Systems Engineering

Systems Engineering is the aggregation of multiple elements to perform functions that

could not be performed by the elements alone [152]. Systems engineering is an over-

arching discipline which includes aspects bridging people, documentation, software,

hardware, and other domains. Systems engineering efforts seek to develop processes,

tools, and techniques to ensure that a given engineering artifact satisfies all parties

involved throughout the lifetime of a system. In Section 2.1, the types of systems

targeted by the presented framework were presented, alongside definitions of the cor-

rectness of these systems. The goal of the systems engineering efforts go beyond the



correctness aspects described in Section 2.1 and include concepts related to the stake-

holders, potential risks, safety concerns, and other factors affecting the engineering,

delivery, and operation of the system [166]. The goal of this section is to situate the

applicability of the presented framework in the wider sphere of systems engineering.

Figure 2-3 shows the steps of a generic systems engineering process defined in [19].

The framework presented in this research is applicable in the software and digital

hardware engineering facets of real-time systems, during the modeling phases and the

integration phases depicted in Figure 2-3.

Figure 2-3: Systems engineering process [19]

The proposed framework assumes the existence of requirements on the functional,

time, and resource aspects of the system. The engineering of software and digital

hardware for an embedded system, such as the engineering of an avionics system, will

be performed in parallel with other systems engineering activities such as requirements

analysis and vehicle design. In the following section, software engineering principles

are reviewed as motivations for the presented framework.

2.3 Software Engineering

Software engineering is the set of techniques, processes, and tools used to develop com-

puter systems [242]. Typically, software engineering is divided into lifecycle phases

that traditionally include requirements engineering, design, implementation, testing,

and maintenance [255]. These different phases are carried out in sequence, with a

certain amount of overlap depending on the lifecycle model that is used [253]. Vali-

dation and Verification (V & V) activities are defined as the process of establishing

confidence into the correctness of the system. More specifically, validation refers to



the activities carried out to ensure that the system being engineered will meet the

user's needs. Verification refers to the activities carried out to ensure that the soft-

ware behaves in accordance to the correctness criteria expressed as requirements. In

practice, these activities comprise a mix of testing, user interviews, mathematical

proofs, and various forms of human inspections [99]. V & V activities are typically

the large ticket item on software engineering projects and can comprise over 50% of

the development costs [39, 255]. The purpose of performing V & V activities is to

eradicate defects from the system being engineered. A defect is a facet of the system

which does not conform to the user's needs or to the required correctness criteria. V

& V activities are typically carried out throughout all phases of the engineering life-

cycle. Empirical evaluations of software engineering projects have demonstrated that

the cost of finding and fixing a defect in a computer system increases dramatically

the later it is found in the lifecycle [38, 39, 255]. Consequently, finding and fixing

defects during the early phases of the engineering lifecycle can result in lower defect

fixing costs and lower V & V costs. A typical software lifecycle consists of a number

of phases that include requirements, design, implementation, testing, and mainte-

nance [38]. A popular example of a popular lifecycle, the "V Lifecycle Model" [242],

is depicted in Figure 2-4. In Figure 2-4, the engineering activities typically begin in

the top left corner and proceed diagonally toward the bottom and back up toward the

top right corner. However, software engineering lifecycle are typically iterative and

hence do not follow a strict linear progression, indicated in Figure 2-4 by the arrows

linking each phase.

Traditional approaches to software engineering have relied heavily on natural lan-

guage documents and natural language communication to capture the requirements,

design principles, and results of V & V activities relating to the system being engi-

neered (71]. However, since natural language is ambiguous by definition, performing

V & V activities based on natural language documents is error-prone and lack the

type of repeatability that can be provided through automated analysis [225]. With

the growing size and complexity of modern computer systems, relying solely on the

intellectual rigor of engineers can lead to unpredictable results [124]. The framework



Figure 2-4: V software lifecycle model [242]
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proposed in this research focuses on automating V & V activities, notably formal

verification and test case generation, to provide a repeatable and reliable engineering

approach that could lead to decreased V & V costs.

2.4 Formal Methods

Various efforts have attempted to remedy the shortcomings of natural language through

the formalization of structured natural language [54, 73, 224, 246]. The need for a pre-

cise language and the benefits of automated analysis have motivated the development

of specification approaches based on mathematics [71]. These attempts, also known as

formal methods or formal specification, have yielded specification languages and proof

systems that have a wide range of analysis capabilities, mostly through mathematical

proofs. These approaches aim to address the lack of rigor of ad-hoc engineering tech-

niques by rooting the engineering in well-founded mathematical principles. However,

because many of these languages make use of advanced mathematics, they suffer from

a lack of usability and readability without the proper expertise [51, 71]. The benefits

and drawbacks of using formal methods have been documented heavily [50, 51, 71].

Cited benefits include the detection of defects early in the engineering cycle [118], pre-

cise and concise specifications [248], and the capability for automated analysis [220].

Cited drawbacks include the heavy use of arcane mathematical notations [71], the

lack of scalability of most methods [50], and the large investment typically required

to use formal methods [51]. Besides the negative connotation that the term formal

methods has taken in some circles [124], the benefits of unambiguous specifications

and the repeatability of automated analysis, throughout the phases of the lifecycle,

have been generally accepted in the software engineering community [37, 179].

The challenges of engineering real-time systems has also led to various efforts to

automate lifecycle activities. The lifecycle activities that can be automated include

verification [70], validation [98], and test case generation (15, 222]. The automation of

these activities is typically centered around a formal specification language or centered.

around a mathematical formalism. These approaches, also called specification-based



development and model-based development, are finding increasing popularity within

the industrial community and within the various research communities [179]. The

terms model-based and specification-based are used interchangeably in the literature.

In the context of this thesis, these terms are also indistinguishable, but the term

specification is used to denote the description of behavior that can serve the dual

purpose of the documentation of the intended system behavior and a model that

can be analyzed. These approaches intersect with formal methods, under a different

name, in that they rely on a notation with well-defined formal semantics. However,

specification-based approaches focus on engineering activities and less on mathemat-

ical proofs, as is the case for formal methods [82]. In the model-based engineering

domain, the research community has yielded a large body of languages, approaches,

algorithms, and tools to specify, analyze, and automate engineering activities. While

there have been key contributions in individual areas, it is currently challenging to

incorporate the state-of-the-art in real-time system engineering into a cohesive frame-

work [49] that can be used to engineer systems. These challenges are partly due to

the lack of interoperability between existing approaches and tools [49, 179]. This

lack of integration creates the need for engineering frameworks that integrate formal

methods with specification concepts, such as the framework presented in this the-

sis. Furthermore, tool support, such as the capabilities provided by the proposed

framework, also bridges the integration gap between modeling languages and formal

analysis.

2.5 Model-Based Software Engineering

Model-based software engineering (MBSE), also called model-driven software engi-

neering (MDSE) and model-driven system engineering, is an approach to software

engineering where models play a central role in lifecycle activities [228]. The key

point of the approach is the existence of a set of models, which are abstractions of

the system to be implemented. The models contain information about the desired

behavior of the system and are used to drive the lifecycle phases. Some of the ben-



efits of having system models include the ability to simulate the prototype system

and to perform analysis before implementation begins [257], leveraging the economics

of software engineering to uncover defects as early as possible [38]. Model-based en-

gineering approaches typically employ graphical or structured models that can be

amenable to simulation and analysis, usually through a computer. As is the case

for formal methods, models with well-defined semantics are means to remedy the

ambiguity of natural language. A model-based approach is typically composed of a

notation, formal or informal, used to express system behavior, and a set of associated

methods and processes to ease engineering activities. The true benefits of a model-

based approach occur when a literate [151] notation with formal semantics is used,

so that the models can serve the dual purpose of an analysis mechanism and of the

documentation of intended system behavior [146]. A literate specification language is

a language which can be read like the English language and does not contain extrane-

ous symbols aside from basic operators from arithmetic [151]. Furthermore, given the

investment required to build models, the ability to automate engineering activities,

such as test case generation, can help alleviate the cost of building and maintaining

models [173].

Among the proponents of model-based software engineering, two professional orga-

nizations have proposed standards for the language and tools to be used for MBSE.

The Object Management Group (OMG) has drafted a set of standards to enable

model-driven software engineering, especially in the presence of disparate tools [179].

The purpose of the standard is to define information exchange formats so that var-

ious models and tools can be incorporated. OMG's efforts have been focused on

using the Unified Modeling Language (UML) [181] as the underlying language of its

model-driven efforts. The UML language relies heavily on object-oriented design ap-

proaches and has yet to adopt a standard formal semantics [138]. The Society of

Automotive Engineers (SAE) preaches a similar model-based approach through the

use of the Architecture and Analysis Design Language (AADL) [223], targeted at

embedded real-time systems. The AADL language is an Architecture Description

Language (ADL) that can be used to express high level component interaction and



information flow. However, at the time of the writing of this thesis, AADL does not

contain facilities for specifying component-level behavior.

2.6 Modeling Languages

In order to perform model-based software engineering, models must be expressed us-

ing a suitable modeling language. Section 2.1 establishes the correctness criteria of

real-time systems, namely function, time, and resources. Furthermore, Section 2.1.1

describes how time is reflected in the engineering of real-time systems. In particular,

Listing 2.1 shows an example of software code which expresses explicit and implicit

timing behavior. In modeling languages, quantitative time concepts are almost al-

ways explicit [144]. The type of modeling addressed in this research is behavioral

modeling, to capture the dynamic aspects of the system. Behavioral modeling is in

contrast to structural modeling, which captures the static aspects of the system, e.g.,

a class inheritance hierarchy or a multiplicity relationship [134]. In behavioral mod-

eling, system dynamics are typically represented as some form of transition system

where the system transitions from one state to another state based on a set of condi-

tions [144]. Traditional languages to represent state transition systems include finite

state automata [232] and statecharts [122]. For most modeling languages, untimed

versions of the language exist and time was added as an extension of the language.

This is the case for timed automata [5], time/timed Petri nets [60], timed process

algebra [159], the Timed Abstract State Machine language (TASM) [199], and the

real-time profile of the Unified Modeling Language (UML) [180].

While all of these languages have similarities, they also have significant differences

in how they represent and handle time. The two main time models are discrete time

and continuous or dense time. In a discrete time model, time progresses in fixed

constant steps dt E N+ . In a continuous time model, time evolves continuously, and

any time-related value is taken from the Reals domain (t E IR). Languages also differ

on how time evolves. Time can evolve either in states or during transitions. For

example, time annotations can be added to Petri nets in places or in transitions or in



both [60]. The difference lies in whether the subject of the description is the duration

of an action or the awaiting of an event. An example of a light switch, modeled in

the timed automata of UPPAAL [157] is shown in Figure 2-5. The model describes

the behavior of a lamp in relation with possible user interactions [24]. If the lamp is

off and the switch is pressed, the lamp will turn on to the low setting. If, after the

light has been turned on, the switch is pressed again within 5 time units, the lamp

increases its intensity to the bright setting. On the other hand, if the lamp is on

and the switch is pressed again, but more than five time units have elapsed, the lamp

turns off. This example illustrates a model that describes the passage of time between

events. In this model, events are instantaneous but the precise timing between events

is of utmost importance.

press?

press?

Figure 2-5: Timed automaton describing the behavior of a lamp [24]

Another way to represent time is to model events or actions as being durative in-

stead of instantaneous. In the Timed Abstract State Machine language (TASM) [189],
which will be presented in Chapter 4, time is attached to transitions to simulate du-

rative actions. Listing 2.2 shows the actions of the robot of the production cell

system [163], modeled in the TASM language. In the production cell problem, de-

scribed in Section 2.8.1, a robot takes commands from a controller and executes these

commands. When the robot is instructed to pick up a block, the action takes a cer-

tain amount of time to complete until the robot is available again to process other

commands. In Listing 2.2, the action to pick up a block lasts 1 time unit.

Whether a language predominantly favors time passage or duration of actions
in its notation is irrelevant from a pure expressivity perspective since both types of
notations can be used to represent both concepts [30]. The differences lie in what
paradigm better fits the problem being addressed. For the specification of real-time



Listing 2.2 Partial TASM model of a robot action to pick up a block
Ri: Arm B at press, block is available -> pick up block

t := ;
power := 2000;

if armbpos = atpress and armb = empty
and press_block = available then

press_block := notavailable;
press := empty;
armb := loaded;

systems, and for the modeling of software in general, the term execution time is used

in numerous contexts. Most of the time, this term refers to the time to execute actions

or, in other words, to the duration of actions. Verifying the correctness of a real-time

system involves establishing that the durations of the actions of the system meet the

time constraints of the requirements and of the problem domain.

2.6.1 The Time Paradox: Incorporating Time in High Level

Models

Section 2.1.1 explained how time is reflected in real-time systems and Section 2.6

described how modeling languages express time. This subsection explains the para-

dox encountered when attempting to model system behavior that is closely tied to

implementation details. In scheduling theory [63], the task graph [1] is the prevalent

modeling formalism. A task graph is a directed graph where nodes represent tasks

and edges represent precedence constraints between tasks. Each task is assigned an

execution time, that is, a duration. A sample task graph with 7 tasks is shown in

Figure 2-6. In Figure 2-6, each node represents a task and the numerical value next to

the task represents the execution time of the task. Each arrow represents the prece-

dence constraints, meaning that a task occurring at the beginning of an arrow must

complete before the task at the end of the arrow can begin. The scheduling problem

is concerned with finding a solution to scheduling the set of tasks on n processors,

while enforcing the precedence constraints [57] and some notion of optimality.

Analogously, the co-synthesis problem concerns itself with optimal allocation of



T1 T2
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Figure 2-6: Sample task graph

a task graph to processing elements (e.g., reusable hardware (FPGA), application

specific integrated circuits (ASIC), and software) [76]. The similarities between these

two problems lie in the existence of a task graph, with known execution times for

individual tasks. For the co-synthesis problem, this assumption seems misleading

because the execution times will vary depending on which processing element a task

is allocated to. On the other hand, for the scheduling problem, the task graph can be

derived from an implementation. However, in real-time system engineering, the task

graph is an abstraction of an implementation and, conceptually, should be defined

before implementation begins. Defining the set of tasks and the dependencies between

tasks should be a design decision, not an implementation one. Relying on the set of

tasks to naturally emerge during coding causes development to remain an ad-hoc

process at best, with little support for predictability. Furthermore, the scheduling

problem also assumes that tasks have already been assigned to software, and therefore

makes co-synthesis challenging. It is one of the goals of model-driven engineering to

remedy ad-hoc system development by structuring engineering activities through the
use of models. For real-time systems, can realistic models, such as task graphs, be
built before implementing the system?

There are many possible answers to this paradox. Conceptually, design is and has
always been an uncertain process where predictions that may or may not come true
are made [56]. Nevertheless, design has proved to be a valuable activity in terms of
cost and time saving, even in the face of uncertainty [37]. In a model-driven approach



to development, it is highly unlikely that model-driven engineering will be a purely

downstream activity flowing monotonically from model to implementation. More

likely, feedback from downstream activities will be incorporated into upstream activ-

ities, leading to an iterative model-driven approach, where models are being adjusted

as the implementation is being developed. Like any other topic in system engineer-

ing, experience with building models and experience with engineering using models

will dictate the successful use of models in real-time system engineering. Moreover,

rooting development around mature and predictable components, as is often the case

in aerospace systems [234], greatly enhances the predictions that can be made by

models.

At the modeling level, modeling notations are able to capture the uncertainty

involved with annotating models with time. The use of interval semantics for dura-

tions gives a lower bound and an upper bound on durations. An example of a TASM

specification with duration specified using interval semantics is shown in Listing 2.3.

Listing 2.3 TASM Model of an electronic throttle controller [187] (partial)
Ri: Driving Mode

t := [2, 5];

if controller_mode = driving then
throttle_v := Driving_Throttle_VO;

I

R2: Limiting Mode
{

t := [3, 8];

if controllermode = limiting then
throttle_v := Limiting_ThrottleV()O;

Furthermore, the level of abstraction where the modeling occurs determines whether

software times should be included in the model. For system models such as the pro-

duction cell system [163], the physics of the problem and the time constraints on the

system are on a scale much larger (on the order of seconds) than the time scale of

the software (on the order of microseconds). Consequently, as it often happens in

high level models, the software is fast enough given the problem definition and time

does not need to be immediately included for software components in the models.



This is certainly the case in the production cell system where controller actions are

approximated to be instantaneous [163].

A model-driven approach should have a notion of refinement [250], that is, a

methodology to build models at different levels of abstraction, by gradually adding

details to high level models. Furthermore, the refinement approach should have fa-

cilities to show a correspondence between two models at different levels of abstrac-

tion [17]. If such a notion is present, time estimates from high level models can

become constraints on lower level models and, eventually, constraints on implemen-

tation. If an implementation cannot satisfy these constraints, the models will need to

be adjusted in order to accommodate implementation characteristics. In this view,

task graphs can be designed and approximated using high level models, making the

scheduling problem and the co-synthesis problem relevant. During the design phase,

analyzing schedulability and possible allocations to hardware and software can be

useful to drive the implementation. In this research, the notion of refinement, as used

in the formal methods community [79], is combined with the notion of traceability,

as used in the system engineering community [217]. Traceability has traditionally

been used to denote the ability to relate the syntax of disparate artifacts, including

models, at different levels of abstraction. For example, in Figure 2-4, the traceability

across lifecycle phases is depicted by the gray arrow on the left side of the figure.

The benefits of traceability include the documentation of the dependency of various

assumptions made throughout lifecycle phases [94]. However, traceability typically

involves only the visualization of related artifacts and does not include notions of

semantic equivalence that can be enforced through tool support. In contrast, notions

of refinement in the formal methods community concern mostly only semantic equiv-

alence between models and do not address the tracking of design assumptions [174].

Uniting these two notions, as performed in the proposed framework, combines the

best of both worlds and provides a basis for end-to-end bi-directional traceability

from high level models to implementation.



2.7 Analysis Engines

The growing need for more efficient software engineering has led to the develop-

ment of sophisticated tools for computer-assisted analysis of software artifacts [124].

Among these analysis engines, theorem provers [84, 210], model checkers [30, 67],

SAT solvers [175], Satisfiability Modulo Theory (SMT) Solvers [97, 229], and Linear

Programming (LP) solvers [96, 218] have attracted large research efforts. All of these

solvers support completely automated analysis, except for theorem provers. Because

automation of engineering activities is a central goal of the proposed framework, theo-

rem provers are not considered for the present version of the framework. Furthermore,

the use of linear programming solvers and SMT solvers are treated as part of Future

Work, in Section 9.3. The types and specific instances of analysis engines that are

used in the presented research are explained in this section.

In the formal verification realm, model checkers [70] and SAT solvers [175] have

been used to perform various types of analysis [140]. The popularity of model checkers

and SAT solvers can be attributed to the full automation capabilities of the analy-

sis, combined with the automated generation of a counterexample when a property

to be verified does not hold [30]. Furthermore, model checkers and SAT solvers are

generally available, and some finely tuned implementations are available in the open

source community, including the SAT4J SAT Solver [158] and the NuSMV model

checker [65]. A survey of model checkers and other tools for formal verification of

real-time systems is provided in [244]. While model checkers and SAT solvers have

similarities, their modeling and verification strategies differ significantly. Model check-

ers and SAT solvers were selected as the analysis engines for the proposed framework

because they represent two classes of mature and widely used analysis engines, from

two distinct communities.

2.7.1 Model Checkers

Model checkers are a class of analysis engines where the modeling formalism is a

variant of finite state automata [232] and the properties to be verified are expressed



using a variant of temporal logic [137]. Model checkers provide reachability analysis

facilities to establish liveness and safety properties of transition systems [67]. Model

checkers rely heavily on the ability to generate a finite state abstraction of the tran-

sition system model, which is then explored in a heuristic or systematic fashion [30].

The parallel combination of finite state automata gives rise to the infamous "state

explosion problem", although the increase in computing power and the improved so-

phistication in state exploration algorithms has rendered model checkers applicable to

problems of industrial size [69]. The popularity of model checkers can be attributed

to the complete automation of the verification procedures and to the automated gen-

eration of a counterexample if a property of the model does not hold.

UPPAAL

The UPPAAL tool suite is a modeling and analysis environment, including model check-

ing, for real-time systems [24, 157, 211]. Like all model checking systems, UPPAAL is

composed of a modeling formalism and a temporal logic. The modeling formalism of

UPPAAL is a variant of Alur-Dill automata [5]. Alur-Dill automata, also called timed

automata, are an extension of finite state automata with real-valued clocks to ex-

press the passage of time. The timed automata of UPPAAL extends networks of Alur-

Dill automata with datatypes, communication channels, and location types [157].

UPPAAL has been used as a verification engine for other formalisms such as Time Petri

Nets [100]. The temporal logic [212] used in UPPAAL is a subset of Timed Computation

Tree Logic (TCTL) [244], with facilities to express predicates over real-valued clock

variables [29]. TCTL is the timed extension of Computation Tree Logic (CTL) [137].

The version of UPPAAL used in this thesis is version 4.0.6, released on March 5th, 2007,

and available on the UPPAAL web site (http://www.uppaal.com). The UPPAAL model

checker is used in the presented research to verify the timing properties of TASM

models, as explained in Section 5.3.



2.7.2 SAT Solvers

The satisfiability problem, also known as SAT for short, is one of the archetypical

NP-Complete problem in the theory of computation [232]. The problem involves

determining whether a Boolean formula is satisfiable. A Boolean formula is composed

of a set of atomic propositions and operations. Atomic propositions are Boolean

variables that can take the values TRUE or FALSE. The propositions are connected

using parentheses and the operators NOT, AND, and OR, represented by the symbols

-, A, and V. A Boolean formula is satisfiable if there is an assignment of values

to propositions which makes the formula TRUE. If no such assignment exists, the

formula is unsatisfiable. A sample SAT problem is shown below. The proposition bi

represent Boolean variables:

(b, V b2) A (bl V b3)

The SAT problem has found applications in artificial intelligence and in formal

verification [140]. The general interest of the SAT problem has led to the development

of commercial and academic SAT solvers, which are extremely efficient analytical

engines used to determine the satisfiability of Boolean formulas [175]. These solvers

are heavily optimized using heuristics that can yield acceptable performance in a

number of cases. The standard input format for many SAT solvers requires that the

Boolean formula must be in conjunctive normal form (CNF). As for model checkers,

SAT solvers rely on the fact that Boolean formulas are finite state. As opposed to

model checkers, who are used to verify the properties of a state-transition model

by computing a transitive closure of the system, SAT solvers are used to reason

about sets of constraints. SAT solvers find a state that satisfies constraints whereas

model checkers find a state of the model, reachable from initial conditions. SAT

reasoning makes no reference to initial states or to transition rules unless they are

included as constraints. SAT solvers have been heavily optimized and have been

standardized [140]. SAT solvers have been used for a variety of automated analysis,



including test case generation [149], [213]. Although the SAT problem is known to be

NP-Complete, the use of SAT solvers has been shown to be practical in a wide range

of cases.

SAT4J

The SAT4J SAT solver [158] is an open source solver fully implemented in Java. The

solver has a well-documented API such that the solver can be easily integrated into

other tools. The solver incorporates the architecture presented in [87) and has per-

formed well in SAT solving competitions. The SAT4J SAT solver is used in the pre-

sented research, mostly because of its Java library support and because of its perfor-

mance. The SAT4J solver is used to verify Completeness and Consistency [123, 125], as

explained in Section 5.1, to verify resource consumption, as explained in Section 5.4,

and for test case generation, as explained in Chapter 7.

SAT solvers and model checkers show similarities in their benefits, namely automa-

tion of the verification procedure and automation of the counterexample generation.

SAT solvers and model checkers also show similarities in their drawbacks, namely the

potential for state space explosion and the resulting intractability of large state space

exploration.

2.8 Case Studies

The research presented in this thesis is evaluated using three case studies from three

relevant domains. The case studies have been selected to reflect the typical embed-

ded real-time systems that are targeted by the research. The first case study, the

Production Cell, comes from the industrial manufacturing domains and is a problem

used to evaluate formal methods in the research community. The second case study,

an Electronic Throttle Controller (ETC), comes from the automotive domain and is

an embedded controller used to optimize fuel consumption in automobiles. The final

case study, the Timeliner Script Executor, comes from the aerospace domain and is

a scripting environment in use on the International Space Station (ISS). This section



provides background information about these three case studies.

2.8.1 The Production Cell

The production cell system is an industrial case study that has been used to evaluate

formal methods [163]. The functional aspects of the system have been modeled and

analyzed in details using Abstract State Machines (ASM) in [45]. However, the time

and resource behavior have not been modeled using ASM. The system is based on

an industrial metal processing plant near Karlsruhe in Germany. The production cell

consists of a series of components that need to be coordinated to achieve a common

goal of stamping metal blocks. Blocks come into the system as raw and must leave

the system as stamped. The schematic view of the production cell system is shown in

Figure 2-7. Blocks are introduced into the system via the loader, which puts blocks

on the feed belt. The feed belt carries blocks from one end of the belt to the other.

Once a block reaches the end of the feed belt, the robot can pick up the block and

insert it into the press, where the block is stamped. Once a block has been stamped,

the robot can pick up the block from the press and unload it on the deposit belt, at

which point the stamped block is carried out of the system.

All components operate concurrently and must be synchronized to achieve the

system's goals. The robot has two arms, arm a and arm b, which are perpendicular,

move in tandem and can pick up and drop blocks in parallel. For example, the robot

can drop a block in the press while picking up a block from the feed. To pick up

or drop a block, the robot arms must extend and magnets attached to each arm

must be turned on and off. A controller coordinates the actions of the system by

using actuators to operate the various components. The original problem definition

includes various safety requirements with respect to the actuators. For example,

blocks must be dropped only in the press and on the deposit belt and nowhere else.

The safety requirements of the original definition are listed in Section 8.1.2.

To make the TASM model easier to grasp, some simplifications and extensions

have been made to the original problem definition from [163]. For example, the

elevating rotatory table has been omitted. The traveling crane has been replaced by
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Name Type Purpose
motorpress electric motor operate the press
motorarma electric motor extend and retract arm a
motorarmb electric motor extend and retract arm b
magnetarma electromagnet pick up and drop arm a
magnetarmb electromagnet pick up and drop arm b
motor-robot electric motor rotate robot
motor-feed electric motor activate and deactivate feed belt
motordeposit electric motor activate and deactivate deposit belt

Table 2.2: List of actuators used in the production cell system

a loader, which is a component that simply puts a finite number of blocks on the feed

belt. We describe every component in details in following subsections. The controller

reads the state of the various components through a set of sensors and commands the

various components through actuators. The set of sensors is shown in Table 2.4 and

the set of actuators is shown in Table 2.2.

Electromagnet actuators can be on/off. Motor actuators can also be on/off but

also have a binary direction, called polarity. The polarity of the motors determines

the direction of the actuation. For example, setting the polarity of the motor_arma

motor to negative and starting the motor will retract arm a. The combination of

polarities for the motors are shown in Table 2.3.

The switch and photoelectric cell sensors are discrete binary sensors that give

true/false information. The potentiometer sensors return a numerical value. The

model remains faithful to the reality of sensors, actuators, and components. The

controller uses only sensors and internal variables to make decisions. Furthermore,

the controller uses only actuators to command the components. Sensors are read-

only for the controller and actuators are read/write. Each component, other than

the controller, update the values of sensors. Actuators are commanded only by the

controller. This convention is congruent with the controller-environment separation

principle [208].

The original example has been extended to reflect the reality that certain actions

are durative, that is, they take a finite amount of time to complete. For example, the

time that it takes for the press to stamp a block is 11 time units. The example has

also been extended to include a resource, power consumption. For example, turning



Name Polarity Meaning

motor-press positive operate the press
motor-press negative operate the press
motor-arma positive extend arm a
motor.arma negative retract arm a
motor.armb positive extend arm b
motor.armb negative retract arm b
motorrobot positive rotate robot counterclockwise
motor-robot negative rotate robot clockwise
motorfeed positive activate feed belt in the direction

loader to robot
motor-feed negative activate feed belt in the direction

robot to loader
motor-deposit positive activate deposit belt in the direction

out of system to robot
motordeposit negative activate deposit belt in the direction

robot to out of system

Table 2.3: Behavior of actuators based on polarity

Name Type Purpose
robotangle potentiometer the position of the robot
press.status switch whether the press is busy or not
arma-position potentiometer how far has arm a extended
armb-position potentiometer how far has arm b extended
feed-begin photoelectric cell is there a block at the beginning

of the feed belt
feed.end photoelectric cell is there a block at the extreme

end of the feed belt
depositbegin photoelectric cell is there a block at the beginning

of the deposit belt
deposit.end photoelectric cell is there a block at the extreme

end of the deposit belt

Table 2.4: List of sensors used in the production cell system



Table 2.5: Durative actions

on the press motor consumes 1500 units of power per time unit while the press stamps

a block. The list of durative actions, with their power consumptions, are shown in

Table 2.5.

All other actions are assumed to be instantaneous and are assumed to consume

no power. The controller actions are assumed to be instantaneous. While these

assumptions do not reflect reality, it is nevertheless reasonable because the timing of

the software is fast enough in relation to the timing of other components. The software

operates on the order of micro seconds while the hardware components operate on

the order of tenths of a second. This simplification is part of the original case study

definition in [163].

Loader

The behavior of the loader is to put blocks on the feed belt. The design of the loader

puts blocks on the belt either continuously or loads a specific number blocks and

stops after the blocks have been loaded. The loader is used as the environmental

component which drives the system. The behavior of the loader is to put a block on

the feed belt as soon as the feed belt is empty, that is, as soon as the robot picks up

a block from the feed belt. This behavior ensures that a block will be available to

the robot as soon as possible so that the robot doesn't have to wait indefinitely. The

loader also communicates whether or not it is done putting blocks on the belt so that

the controller can take appropriate action.

Component Action Duration Power

Loader Put a block on the belt 2 200
Feed Move block 5 500
Deposit Move block 7 500
Robot Rotate 300 2 1000
Robot Extend arm 3 1200
Robot Retract arm 2 1100
Robot Drop a block 2 800
Robot Pickup a block 3 1000
Press Stamp a block 11 3000



Feed Belt

The feed belt is a simple component that takes a block from the loader to the robot.

The feed belt is activated by the motor-feed motor. If the motorfeed motor is turned

on and its polarity is positive, the belt moves from the feed to the robot (left to right

in Figure 2-7). The belt contains two sensors, one to determine whether there is a

block at the beginning of the belt (feed-begin) and one to determine whether there is

a block at the end of the belt (feedend). Some of the requirements of the belt is that

it be stopped before the loader puts a block on it and that it be stopped before the

robot picks up a block from it.

Robot

The robot is made up of 3 components which operate in parallel - the base, arm a,

and arm b. The base can rotate clockwise and counter clockwise depending on the

polarity of the motorrobot actuator. If the polarity of the motorrobot actuator is

negative, the robot rotates in a clockwise direction in Figure 2-7. The positive polarity

rotates the robot counter clockwise. Requirements on the robot rotation are such that

it shouldn't rotate while the arms are extended in order to avoid collisions with the

press and the belts.

The rotation of the robot can be controlled at the same time as the two arms. The

two arms can be extended and retracted and their respective magnets can be turned

on and off. The arms differ in their height such that only arm a can pick up from the

feed belt and only arm b can drop blocks on the deposit belt. Furthermore, only arm

a can drop a block in the press and only arm b can pick up a block from the press.

These restrictions are congruent with the original problem definition [163]. The arms

are operated using a motor whose polarity influences the behavior. For example, arm

a can be extended by turning motorarma on with its polarity set to positive. Arm

a can be retracted by reversing the polarity. Arm b can be operated in a similar

fashion. The magnets are used to pick up and drop blocks. For example, if arm a is

extended at the feed belt, a block is available at the feed belt, and magnetarma is



turned on, the block is to be picked up by arm a and the feed belt becomes empty.

Blocks remain picked up as long as the magnet is on. Once the magnet is turned off,

the block is dropped. Requirements on the robot arms is that blocks should not be

dropped in places other than the press and the deposit belt.

Press

The press is a simple component that is either busy stamping a block or idle. The

press will begin stamping a block when the motorpress is turned on. The polarity

of the motor does not affect the behavior of the press. The press also contains a

sensor to indicate whether a block is ready or not. While the press is busy stamping

a block, the block is notfinished and the press is loaded. Once the press has finished

stamping the block, the block is finished and the press is loaded. There are no safety

requirements on the press other than it should not be turned on when it is empty.

Deposit Belt

The deposit belt is identical to the feed belt, except that its polarity is reversed and

the deposit belt is longer than the feed belt. In the model, the deposit belt is assumed

to "magically" remove blocks from the system once they reach the end of the belt.

The belt should not be turned on when it is empty and blocks should not be dropped

on it when the belt in on. The belt can be turned on using the motordeposit motor.

When the motor has negative polarity, the deposit belt operates from the robot to

out of the system (right to left in Figure 2-7). If the polarity is reversed, the belt

operates in the opposite direction.

Controller

The controller uses the sensors and the actuators to operate the various components

of the system. There are three core situations that the controller needs to handle.

The first situation is the beginning of simulation, where there are no blocks in the

system. In this situation, the robot shall wait with arm a at the feed belt until a block

enters the system. Once a block enters the system, it should be picked up as soon as



possible and loaded in the press. The second situation occurs when there is a block

in the press. In this situation, the robot shall wait for another block to enter the

system through the feed belt. The robot shall also wait for the press to be finished

stamping the block. Arm a shall pick up a block at the feed and arm b shall pick

up the block from the press. When this situation is met, the robot shall be rotated

such that arm a will drop its block in the press and arm b will drop its block on the

deposit belt. Once this has been achieved, the robot returns to the feed and the cycle

resumes. The third situation occurs when there is a block in the press and the loader

is no longer loading blocks into the system. When this situation occurs, the robot

shall wait for arm b to pick up the block from the press and immediately unload it on

the deposit belt. After this situation has occurred, the robot shall return with arm a

at the feed belt and wait indefinitely until the first situation is encountered.

The controller can command all actuators in parallel and read the sensors at any

point. The assumption that the controller actions are instantaneous is fair since the

major concern is to ensure that the controller behavior is safe. Adding time to the

controller actions would reduce the parallelism of the controller. The production cell

case study is analyzed using the framework, and the results are provided in Section 8.1.

The TASM model for the case study is provided in Appendix D.

2.8.2 Electronic Throttle Controller

The Electronic Throttle Controller (ETC) is a "drive-by-wire" system that is cur-

rently in use at a major automotive company. The ETC was initially modeled by

Griffiths [111] as a hybrid system using Mathworks' Simulink and Stateflow [167].

The ETC is used to optimize fuel consumption based on a set of criteria, including

environmental conditions such as temperature and altitude, the state of the vehicle

such as engine RPM and speed, and driver inputs such as cruise control and gas pedal

angle [48]. The throttle controller is a piece of software which sits between the oper-

ator and the engine and replaces the mechanical linkage between the gas pedal and

the engine throttle. The software interprets driver input and operating conditions,

through sensors, to decide on the desired angle of the engine throttle for optimal fuel



efficiency.

The throttle angle governs how much air can enter the engine and, consequently,

how much power is produced by the engine. The relationship between throttle angle

and fuel consumption is intuitive. The angle of the engine throttle determines how

much air can go in the cylinder, and hence controls the volume of the charge. Con-

sequently, the throttle position governs the amount of torque produced. The fueling

system is responsible for injecting an amount of fuel so that, immediately before com-

bustion takes place, the Air-to-Fuel Ratio (AFR) is optimized. More specifically, the

AFR should be stoichiometric (i.e., as close to 14.7:1 as possible for regular fuel) in

order to allow for complete combustion, resulting in optimal efficiency. In order to

optimize fuel efficiency, there are two main parameters to control: the angle of the

throttle and the AFR as commanded by the fuel injectors. The ETC uses these two

outputs to control the behavior of the engine.

Figure 2-8 shows the top level of the ETC model in Simulink, with the two key

outputs - desired current (desired_current) and desired rate of fuel mass (dMfc).

The angle of the throttle is controlled by the amount of current fed to the throttle

servo. The desired current affects the position of the throttle and is determined based

on the position of the gas pedal (as activated by the operator) and other external

parameters (e.g., vehicle speed, 02 concentration in the exhaust, engine speed, and

temperature). The other controller output is the rate of fuel mass (dMfc). The dMfc

value controls how much gas is sprayed in the combustion chamber. That value needs

to be dynamically adjusted to maintain a stoichiometric combustion. The transfer

function that characterizes the relationship between these two quantities (desired

current and dMfc) is non-linear, and the model considered in this case study controls

both factors independently.

The throttle controller uses modes to decide the control laws that govern the

throttle actuation. For example, the throttle controller operates under different modes

that have a priority ordering, depending on environmental conditions such as engine

revolution, traction, cruise control settings, and driver input. The modes define

the desired throttle angle, commanded through a current output from the throttle
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controller.

During nominal operation, the major modes of the controller are grouped into

"driving modes" and "limiting modes". The limiting modes, defined as undesir-

able environment conditions, take precedence over driving modes. Limiting modes

include "traction control", where the wheels rotate with too little friction, and "rev-

olution control", where the engine operates over a predefined threshold of rotations

per minute. The driving modes include "human control", where the throttle is com-

manded via the gas pedal, and "cruise control", where the throttle is commanded

based on the desired vehicle speed. The different modes are shown in Figure 2-9,

adapted from [111], represented visually as a Statechart variant. The "XOR" label

indicates mutual exclusion between modes and the "AND" label indicates parallel

composition of modes. The transitions to the "failure detected" mode are not shown

in Figure 2-9 to keep the figure simple. In each mode, a transition to the "failure

detected" is possible. The detection of failure takes precedence over all other modes

and the behavior of the ETC is to gradually decrease the vehicle speed until shutdown

is possible.

Figure 2-9: ETC modes

The modes of the throttle controller determine the desired throttle angle and,

consequently, the amount of current output from the controller. The mode switch-

ing logic, as well as the calculation of the desired current represent the functional



behavior of the ETC, dictating what the output should be based on various inputs.

Because the calculation of the dMfc is completely isolated from the rest of the sys-

tem, it is omitted from the case study. The study of the electronic throttle controller

functional behavior, as well as the functional requirements for the ETC are explained

in Section 8.2.

The ETC represents an interesting case study for the proposed framework because

the functional behavior is implemented using a set of tasks and a scheduler. The ETC

implementation is achieved using 3 tasks - a manager task, which sets the major and

minor modes of the ETC, a monitor task, which periodically appraises the health of

the system, and a servo task, which calculates and outputs the desired current based

on the controller mode and the health of the system. The tasks have different periods

and are driven by a scheduler with a 1 ms clock, as shown in Figure 2-10.

Clos Scheduler

Task: Task: Task:
Manager Monitor Servo-control

]0 ms 30 ms 3 ms

Figure 2-10: ETC tasks and scheduler

The scheduler does not support preemption and the tasks have fixed priority. The

monitor task has the highest priority, followed by the monitor task, followed by the

servo task. The scheduling strategy is modeled and analyzed using the framework in

Section 8.3. The model in Section 8.3 contains only the scheduler and tasks and does

not contain any functional behavior. Modeling the system in this way enables the

verification of the scheduling strategy and the functional behavior strategy separately.

In Section 8.4, the functional model and the tasking model are combined into a

composite model through a series of refinements. The traceability approach described

in Chapter 6 is used to demonstrate that properties that were proved separately

about both the functional model and the tasking model are preserved through the

combination. The three TASM models corresponding to these three views of the ETC

are provided in Appendix E.



The ETC case study is used to exercise all aspects of the framework. Safety

and liveness properties are verified according to the requirements expressed in [111].

Timing properties relating to the scheduling facets of the system are also studied. The

model also contains 2 resources, power consumption and memory, which are analyzed

for their best case and worst case conditions. Test case generation is performed based

on the functional model and the tasking model. Finally, the traceability approach

is exercised when combining the functional and tasking models, and is also used for

regression test case generation. The ETC proves to be a interesting case study because

it combines two types of models, functional and time, and utilizes all features of the

framework.

2.8.3 Timeliner Script Executor

The Timeliner system [61] has been developed by the Charles Stark Draper Lab-

oratory, in conjunction with the National Aeronautics and Space Administration

(NASA), as a scripting environment to automate procedural tasks typically performed

by human operators [177]. The system is composed of a high level input language,

a compiler, a run-time system, and a user interface. The system is currently in use

on the International Space Station (ISS) to automate a variety of tasks traditionally

performed by astronauts, including spacecraft operations, subsystem checkouts, and

failure detection [61].

The first component, the Timeliner language, was designed to allow easy defini-

tion of sequencing and control for complex systems. The Timeliner language is a

high level scripting language with control flow based on time conditions and general

Boolean conditions. Programs written in the Timeliner language are called scripts,

and are organized hierarchically in bundles, sequences, and statements. Each step

or decision point in a script is expressed as a series of Timeliner statements. These

statements are grouped together into a Timeliner sequence, and a series of related se-

quences are grouped together into a Timeliner Bundle. The statement, sequence, and

bundle groupings provide an organizational structure, as well as a control structure

for an operator interacting with the system, as shown in Figure 2-11. A Timeliner



script contains one or more bundles. A bundle contains one or more sequences and

a sequence contains one or more statements. Bundles and sequences can be active

or inactive. During execution, the Timeliner run-time system executes all active se-

quences in all active bundles. If a bundle is inactive, its sequences are not executed.

In the Timeliner language, there are six general types of statements:

* Block declaration statements - these define the boundaries of bundles, se-

quences, and subsequences

* Timing control statements - these affect timing or flow of execution

* Conditional control statements and their modifier clauses - these allow for spe-

cific conditions that control execution based on general system values

* Action statements - these are used to carry out actions affecting the target

system and support interaction with the operator

* Bundle/Sequence Control statements - these are used to manage bundles and

to control sequence execution

* Non-executable statements - these are used for definitions of symbols and re-

serving of local storage.

A sample script is given in Listing 2.1 and other example scripts are given in

Section 8.5. The complete Timeliner language is documented in [177].

On the International Space Station, the Timeliner script executor shares processor

usage with other tasks. The script executor is given a fixed slice of time in which

to execute sequences. One round of Timeliner execution is called a pass. In a pass,

the script executor will sequentially execute all active sequences in all active bundles.

Each sequence executes in round-robin fashion, until a blocking statement is encoun-

tered. Once a blocking statement is encountered, the execution for that sequence

will resume in the next pass, at the blocking statement. Blocking statements include

EVERY, WHEN, and WHENEVER statements [177]. The execution times of

various Timeliner statements have been heavily studied by the Charles Stark Draper



Laboratory [62]. The measures were performed using the Timeliner Testbed, with

version CI_024 of the Timeliner Executor, using an embedded real-time 16MHz Intel

80836sx VME board with an 80387 floating point coprocessor. The execution times

contained in document [62] are used to model the scripts in the TASM language.

Operator Commands

Figure 2-11: Timeliner script organization [61]

The second component, the compiler, translates an ASCII representation of the

language into a form that the Timeliner execution engine can consume. The compiler

additionally supports the independent definition of system data object and command

information, such that Timeliner bundles can interact with a physical system without

the details of the system data formats needing to be embedded within the language.

Lastly, the compiler and the execution engine, known as the Executor, are designed

for ease of portability to different platforms. The third component, the Executor,

provides real-time monitoring and control based on the commands and conditions

defined in the Timeliner sequences. A compiled bundle may be installed, executed

and removed independently of execution environment software build. The Execu-

tor supports parallel execution and independent control of multiple bundles, which

themselves may contain sequences that execute in parallel. This execution may be

in either an asynchronous or synchronous manner. The Executor works together

with the final component, the user interface, to provide the ability to precisely track,

view, annotate, and interactively control an executing Timeliner script. Through the

displays, an operator can also monitor the status of and receive messages from ex-

ecuting scripts. Hence sequences can be executed completely autonomously or via

more interactive control.



Analysis

Traditionally, the Best-Case Execution Time (BCET) and Worst-Case Execution

Time (WCET) of one pass of the Timeliner script execution were obtained through

manual analysis and through systematic testing. However the timing properties of

Timeliner scripts can be obtain through static analysis. The purpose of using the

TASM language and framework is to determine the BCET and WCET for one pass

of the script executor, for a given script, by taking into account the execution of all

sequences and their potential interference. Determining these times will ensure that

a proper time slice can be selected for the script executor. The selected time slice

should be large enough to handle the worst-case scenario, but small enough to ensure

optimal processor usage. To analyze the execution times of the Timeliner script ex-

ecutor, a set of sample scripts is modeled in the TASM language. These scripts stem

from a plant controller application. The plant controller application was selected be-

cause it is simple enough to clearly explain the analysis approach but complex enough

to verify interesting properties of the scripts. The details of the plant controller are

detailed in the following section.

Plant Controller

The Plant Controller is a simple Timeliner application where sequences are used

to maintain the cabin pressure and the ambient temperature of a plant between

predefined thresholds. A logical view of the application is shown in Figure 2-12. The

Timeliner script, which contains two sequences, has been obtained from [238]. The

first sequence, TEMPMONITOR, is used to maintain the temperature of the cabin

between 20 and 25 Celsius degrees. The second sequence, HUMIDITYMONITOR,

is used to maintain the humidity of the cabin between 40 and 60 percent. The

TEMP_MONITOR sequence is shown in Listing 2.1 and the HUMIDITYMONITOR

is shown in Listing 8.24. When the temperature is greater than 25 Celsius degrees,
the sequence will command the cooling system to start. When the temperature is

below 20 Celsius degrees, the sequence commands the heating system to start. The



variable TRYING_TO_COOLSYSTEMis used to notify the HUMIDITYMONITOR

sequence not to turn off the cooling system if the TEMP_MONITOR sequence needs

it to cool the cabin. The HUMIDITYMONITOR sequence uses the cooling system

to reduce the humidity of the cabin and shares usage of the cooling system with the

TEMPMONITOR sequence.

Temperature Humidity.

ng Humidifier

Figure 2-12: Timeliner plant application

This Timeliner script is fairly straightforward, but it is useful to demonstrate the

capabilities of the TASM language and framework, notably in terms of execution time
analysis. The analysis of the plant controller scripts is provided in Section 8.5. The
complete TASM model of the scripts is documented in Appendix F.

2.8.4 Motivations for the Case Studies

The three case studies provide an adequate basis to evaluate the proposed frame-
work. The case studies come from three different domains and serve to illustrate the
versatility of the TASM language in modeling different applications from multiple
domains, Furthermore, the combination of the three case studies provides modeling
and analysis of both functional properties and non-functional properties. The pro-
duction cell case study provides an application of medium size where the modeling of
the hardware components remove the need to model the time behavior of the software



controller. As explained in Section 2.6.1, this situation occurs because the hardware

components operate on the order of seconds, while the software operates on the order

of microseconds.

The ETC, on the other hand, does not model the time behavior of the environment.

Consequently, the time-based behavior of the controller can be modeled and analyzed,

at the task level. The ETC provides an application of industrial size that stretches the

limits of the analysis capabilities, as explained in Section 8.4.7. Since the application

is adapted from Mathworks' Simulink and Stateflow, it also serves to demonstrate that

the TASM language can capture the semantics of Stateflow and some of the Simulink

semantics. The ETC also contributes to demonstrate the modeling of scheduling and

tasking alongside functional behavior.

Finally, the Timeliner case study serves to demonstrate modeling at the implemen-

tation code level, with precise timing behavior for individual code statements. In the

Timeliner case study, the time-based behavior of the environment is also abstracted

away and only non-deterministic changes in environment conditions are modeled. The

Timeliner case study is a case study of modest size, but serves to illustrate the test

case generation strategy and how it can be related to implementation code.

2.9 Segue into Chapter 3

This chapter presented background information related to the concepts used in the

subsequent chapters of this thesis. Included in this chapter was information about

real-time embedded systems, software engineering, and the case studies used to eval-

uate the presented research. Extended descriptions of the case studies, with detailed

models and analysis results, are presented in Chapter 8. In the next chapter, Chap-

ter 3, the various components of the engineering framework are presented, alongside

the tool architecture used to implement the framework.
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Chapter 3

Framework Overview

This chapter presents an overview of the different components of the framework.

Section 3.1 provides the motivations for the features of the framework, in light of

the objectives described in Section 1.1 and in light of the target systems described

in Section 2.1. Overviews of the different components of the framework are given

in Section 3.3. Each component of the framework is treated in detail in subsequent

chapters. This chapter also provides a description of the tool architecture that is used

to implement the framework. This chapter focuses on the capabilities, motivations,

and tool support of the framework while subsequent chapters describe in details the

language and algorithms used to achieve the capabilities of the framework.

3.1 Introduction

The proposed framework provides a specification-based approach to system engineer-

ing by rooting engineering activities in a formal yet readable specification language.

The benefits of a specification-based or model-based approach are explained in Sec-

tion 2.3. Furthermore, as explained in Section 2.1, the systems targeted by the pro-

posed framework are reactive embedded real-time systems. The aspects of interest

of these systems include function, time, and resources. Consequently, the proposed

framework provides the necessary facilities to model and reason about these three

aspects. Moreover, the proposed framework aims to reduce the high cost of V &



V activities by integrating and automating formal verification and test case gener-

ation. The framework also addresses the inherent design paradox of model-based

approaches, described in Section 2.6.1, by providing bi-directional traceability of sys-

tem models from high level models down to the implementation level. The integration

of a formal yet literate specification language, adequate for the target systems, formal

verification, test case generation, and bi-directional traceability provide a unique set

of features not available in other engineering frameworks. As explained in Section 1.1

and in Chapter 2, these features are paramount to tackle the increasing complexity

and associated challenges encountered when engineering the target systems. In the

following section, related frameworks are reviewed, in light of the capabilities of the

framework presented in this thesis.

3.2 Related Work

The need and benefits of model-based development have prompted a variety of lan-

guages and approaches to model embedded systems, as outlined in [49, 230, 231]. In

this section, related tool-supported approaches to real-time system engineering are

reviewed. The comparison between competing offerings and the proposed framework

is performed in the context of high level engineering capabilities. It is important to

note that if a given framework does not currently provide certain capabilities, it is

not necessary due to a shortcoming of the offering, but it is most likely due to the

goals of the given framework and the community to which it belongs. For example,

in the Ptolemy project [55], the focus is put on integrating different computation

models for real-time systems and to provide an overarching simulation environment.

Consequently, it is not surprising that PTOLEMY does not support code generation

since it is not meant as a complete systems engineering solution. Nevertheless, pop-

ular tool-supported engineering aids, however specialized they may be, are included

in this section for comparison with the proposed framework. Offerings which are

not tool-supported and which are not specifically targeted at real-time systems are

omitted. The offerings are compared along different dimensions, and the results are



shown in Table 3.1. The specifics of each offering are compared with the offerings

of the proposed framework in subsequent chapters. For example, all of the reviewed

offerings are rooted in a modeling language. These modeling languages are reviewed

as part of the related work in Chapter 4, where the TASM language is described. In

the remainder of this section, competing approaches to the proposed framework are

reviewed, in alphabetical order.

The CHARON language and associated framework and toolkit provide a rich envi-

ronment to incorporate continuous and discrete dynamics for hybrid systems modeling

and simulation [3]. The input language of CHARON is a variant of Statecharts [120],

extended with continuous dynamics and the framework provides facilities for hierar-

chical modeling [6]. The CHARON suite of tools provides rich facilities for simulation

of hybrid systems, including graphing facilities to visualize time-dependent behavior

of continuous dynamics. The CHARON tool suite also includes a verifier, called re-

quiem, which is used to explore the state space of CHARON models [4] in a model

checking fashion. The primary focus of CHARON is the modeling, simulation, and

verification of hybrid systems. HyTech is a symbolic model checker for linear hybrid

automata [127]. HyTech's focus is primarily on modeling and verification through

symbolic manipulation techniques.

The IF toolset [52] is an integrated toolset for the design and analysis of real-time

systems. The IF toolset uses the Unified Modeling Language (UML) and the System

Design Language (SDL) as its input specification language. The toolset translates the

input languages to their own version of timed automata for analysis purposes. Recent

developments have included the development of semantics for both UML and the real-

time profile of UML [182] as part of the Omega project [178]. The IF toolset contains

facilities for test case generation and for code generation and provides an offering

similar to the framework presented in this thesis. The core differences revolve around

the input languages, which are compared in Section 4.1, and in the lack of traceability

and refinement concepts. Furthermore, the analysis capabilities of the IF toolset do

not include execution time analysis and resource consumption analysis. Mathworks'

Matlab, Simulink, and Stateflow provide a rich set of facilities for modeling and



simulating hybrid systems [167]. Matlab is one of the success story of model-based

engineering since it is heavily used in the embedded system industry. One of the

drawbacks of Matlab is its lack of analysis capabilities beyond simple syntax verifying,

type checking, and model completeness.

The PTOLEMY project and associated tool environment aims to develop a generic

environment for simulation of timed systems [55]. The input language of Ptolemy can

incorporate disparate computation models for the sake of hybrid system modeling and

simulation. While PTOLEMY enables the integration of disparate computing models,

its focus is not on system engineering. On the other hand, the Specification Tools

and Requirements Methodology (SpecTRM) [160] is a suite of tools that incorporate

notions of safety engineering, system engineering, and intent specification [161]. At

the time of the writing of this thesis, SpecTRM contained rich facilities of system

level modeling and simulation in the form of requirements, but did not yet contain

facilities for software engineering activities. Consequently, the framework proposed

in this thesis could represent a suitable complement to SpecTRM.

In the modeling and analysis of embedded real-time systems, the visual formalism

Statecharts [120] and its associated tool STATEMATE [122] represent one of the

early formalisms applied to real-time system engineering [91]. Statecharts have been

heavily used in various domains and numerous semantics have been suggested and

adopted in different communities [122]. STATEMATE has transitioned to industry

and has become a rich tool suite for embedded systems engineering, which contains

facilities for test case generation and for code generation [121]. STATEMATE does

not contain refinement and traceability facilities and its input language, Statecharts,

belongs to a difference class of languages than the TASM language. The two languages

are compared in Section 4.1.

The Timed Input Output Automata (TIOA) is a language and mathematical

framework for the modeling and analysis of hybrid systems [147]. The framework

has been implemented through a set of tools using the PVS theorem prover and

the UPPAAL tool suite for analysis [171]. More recently, the Tempo language and

associated toolkit have been developed on top of the TIOA formalism [165]. The



main focus of the TIOA framework and associated language and toolset has been on

the composition semantics and proof methods to ensure correctness of TIOA models,

their composition, and their refinements. TIOA's rich semantics and flexible analysis

capabilities could serve as an analytical basis for integrating continuous behavior with

the TASM language. By expressing TASM semantics using TIOA, hybrid systems

modeling and verification could be incorporated in the framework. This option is

investigated in Chapter 9 as part of future work. At the time of this writing, the

TIOA toolkit and the Tempo toolset did not contain facilities for test case generation

or code generation.

The UPPAAL tool suite utilizes a variant of networks of Alur-Dill automata ex-

tended with finite variables, data structures, communication channels, and urgent

and committed locations [29]. The UPPAAL tool suite is comprised of an editor, a

simulator, and a sophisticated verifier which explores the state space of the timed

automata networks using TCTL [24]. Efforts have been undertaken to develop en-

gineering solutions on top of UPPAAL, namely the TIMES toolset, which is a toolset

to describe a scheduler and a set of tasks that can be analyzed for schedulability

and synthesized to an implementation in C [9]. Furthermore, the COVER toolset is

a tool to generate test cases based on networks of timed automata [128]. However,

these separate offerings are not integrated into a cohesive offering and UPPAAL remains

largely an analysis engine, a model checker for timed automata, with various special

purpose tools developed on top of it.

3.3 Capabilities

This section provides an overview of the capabilities of the presented framework.

The capabilities include modeling and simulation facilities for the target systems,
static analysis of system models, bi-directional traceability of model features, and

automated test case generation. Each subsequent section provides an overview of the

different capabilities and provides forward pointers to following chapters describing

the features in details.



Name Hybrid Simulation Model 1 Other Traceability Refinement Test Case Code
Model. Checking Analysis Gen. Gen.

TASM L x I x I x I X I x I x I
CHARON x x x x
HyTech x x x
IF x x x x x
Matlab/ x x x x
Simulink
Ptolemy x x
SpecTRM x x x x
STATEMATE x x x
TIOA/Tempo x x x x x
UPPAAL x x X x

Table 3.1: Comparison of the proposed framework with other frameworks for embed-
ded real-time systems engineering

3.3.1 Modeling and Simulation

The proposed approach to real-time system engineering promotes the use of models

in all phases of the engineering lifecycle. More specifically, models are used as the

primary abstraction to capture desired system behavior. During different lifecycle

phases, modeling occurs at different levels of abstraction, as depicted in Figure 2-

4. Consequently, an appropriate modeling language should be versatile enough to

express system behavior at different levels of abstraction. Furthermore, the notion

of system is a generic notion which can include environment behavior depending on

where the system boundary is drawn. As a result, an appropriate modeling language

should also include facilities to define the system boundary arbitrarily, depending on

the system being engineered, and to include the modeling of environment behavior

as needed. In the rest of this thesis, the term system is used to describe the behavior

captured in the specification of the system, which may or may not include a subset

of the behavior of the environment.

In the proposed framework, models are expressed using the Timed Abstract State

Machine (TASM) language, a novel specification language whose syntax and seman-

tics are described in Chapter 4. The TASM language is an extension of the theory

of Abstract State Machines (ASM) [42], adapted for the specification of embedded

real-time systems. ASMs provide a readable specification language that can model

behavior at various levels of abstraction [41], and includes a generic theory of re-



finement [43]. ASMs provide a flexible and generic computing model that can easily

be tailored to suit a particular purpose. The TASM language extends the theory of

Abstract State Machines by adapting the language to the specification of the target

systems.

Because the systems targeted by the research are embedded real-time systems,

functional and non-functional properties are an integral part of the system's cor-

rectness, as explained in Section 2.1. Consequently, the modeling of non-functional

properties is an important feature of the proposed framework. The non-functional

properties that can be expressed in the TASM language are time and resource con-

sumption, two concepts which are added to the theory of ASMs. Because the TASM

language describes behavior as the computing steps of an abstract machine, models

expressed in the TASM language are executable by definition, a desirable property of

system models [98]. The simulation capabilities of the proposed framework include the

specification of environment behavior, encoded in the TASM language. Furthermore,

scenarios depicting different initial conditions are an integral part of the simulation

strategy. The details of the TASM language, alongside illustrative examples, are given

in Chapter 4.

While the modeling and simulation of system behavior provides a practical and

insightful approach to system engineering, using solely modeling and simulation to

gain insight into system behavior can be error-prone since it relies heavily on the

intellectual prowess of the user [135]. Consequently, the ability to perform analysis of

system models is an important companion to simulation. The proposed framework

provides a rich set of verification capabilities, as explained in the following section.

3.3.2 Static Analysis

The modeling facilities of the framework and the TASM language center around the

expression of functional behavior, time, and resource consumption. The analysis capa-

bilities include automated analysis of functional behavior in the form of completeness

and consistency, two important properties of system specifications [123, 125]. These

two properties are formally defined in Section 5.1 in the context of the TASM lan-



guage and a verification approach is provided to automatically analyze the complete-

ness and consistency of TASM specifications. Furthermore, because the verification

approach includes model checking facilities [67], verification of functional properties

using temporal logic formulas [212] is provided by the framework. More specifically,

formal verification of the safety and liveness of TASM specifications, using a subset

of Timed Computation Tree Logic (TCTL) [244], is achieved by reusing the UPPAAL

tool suite, as explained in Section 5.2.

The framework provides a rich set of analysis capabilities for functional properties,

but also addresses the analysis of time and resource consumption. The analysis of

timing properties includes the automated derivation of Best Case Execution Time

(BCET) and Worst Case Execution Time (WCET), using an approach called iterative

bounded liveness, as explained in Section 5.3. The analysis of resource consumption

properties includes the automated derivation of best case and worst case resource

bounds for a given TASM model. Together, the analysis facilities comprise a set

of algorithms and approaches to verify properties of the three key aspects of target

systems, namely function, time, and resources. The complete analysis capabilities of

the presented framework are explained in Chapter 5.

3.3.3 Bi-Directional Traceability

Because modeling typically happens at different levels of abstraction, ensuring con-

sistency between different models can greatly enhance model maintenance [138]. Fur-

thermnore, the benefits of traceability between levels of abstraction has been discussed

in Section 2.6.1, in terms of visualizing the propagation of design assumptions and

the propagation of changes, and in terms of ensuring notions of equivalence between

models. The traceability approach provided by the framework integrates notions of

syntactic change with facilities to ensure semantic integrity between models. The

integration of these two properties is an often overlooked problem in pure theories of

refinement [43]. The bi-directional traceability capabilities provided by the framework

supply a set of common refinement types that can explain the differences between two

models. The two models are related syntactically by mapping the features of the mod-



els, achieving traditional notions of traceability [217]. The traceability approach can

be used to track syntactic changes between models and to follow the propagation of

changes and assumptions.

Furthermore, the traceability approach provided by the framework complements

pure syntactic mappings with notions of semantic equivalence. For each type of re-

finement used to explain the differences between models, a set of correctness criteria

are provided. If these correctness criteria hold for the refinement, a notion of semantic

equivalence is guaranteed between the two models. The specific notions of seman-

tic equivalence are explained in Section 6.2.2, for each type of refinement. The key

idea behind the semantic equivalence approach is to reduce the verification activities.

More specifically, if verification was performed on a given model, and this model is

refined and traced using the proposed approach, verification results will hold in the

refined model if the correctness criteria are met for the refinement. Consequently, ver-

ification performed on models before they are refined does not need to be repeated in

refined models, reducing the total amount of verification that needs to be performed.

In summary, the proposed approach to traceability provides bi-directional traceabil-

ity so that the effects of assumptions and changes can be propagated top-down or

bottom-up, verification results can be reused, and regression test cases can be gener-

ated, as explained in the following section. The traceability approach is explained in

Chapter 8.

3.3.4 Test Case Generation

Simulation and static analysis of system models provide practical and insightful means

to gain insight into system behavior. However, model simulation relies on the intel-

lectual discipline of the end-user to provide all necessary scenarios to exercise the

relevant system behavior. This situation can lead to important simulation scenarios

being overlooked. Furthermore, while formal analysis provides mathematical guaran-

tees that a model has certain properties, scalability remains a hurdle of automated

formal analysis approaches such as model checking [69, 117, 124]. Consequently,

simulation could lead to error-prone validation and formal verification might not be



feasible on complex models. Nevertheless, simulation provides a lightweight and in-

tuitive approach to validation while automated formal analysis is desirable when it

can be applied. Given the limitations of simulation and of formal analysis, other

means of ensuring confidence into the system are necessary as a complement. In the

engineering community, the main V & V activity remains testing, in the form of unit

testing, integration testing, and regression testing [242]. For safety-critical systems,

testing is mandatory for certification and requires that the testing approach exercises

the system to a given level of coverage [216].

In a sense, testing resembles simulation since it involves devising a scenario and

observing the response of the system. However, the construction of test cases can be

done systematically, to exercise the system under test to a certain degree of confi-

dence. The presented framework provides facilities for the automated generation of

test cases for unit testing, integration testing, and regression testing. The approach

to automatically generate test cases uses novel algorithms that utilize TASM models

to derive test cases for unit and integration testing, using the rule coverage criterion

from the ASM community [103], as explained in Section 7.2. Furthermore, the frame-

work uses the bi-directional traceability approach to identify the effects of changes at

different modeling levels, so that regression testing can be automated, as explained

in Section 7.6. The approach to generate test cases is described in Chapter 7.

3.4 Tool Architecture

The features of the framework are implemented in the TASM toolset [200]. The

TASM toolset uses literate and graphical facilities to create, edit, simulate, and ana-

lyze TASM specifications. The toolset is comprised of multiple components, divided

into front-end components, back-end components, and 3rd party analysis engines, as

depicted in Figure 3-1. The TASM toolset is completely written in the Java program-

ming language, and uses the Eclipse [183] graphical libraries for the Graphical User

Interface (GUI). The TASM toolset can be used on Windows XP and Vista and on

Linux. The TASM toolset is an open source project which is available, free of charge,



from the TASM web site [88].
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Figure 3-1: Architecture of the TASM toolset

3.4.1 Front-End Components

The front-end components of the toolset include facilities for creating and editing

TASM specifications, through the TASM Editor. The editor enables the specifica

tion of functional and non-functional behavior, with standard facilities for syntax

highlighting and syntax checking. The TASM Simulator enables the graphical vi

sualization of the dynamic behavior expressed in the specification in a step-by-step

87



fashion. Because time and resources can be specified using intervals, that is, using a

lower bound and an upper bound, the simulation can use different semantics for time

durations and resource consumption. For example, a given simulation can use the

worst-case time (upper bound) for all steps, to visualize the system behavior under

the longest running times. Other options include best-case time, average-case time,

and using a time non-deterministically selected from the specified interval. The same

semantics can be selected for the resource consumption behavior.

The TASM Analyzer is the component of the TASM toolset that performs anal-

ysis of specifications. The analyzer can be used to verify basic properties of TASM

specifications such as consistency and completeness [123]. In the TASM language,

completeness ensures that for all classes of monitored variable values, a rule will be

enabled. Consistency ensures that for all classes of monitored variable values, one

and only one rule is enabled. In other words, verifying consistency means verifying

that the rules of a given machine are mutually exclusive. Both completeness and

consistency are verified at the machine specification level. The analyzer GUI pro-

vides intuitive feedback to the user so that if a machine is incomplete or inconsistent,

a witness counterexample is automatically generated from the back-end components

and displayed to the user. The analyzer also provides the ability to export the com-

pleteness and consistency problems to a flat file, using the DIMACS file format, which

is a standardized file format for SAT solver input [158].

The TASM analyzer also provides graphical facilities to verify the execution time

of TASM models. The execution time is verified by mapping TASM specifications

to the timed automata formalism of UPPAAL. The analyzer also provides facilities

for exporting the generated UPPAAL model so that the model can be used for further

analysis such as functional verification using temporal logic formulas. The derivation

of minimum and maximum resource consumption is also provided by the TASM

analyzer through a GUI.



3.4.2 Back-End Components

The back-end components of the TASM toolset provide most of the facilities available

in the Graphical User Interface (GUI). The parser is responsible for loading and saving

the TASM model to disk, using the "*.tasm" file format whose context-free grammar

is available in Appendix A. The syntax verifier is used to ensure that errors in

the models can be easily identified in the TASM editor through syntax highlighting

and detailed error messages. Once the syntax has been verified to be free of errors,

the simulator can explore various behaviors of the TASM model, through step-by-

step analysis and different initial conditions specified through the TASM simulator.

The simulator provides a rich interface, including the list of generated update sets,

the history of resource consumption, and the values of internal and external state

components.

The analyzer is the bridge between the GUI and the 3rd party engines. The

analyzer provides all of the necessary facilities so that a user of the toolset is unaware

that 3rd party engines are used in the analysis procedure. The analyzer provides a

rich interface to the TASM analyzer GUI so that feedback can be provided to the

toolset user in an intuitive fashion. The back-end analyzer achieves its tasks by

translating TASM models through the back-end translator. The translator is the

back-end component used to map between the TASM syntax to the syntax of 3rd

party engines. The translator understands the 4 main file formats used in the TASM

toolset, namely the TASM file format (*.tasm), the DIMACS file format (*.sat),

the UPPAAL model file format (*.xml), and the UPPAAL query file format (*.q). The

DIMACS file format is the standard input format of SAT solvers, including the SAT4J

SAT solver. The UPPAAL tool suite uses its own version of XML as its input format

and saves temporal logic formulas in a separate file, called the query file (*.q). The

translator juggles these different formats to provide the necessary facilities to the

back-end analyzer and to provide import/export capabilities to the analyzer front-

end.



3.4.3 3rd Party Engines

The analysis of completeness and consistency is achieved by translating machine rule

guard expressions into a Boolean formula in conjunctive normal form [192]. The

Boolean formula can then be verified for satisfiability using a SAT solver. The TASM

toolset uses the SAT4J solver, an open source SAT solver [158]. The completeness and

consistency problem is formulated in such a way that an incomplete or inconsistent

specification leads to a satisfiable Boolean formula. Formulating the problem this

way ensures that the SAT solver can automatically generate a counterexample if the

specification is inconsistent or incomplete. The SAT4J solver is a Java-based solver

which can be integrated seamlessly into any Java application. The TASM toolset pro-

vides the option to solve the completeness and consistency problems directly, without

requiring the user to know that the specification is being translated to SAT. Because

the input format of SAT solvers is standardized, the TASM toolset provides the capa-

bility to export the generated SAT problem, so that the problem can be analyzed and

solved outside of the toolset. The mapping SAT4J SAT solver is also used to obtain

minimum and maximum resource consumption.

The analysis of execution time is achieved with the UPPAAL tool suite. The UPPAAL

tool suite is also written in Java, but is not an open source project. Furthermore, the

UPPAAL tool suite does not have a public interface that can be used to manipulate

UPPAAL models programmatically. However, UPPAAL contains an official library to

manipulate the XML model file. The UPPAAL verifier is the component of UPPAAL

used to explore the state space of the timed automata model and contains a published

interface to load connect, load models, and execute temporal logic queries against the

model.

3.5 Segue into Chapter 4

In this chapter, an overview of the framework was presented, including high level

descriptions of each component of the framework. Furthermore, the tool architecture

used to realize the framework was presented. Each component of the framework is



treated in-depth in the following chapters. The next chapter, Chapter 4, describes

the language that is used as the specification basis for the framework, the Timed

Abstract State Machine (TASM) language.
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Chapter 4

The Timed Abstract State

Machine Specification Language

This chapter describes the Timed Abstract State Machine (TASM) language, the

modeling language which serves as the specification basis for the presented framework.

The TASM language an extension of Abstract State Machines (ASM) to include

facilities for specifying time and resource consumption. This chapter presents the

motivations for the choices of the concepts included in the language, in light of target

systems and related work. The syntax and semantics of the TASM language are

presented, accompanied by an illustrative example to explain the concepts as they

are introduced. The descriptive example concerns the behavior of a light and fan

controller and is detailed in Section 4.1.5.

4.1 Related Work

This section presents a large body of related work concerning the design of the TASM

language. The following subsection presents a review of usability concepts for speci-

fication and modeling languages, as support for the usability potential of the TASM

language. Since the TASM language is an extension of ASM, a brief overview of

ASM is presented, with related work concerning the inclusion of time in the ASM

formalism. An overview of the main features of the TASM language are provided, in



order to qualify the differences between TASM, ASM, and related formalisms. The

overview serves as an introduction to the motivations and features of the TASM lan-

guage before the language is explained in details in Section 4.2 and in Section 4.3.

Finally, this section concludes with a comparison of TASM with other popular for-

malisms used for the modeling and analysis of embedded real-time systems, for the

frameworks presented in Section 3.2.

4.1.1 Usability of Specification Languages

The term "Formal Methods" has historically been used to designate an approach

to system specification based on rigorous mathematical principles with an associ-

ated proof system to mathematically reason about properties of the system under

design [225, 248]. The benefits of formal methods have been heavily documented,

including specifications which are unambiguous and the ability to uncover defects

during the early phases of the engineering lifecycle [50, 117]. However, the mathe-

matical nature of early efforts in the formal methods community have yielded a set of

languages and proof systems that were challenging to use by practitioners not versed

in mathematics or computer science [71, 124]. But the benefits of unambiguous spec-

ifications, combined with the ability to detect defects early in the engineering cycle

have provided a value proposition attractive to practitioners. Consequently, efforts

have been made to combine the rigor of formal methods with a specification language

that can be readily used by practitioners [162].

The topic of "usability" of a specification language is a highly subjective sub-

ject and depends heavily on the experience of the specifier and on the quality of

the tool supporting the specification activities. Nevertheless, some basic notions of

readability of specification languages have been established in the literature [146].

The term literate is used to denote a specification that can be read, like the English

language [151]. Textual languages are traditionally more readable than graphical no-

tations such as statecharts, which can become cluttered, counterintuitive, and have

no clear starting point and end point for reading purposes [258]. The TASM lan-

guage was designed with readability in mind by avoiding the use of special symbols,



keeping the syntax minimal, and providing abstraction mechanisms to structure spec-

ifications [124, 146, 240]. Furthermore, in terms of real-time system specification, the

language makes the expression of timing concepts explicit, a desirable property of

real-time languages [254]. While no controlled experiments were conducted to inves-

tigate the usability of the TASM language, the principles of literate specifications were

maintained during the design of the language. Furthermore, since the TASM language

is based on ASM, the usability of TASM can be inferred from the past successes of

ASM in terms of readability [41]. Experience with industrial contacts, with fellow

undergraduate and graduate students, and with presentations of the TASM language

in various communities have served to reinforce the assumption that the TASM lan-

guage is a literate specification language which can be used and understood by almost

anyone who has basic programming proficiency [42].

4.1.2 Abstract State Machines

Abstract State Machines (ASM) provide an approach to specify, analyze, and verify

hardware and software systems at different levels of abstraction [42]. The motivations

and benefits of using Abstract State Machines (ASM), formerly known as evolving

algebras, for hardware and software design have been documented in [41]. On the

practical-side, ASMs have been used successfully on a wide range of applications,

ranging from hardware-software systems to high level system design [42, 47]. ASMs

have also been shown to be scalable to industrial size systems [46]. Furthermore, there

is enough evidence to believe that ASMs provide a literate specification language, that

is, a language that is understandable and usable without extensive mathematical

training [71], as explained in Section 4.1.1. The preliminary evidence supporting the

ease-of-use of ASMs revolves around the small size of the syntax, the simplicity of

the semantics, and the avoidance of extraneous mathematical symbols. Moreover,

the semantic distance, that is, the amount of effort required to translate between one

model to another, for example between a design specification and an implementation,

appears to be "small" for ASMs. The term "small" is used in comparison to other

formalisms that are predominantly visual (e.g., timed automata) [258] or that make



heavy use of mathematical symbols (e.g., process algebra).

On the theoretical side, ASMs have well-defined formal semantics, which makes

ASM specifications unambiguous and subjectable to formal analysis. ASM specifica-

tions are also independent of a specific verification method and can be verified either

through manual proofs or through automated tools [249]. Furthermore, ASM theory

was developed as a methodology for high level system design [42]. Consequently, re-

finement, or the process of gradually adding details to a system design, is an integral

part of the theory, which makes ASMs applicable at various levels of abstraction.

Finally, ASM specifications are executable, a useful property in the construction and

validation of specifications [98]. The anecdotal evidence supporting the success of

the ASM method [41] suggests that tailoring the formalism to the area of embed-

ded real-time systems could achieve similar benefits. Abstract State Machines have

also been used to automate engineering activities, including verification using model

checkers [249] and test case generation [110].

The TASM language is an extension of Abstract State Machines (ASM), with fa-

cilities to specify time and resource consumption. The subset of ASM included in the

TASM language is the same as explained in [249], which includes conditional state-

ments and assignments, but excludes the forall construct and the choose construct.

The forall statement is excluded because the duration of this construct depends on

dynamic conditions and cannot be statically assigned. The choose construct is omit-

ted for similar reasons because it is counterintuitive to assign a static duration to

non-deterministic choice. The TASM language also excludes the import construct be-

cause safety-critical real-time systems discourage dynamic allocation. The omission

of these three constructs is not too restrictive since many ASM specifications have

not used these constructs, e.g., the production cell system in [45]. The concepts of

Abstract State Machines (ASM) revolve around the concepts of an abstract machine

and an abstract state. For an ASM, behavior is specified as the computing steps of

the abstract machine and its effects on the abstract state. More specifically, the dy-

namic behavior is expressed through the machine executing a step, which corresponds

to a group of atomic updates made to global state. An update set is the term used



to describe the set of atomic updates that are associated with a single step. A run of

an ASM, is a sequence of steps, that is, a sequence of update sets. The global state

after each step can be obtained by applying individual update sets sequentially.

The syntactical structure of a machine in the TASM language is an ASM in

canonical form, also called an ASM in block form [110]. In this form, a machine is

structured into a finite set of rules, written in precondition-effect style. Conceptu-

ally, block form is convenient for structuring specifications and analysis but it is not

necessary since any ASM can be converted to block form by introducing a program

counter variable [110]. For an ASM that contains n rules, a machine in block form

has the following structure:

R1 = if G1 then E1

R2= if G2 then E2  (4.1)

R, = if Gn then E,

The guard Gi is the condition that needs to be enabled for the effect of the rule,

Ei, to be applied to the environment. The effect of the rule is grouped into an update

set, which is applied atomically to the environment at each computation step of the

machine. In the ASM community, ASMs have been used to model specific examples of

real-time systems [44, 72]. Some extensions have been proposed to the ASM theory to

include timing characteristics [221] but the extensions make no mention of how time

is to be specified (only the theoretical semantics are proposed) and do not address

concurrency. Related work from the ASM community concerning using ASM to

specify and analyze embedded real-time systems is reviewed in the following section.

Time in Abstract State Machines

The proposed approach to incorporate time in the Abstract State Machine (ASM)

formalism incorporates concepts from a variety of previous approaches from the ASM



community. In the ASM community, related work has revolved around two main

paradigms: instantaneous actions with time constraints, also called timed ASMs [72],

and durative actions [44]. In timed constrained ASMs, all actions are instantaneous

but rule guards can contain predicates over an external function called currtime,

which denotes a wall clock. The currtime function is a monotone function which

takes no argument and returns a value from the Reals domain. This approach has

been used to specify and analyze real-time concurrent algorithms such as the railway

crossing problem [22] and the Kermit protocol [136]. This approach is well-suited

for declarative specification and for event-based systems where the temporal dura-

tion between events is the primary representation of timed-based behavior. However,

the systems targeted by the TASM language are naturally specified using a duration

paradigm. The approach presented in this thesis also contains a function analogous to

the currtime function, called now, but the function is not an external function, moti-

vating the use of a different name. The underlying semantics of the currtime function

are highly dependent on the moves of agents being durative since time progression

is determined through agent actions. In timed ASMs and related approaches, the

concept of time is an external function that is not part of the system behavior [114].

The progression of time is dependent on the rule guards and not on the actions of

the specified system.

In contrast, the TASM language provides facilities to specify the duration of ac-

tions performed by the specified system. A similar approach using durative actions

has been used in [44] to analyze Lamport's bakery algorithm. In this approach, an

untimed version of thie algorithm is presented and is refined with durative actions.

The refinement is shown to preserve the correctness of the untimed version. The ap-

proach is based on asynchronous ASM and the notion of partially ordered runs [115].

The durative moves are specified to occur during an open real interval (a, b) where a

and b are time values on the global time axis. Using the time specification, the moves

of agents are ordered linearly and the requirements of partially ordered runs are ex-

tended to include conditions for overlapping moves. The approach presented in [44]

provides no structured syntax to capture the duration of actions and the analysis of



the specification relies on creative proof methods. Furthermore, the moves of agents

are specified on the global time axis instead of in terms of relative duration of moves,

as used in TASM.

The approach adopted in the TASM language follows a durative action paradigm

but specifies moves of agents in terms of relative durations of moves. The duration

of a run is thus related to the summation of the moves of agents. Furthermore, the

concurrency semantics in the TASM approach is related to synchronous multi-agent

ASMs [47] since the moves of agents are synchronized using a global system clock.

In the TASM language, there are no external functions that are not controlled by

an agent of the specification. External functions are included into the behavior of

agents that represent the environment. While the lack of external functions might

seem counterintuitive to model embedded controllers, the external functions have

been replaced by functions controlled by agents representing the environment. In

this way, the system can be simulated completely without the need to hardcode the

values of external functions since the values in the environment can depend on the

behavior of the system. The TASM approach resembles the real-time controller ASM

approach where runs are extended with state changes that occur at computationally

significant real-time moments [72]. However, the computation of the significant real-

time moments is a result of the actions of agents and is not determined a priori, as is

the case in [72].

The key difference between the Timed Abstract State Machine (TASM) language

and ASM is that steps are durative in TASM. In ASM, machine steps are instan-

taneous. Furthermore, in TASM, durative steps can consume a finite amount of

resources. In the case of single agent specifications, the durative steps of the agent

dictate the progression of time in the specification. In the case of multi-agent specifi-

cations, the durative steps are used to synchronize agents with respect to one another.

In TASM, a step is the execution of a rule, which produces an update set. The update

set is applied atomically to global state. For the single agent case, the duration of

the step, reflected in the update set obtained through a rule execution dictates the

progression of time. At the completion of a step, the environment is updated by



applying the update set once the step duration has elapsed.

The concept of step is fundamental in the definition of ASM and in computation

theory in general since a step defines the atomic unit of progression of an abstract

machine. In TASM, the concept of step is augmented with a duration and a set

of resources consumed during the step execution to capture the physical reality of

embedded real-time systems. This abstract model adequately captures the physi-

cal reality of computer systems where steps are typically rarely instantaneous. The

durations and resource consumptions can be easily modified to capture behavior at

different levels of abstraction, to document system assumptions, and to relate mod-

els at different levels of abstraction, including non-atomic refinement. In concrete

computer systems, the notion of step varies depending on the level of abstraction.

For example, a step could be considered a clock cycle, a machine operation, or a

statement execution in a high level programming language. Throughout this chapter,

the terms step, rule execution, move of an agent, and action of an agent are used

interchangeably.

The composition extensions for ASMs presented in this chapter are based on the

XASM language [10]. However, the XASM language does not include time or resource

specification and only deals with single agent ASMs. The specification of resource

consumption has not been addressed in the ASM community.

The systems that are targeted by the TASM language are embedded real-time

systems. These systems include embedded controllers that monitor the environment

periodically, through sensors, and take action on the environment through actuators.

The important characteristics of such systems is that the values of sensors as read by

the system are directly related to the actions taken by the system. Consequently, the

behavior of the environment, typically represented as external functions in previous

ASM approaches [72], cannot be hardcoded a priori since they depend on the actions

of the controller. More information about target systems is available in Section 2.1.
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4.1.3 The TASM Language

At a high level, the concrete syntax of the TASM language extends the block form

of equation 4.1 to include time and resource consumption. The specification of time

and resource consumption is achieved through annotations of individual rules. The

concrete syntax of TASM resembles the ASM syntax presented in [104], with exten-

sions for time and resource annotations. To illustrate these concepts, a sample rule of

a block TASM is shown in Listing 4.1, expressed in the concrete syntax of the TASM

language. The rule describes the behavior of the feed belt from the production cell

case study [163]. For a description of the production cell system and a graphical rep-

resentation of its layout, the reader is referred to Section 2.8.1. The feed belt carries

blocks from the loader to the robot. According to the description of the system, mov-

ing a block from the loader to the robot takes 5 time units and consumes 500 units of

power. Listing 4.1 shows the rule with the time and resource annotations. The line

numbers are not part of the specification and are added to ease the description of the

listing.

Listing 4.1 Rule 1 of machine Feed
1: Ri: Block goes to end of belt
2: {
3: t := 5;
4: power := 500;
5:
6: if feed-belt = loaded and feedbegin = True and
7: motorfeed = on and motorfeedp = positive then
8: feed-begin := False;
9: feed_end := True;
10: }

In Listing 4.1, line 1 contains the name of the rule, line 3 contains the time annota-

tion, line 4 contain a resource annotation, line 6 and 7 contain the guard G of the rule,

and lines 8 and 9 contain the effect expression E of the rule. Semantically, rule R1

will be enabled when the guarding condition evaluates to True and when the machine

is not busy executing a rule. When rule R1 is executed, the machine will be blocked

from executing other rules for 5 time units, at which point the effect of executing

the rule will be applied to the environment. Furthermore, during the 5 time units of
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the rule execution, 500 units of power will be consumed. While a machine is "busy"

executing a rule, other parallel machines, if present, can execute rules in overlapping

time intervals and the durations of their rule executions determine the synchroniza-

tion of parallel update sets. The semantics of rule execution are such that a rule is

executed based on the state at the beginning of the rule execution. These semantics

are congruent with the target systems described in Section 2.1, which "cache" the

state read through sensors before making a decision about the output. Furthermore,

the TASM language uses relative duration at its time specification paradigm, in the

form of rule execution times. While the semantics of the TASM language could be

expressed using timed constrained ASM [114], the TASM language provides a concise

and readable notation to express the desired behavior of the target system. A map-

ping between the TASM language and ASM is provided in Section 4.4. The syntax

of the TASM language is explained in detail in Section 4.2 and the semantics are

explained in Section 4.3.

4.1.4 Other Specification Formalisms

In the academic community, numerous mathematical formalisms have been proposed

to specify and analyze real-time systems. The most popular formalisms developed

in academia can be classified into three main families: automata, process algebra,

and Petri nets [33]. These three families are reviewed and the languages of the

related frameworks described in Section 3.2 are compared to the TASM language,

with comparison results presented in Table 4.1.

In the automata family, timed automata are finite state automata extended with

real-valued clocks and communication channels [5]. The formalism has been used on

a variety of applications and is the formalism used in the UPPAAL tool suite [157]. The

formalism is well-suited for analysis by model-checking, but the lack of structuring

mechanisms makes abstraction and encapsulation difficult to achieve [34]. State-

charts and the associated tool STATEMATE [122] augment automata with structur-

ing mechanisms (superstates). Statecharts also include time concepts through the

use of delays and timers. Statecharts have been heavily studied in various com-
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munities and many different semantics exist to describe the behavior of statechart

models [23, 122].

In the Petri net family, a large number of variations on the traditional Petri net

model have been developed, including various models of time [60]. Non-determinism

is an essential part of Petri nets, which makes Petri net unsuitable for the specification

of safety-critical real-time systems where predictability is of highest importance [34].

In the process algebra family, various offsprings of Communicating Sequential

Processes (CSP) [31] and the Calculus of Communicating Systems (CCS) [170] have

been defined, including multiple versions of timed process algebra [31]. However, in

this formalism, it is difficult to express non-functional properties other than time

(e.g., resource consumption). Timed LOTOS (ET-LOTOS) [31] is an example of a

language from the process algebra family. Other well known formalisms include the

Synchronous languages ESTEREL and LUSTRE [34].

In the industrial community, especially in the aerospace and automotive indus-

tries, the Unified Modeling Language (UML) [181] and the Architecture Analysis and

Design Language (AADL) [223] have come to dominate notational conventions. At

its onset, UML did not have formal semantics and remained a graphical language

with limited support for automated analysis. Since its inception, many tools have de-

fined their own semantics for UML, but the international standard [181] still does not

contain a standard definition of the formal semantics. In the UML community, two

real-time profiles have been proposed, the UML profile for "Schedulability, Perfor-

mance, and Time Specification (SPT)" [180] and the UML profile for "Modeling and

Analysis of Real-Time and Embedded Systems (MARTES)" [182]. The MARTES

profile is the latest profile that corresponds to version 2.0 of UML. While both pro-

files contain a large amount of syntax, the lack of a consistent semantics, as well as

disagreements among community leaders create challenges for widespread adoption

of the profiles [93, 107]. Furthermore, UML is predominantly tied to object-oriented

approaches [105, 108]. AADL contains formal semantics but is still in the early devel-

opment stage. It is unclear whether AADL can be used to specify low level functional

behavior. In its current form, AADL remains an Architecture Description Language
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(ADL) and cannot express component-level behavior.

When comparing specification languages, numerous dimensions can be utilized

for the comparison, including usability [162], composition models, communication

model [144], and whether a language is graphical or textual. The comparison of

related languages to the TASM language is performed using the categories in the

headings of Table 4.1. These categories were selected based more on usability issues

and less on semantic richness [162]. For example, it was argued in Section 2.1 that

time specification using a duration paradigm is well-suited for the specification of the

desired behavior of the systems of interest. Furthermore, a textual representation

obeys the principles of literate specifications [146] while hierarchical composition is

paramount to structure specifications and for reuse [35]. One of the main differences

between the TASM language and languages like CHARON [4], TIOA/Tempo [147],

and Simulink and Stateflow [167] is that TASM does not currently have facilities for

specifying continuous behavior such as dynamics described by a differential equation.

This difference is debatable since the behavior of a software system is inherently

discrete. Continuous dynamics need to be included only when considering issues

of performance such as stability and steady-state error [218]. Nevertheless, verifi-

cation engines and notations that do not include continuous dynamics have proved

useful in specifying and analyzing systems, such examples include UPPAAL [24] and

UML [179]. In the frameworks described in Section 3.2 the language SDL is not in-

cluded in Table 4.1 because that language is primarily applied to telecommunication

protocols [172], a type of system not targeted by the TASM language. Furthermore,

UML uses a variant of statecharts, as does STATEMATE [121].

4.1.5 Light Switch Example

Throughout this chapter, a small example is presented to illustrate the features of

the TASM language. The example contains a light bulb, a fan, two switches and

two abstract state machines that operate in parallel and control the status of the

light and fans depending on the state of the switches. A schematic view of the

application is shown in Figure 4-1. This example is used throughout this chapter to

104



Name Continuous Hierarchical I  Parallel Representation Time Communication
Dynamics Composition Composition Approach Model

TASM x x Textual Duration Shared Vars

Simulink/ x x x Graphical Timers Channels
Stateflow
Statecharts x x Graphical Timers Channels
TIOA/Tempo x x Textual Diff. Eq. I/O
Timed x Graphical State Channels
Automata
SpecTRM-RL x x Text, Tabular Timers I/O

Table 4.1: Comparison of the features of the TASM language with other languages
for embedded real-time system specification

illustrate concepts as they are introduced. Different versions of the example are used

to illustrate different concepts. For example, version 1 of the example, in Listing 4.2,

contains only the control for the light bulb, one switch, and the light bulb (the

fan components are omitted). The presented example also contains two resources,

memory and power, that the machines can use to perform their functions. While the

presented example is quite simple, it is useful to illustrate the concepts of the TASM

language. More substantial examples of TASM models are available in Chapter 8.

Figure 4-1: Light switch example
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4.2 The Timed Abstract State Machine (TASM)

Language: Syntax

This section describes the syntax of the TASM language. In Section 4.2.1, the syntax

of the ASM formalism is expressed with discrete mathematics concepts, in so-called

abstract syntax. The sample specification given in Listing 4.2 is expressed concrete

syntax of the ASM language, that is, the syntax that can be implemented in a toolset

and input via a keyboard. In this section, the same convention is followed - the

TASM concepts are introduced using abstract syntax and illustrated in examples using

concrete syntax. The syntax used in Listing 4.2 and used in subsequent listings is

the syntax implemented in the TASM toolset. A complete description of the concrete

syntax of the TASM language is available in Appendix A.

4.2.1 Basic ASM Specification

The term specification is used to denote the document that results from the process

of writing down a system design. The term specification is used interchangeably

with the term model throughout this chapter. This section introduces specifications

that contain only a single abstract state machine, also known as basic or single-agent

ASMs in the ASM community [47]. This section provides the basis for expressing

the syntax and semantics of the TASM language by providing a simple definition

of a specification. The specification described is equally applicable to ASM or to

TASM because it does not utilize any of the features that distinguish TASM from

ASM. Consequently, the material presented in this section can be interpreted as a

formulation of ASM, in terms that will be useful to describe the features of the TASM

language.

A basic abstract state machine specification is made up of two parts - an abstract

state machine and an environment. The machine executes steps based on values in

the environment and modifies values in the environment. The environment consists

of two parts - the set of environment variables and the universe of types that vari-
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ables can have. In the TASM language all variables are strongly typed. The machine

consists of three parts - a set of monitored variables, a set of controlled variables,

and a set of rules. The monitored variables are the variables in the environment

that affect the machine execution. The controlled variables are the variables in the

environment that the machine affects. The set of rules are named predicates, writ-

ten in precondition-effect style, that express the state evolution logic. Formally, a

specification ASMSPEC is a pair:

ASMSPEC = (E, ASM)

Where:

* E is the environment, which is a pair:

E= (EV, TU)

Where:

- EV denotes the Environment Variables, a set of typed variables

- TU is the Type Universe, a set of types that includes:

* Reals: RVU = R

* Integers: NVU = {..., -1, 0, 1, ... }

* Boolean constants: BVU = {True, False}

* User-defined types: UDVU

* ASM is the machine, which is a triple:

ASM = (MV, CV, R)

Where:

- MV is the set of Monitored Variables = {my I my E EV and my is read-

only in R}
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- CV is the set of Controlled Variables = {cv I cv E EV and cv is read-write

in R}

- R is the set of Rules = {(n, r) I n is a name and r is a rule of the form if

C then A where C is an expression that evaluates to an element in BVU

and A is an action}

An action A is a sequence of one or more updates to environment variables, also

called an effect expression, of the form v := vu where v e CV and vu is an expression

that evaluates to an element in the type of v.

Updates to environment variables are organized in steps, where each step corre-

sponds to a rule execution. In the rest of this chapter, the terms step execution and

rule execution are used interchangeably. A rule is enabled if its guarding condition,

C, evaluates to the Boolean value True. The update set for the ith step, denoted Ui,

is defined as the collection of all updates to controlled variables for the step. An up-

date set Ui will contain 0 or more pairs (cv, v) of assignments of values to controlled

variables.

An update set is said to be consistent if there are no conflicting updates in the

set, that is, no variable is updated twice with different values. That is, an update set

U is consistent if:

* For all two update pairs (cvl, v1), (cv2, v2) in U:

- if cvl = cv2 then vi = v2

A run of a basic ASM is defined by a sequence, potentially infinite, of update sets.

For an ASM that terminates after n steps, a run would yield a sequence of update

sets at each step:

U1, U2, ... , Un

The state progression can be obtained by applying the update set at each step.

For an ASM that terminates after n steps, the state progression the run of the ASM

yields n states:
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The state So denotes the initial values of the environment at the beginning of

the machine execution. The operator o is introduced to denote the application of an

update set to the current state to yield a successor state. More specifically:

Si = Sil o Uz (i > 0)

The complete reference about ASM theory is available in [47].

4.2.2 Light Switch Example Version 1

Version 1 of the example contains only the light bulb and the corresponding switch.

Listing 4.2 shows a basic ASM specification describing the logic for switching the light

"on" or "off' based on whether the switch is "up" or "down". The specification is

divided into sections, identified by capital letters followed by a colon. Comments in

the specification are preceded by the escape sequence "//".

A sample run with the initial environment ((light, OFF), (switch, UP)) yields

one update set:

U1 = ((light, ON))

The run of the machine becomes:

* So = ((light, OFF), (switch, UP))

* U1 = ((light, ON))

* Si = So o U1 = ((light, OFF), (switch, UP)) o ((light, ON))= ((light, ON),

(switch, UP))

After the step has finished executing, the environment becomes: ((light, ON),

(switch, UP)). At this point, since the machine no longer has enabled rules, the

machine terminates.
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Listing 4.2 Light switch example version 1
ENVIRONMENT:

USER-DEFINED TYPES:

light_status := {ON, OFF};
switch_status := {UP, DOWN};

VARIABLES:

lightstatus light := OFF;
switchstatus switch := DOWN;

MAIN MACHINE:

MONITORED VARIABLES:
switch;

CONTROLLED VARIABLES:
light;

RULES:

Ri: Turn On

{
if light = OFF and switch = UP then

light := ON;

}

R2: Turn Off
{

if light = ON and switch = DOWN then
light := OFF;

}
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4.2.3 Time

The TASM approach to time specification is to specify the duration of a rule execu-

tion. In the TASM world, this means that each step will last a finite amount of time

before an update set is applied atomically to the environment. Syntactically, time

gets specified for each rule in the form of an annotation. The annotation is specified

as an interval [tmin, tmax]. The lack of a time annotation for a rule is assumed to mean

t = 0, an instantaneous rule execution. Semantically, a time annotation is interpreted

as a closed interval over R>o. For a given run, a rule execution will last an amount ti

where ti is taken non-deterministically from the interval [tmin, tmax]. The approach

uses relative time between steps since each step will have a finite duration. The total

time for a run of a given machine is simply the summation of the individual step

times over the run.

Because time is used as a synchronization mechanism and because the specification

denotes the behavior of reactive systems, a special keyword can be used in time

annotations. This keyword, called next, is used with time specification, e.g. "t :=

next", to denote that the duration of a rule execution will be determined by the

application of an update set generated by a parallel entity. For example, when a

machine executes a rule with the t := next annotation, the update set produced

by the rule will be applied at the time of the next state change, dictated by the

update set of another machine. This time annotation can be used to synchronize

parallel entities who are waiting for a handshake. Furthermore, this special time

annotation can be used to denote that a given machine will wait for a state change

before executing a rule. This construct could be used to specify that the machine

will not do any "useful" work until some outside party alters the value of one of its

monitored variables. The next construct essentially states that time should elapse

until an event of interest occurs and is used to keep the machine "live" and prevent

termination or infinite loops.
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4.2.4 Resources

The specification of non-functional properties includes timing characteristics as well

as resource consumption properties. A resource is defined as a global quantity that

has a finite size. Power, memory, and communication bandwidth are examples of

resources. Resources are used by the machine when the machine executes a rule.

Similarly to time specification, syntactically, each rule specifies, as an annotation,

how much of a given resource it consumes. The annotation is specified as an interval

[rrmin, rrmax]. The omission of a resource consumption annotation is assumed to

mean zero resource consumption. Semantically, a resource annotation is interpreted

as a closed interval over R>o. For a run, for each resource, a rule execution will

consume an amount rri where rri is taken non-deterministically from the interval

[rrmin, rrmax]. The semantics of resource usage are assumed to be volatile, that

is, usage lasts only through the step duration. For example, if a rule consumes 128

kilobytes of memory, the total memory usage will be increased by 128 kilobytes during

the step duration and will be decreased by 128 kilobytes after the update set has been

applied to the environment. Time elapses and resources are consumed only when a

rule is executed. Determining whether a given rule is activated is instantaneous and

consumes no resources.

Formally, a rule R of a machine ASM, described in Section 4.2.1, is extended to

reflect time and resource annotations:

R= (n, t, RR, r)

Where:

* n and r keep the same meaning

* t denotes the duration of the rule execution is a closed interval over IR>o

* RR is the set of resources used by the rule where each element is of the form

(rr, ra) where rr E ER is the resource name and ra is the resource amount

consumed, specified as a closed interval on IR>o
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4.2.5 Light Switch Example Version 2

The light switch example from Section 4.2.1 is extended with time annotations and

resource annotations. The sample resources are memory and power. Memory has a

maximum size of 16, 000 units and power has a maximum size of 100 units. The

extended environment, as well as the extended machine specification are shown in

Listing 4.3. In Listing 4.3, the rules specify that the execution of the first rule of

the machine, rule R1, lasts between 4 and 10 time units. Furthermore, execution of

rule R1 consumes 200 units of memory and 25 units of power. The semantics of this

example, including sample runs, are given in Section 4.3.4. Listing 4.3 introduces the

special else rule, which is enabled when no other rule is enabled. The else rule is used

to prevent the machine from terminating when no other rule is enabled.

4.2.6 Hierarchical Composition

In complex systems, structuring mechanisms are required to partition large specifi-

cations into manageable blocks [6]. The partitioning enables bottom-up or top-down

construction of specifications and creates opportunities for reuse. Furthermore, modu-

larity enables separation of concerns and can help mitigate verification complexity [4].

The composition mechanisms included in the TASM language are based on the XASM

language [10]. In the XASM language, an ASM can use other ASMs in rules in two

different ways - as a sub ASM or as a function ASM. A sub ASM is a machine

that is used to structure specifications hierarchically, similar to a Turbo ASM [42].

A function ASM is a machine that takes a set of inputs and returns a single value

as output, similarly to a function in programming languages, and similar to an ASM

macro [42]. These two concepts enable abstraction of specifications by hiding details

inside of auxiliary machines. In the TASM language, the definition of a sub machine

is similar to the previous definition of machine ASM given in Section 4.2.1:

SASAM = (n, MV, CV, R)

Where n is the machine name, unique in the specification, and the other tuple
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Listing 4.3 Light switch example version 2 - time and resource annotations
ENVIRONMENT:

USER-DEFINED TYPES:
light_status :=
switchstatus :

RESOURCES:
memory

power

{ON, OFF};
{UP, DOWN};

:= [0, 16000];
:= [0, 100];

VARIABLES:
light_status light := OFF;
switch_status switch := DOWN;

MAIN MACHINE:

MONITORED VARIABLES:
switch;

CONTROLLED VARIABLES:
light;

RULES:

R1: Turn On

t := [4, 10];

memory := 200;

power := 25;

if light = OFF and switch = UP then
light := ON;

R2: Turn Off

t := 6;

memory := 100;

power := 15;

if light = ON and switch = DOWN then

light := OFF;

R3: Else

else then

skip;
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members keep the same definitions given in previous sections. The execution and

termination semantics of a sub ASM are different than those of a main ASM. When

a sub ASM is invoked, one of its enabled rules is selected, it yields an update set, and

it terminates.

The definition of a function ASM is slightly different. Instead of specifying moni-

tored and controlled variables, a function ASM specifies the number and types of the

inputs and the type of the output:

FASM = (n, IV, OV, R)

Where:

* n is the machine name, unique in the specification

* IV is a set of named inputs (ivn, it) where ivn is the

IV, and it E TU is its type.

* OV is a pair (ovn, ot) specifying the output where ovn is

and ot E TU is its type.

input name, unique in

the name of the output

* R is the set of rules with the same definition as previously stated, but with the

restriction that it only operates on variables in IV and OV.

A function ASM cannot mddify the environment and must derive its output solely

from its inputs. The only side-effect of a function ASM is time and resource consump-

tion. A specification, ASMSPEC, is extended to include the auxiliary ASMs:

ASMSPEC = (E, AASM, ASM)

Where:

* E is the environment

* AASM is a set of auxiliary ASMs (both sub ASMs and function ASMs)
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* ASM is the main machine

The auxiliary machines are purely syntactic construct to ease reuse and structuring

of specifications. As Theorem 4.1 and Theorem 4.2 state, the hierarchical composition

can be eliminated without modifying the semantics. A description of the semantics

of the concepts introduced in this section is available in Section 4.3.

4.2.7 Light Switch Example Version 3

The light switch example is extended to illustrate the use of auxiliary machines. The

example has been extended with a function machine called TURN_0ON and a sub machine

called TURN_OFF. Sample runs for this example are given in Section 4.3.6.

Listing 4.4 Light switch example
FUNCTION MACHINE:

TURN_ON

INPUT VARIABLES:
switch_status ss;

OUTPUT VARIABLE:
light_status is;

RULES:

Ri: Turn On

t := [4, 10];

memory := 128;

if ss = UP then

ls := ON;

R2: Else
{

else then
ls := OFF;

}

version 3 - hierarchical composition
SUB MACHINE:

TURN_OFF

MONITORED VARIABLES:
switch;

CONTROLLED VARIABLES:
light;

RULES:

Ri: Turn Off
{
t := 6;

if switch = DOWN then
light := OFF;

R2: Else
{

else then
skip;

The two modified rules of the main machine from Listing 4.3 are shown in List-

ing 4.5. The remainder of the specification remains unchanged from Listing 4.2 and

Listing 4.3.
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Listing 4.5 Light switch example version 3 - modified rules to use auxiliary machines
Ri: Turn On

t
if light = OFF and switch = UP then

light := TURN_ON(switch); //uses function machine

R2: Turn Off

memory := 1024;
if light = ON and switch = DOWN then
TURNOFFO(); //uses sub machine

4.2.8 Parallel Composition

To enable specification of multiple parallel activities in a system, the TASM language

allows parallel composition of multiple abstract state machines. Parallel composition

is enabled through the definition of multiple top-level machines, called main machines,

analogous to multiple agents in [42]. Formally, the specification ASMSPEC is ex-

tended to include a set of main machines MASM as opposed to the single machine

ASM for the basic ASM specification of Section 4.2.1:

ASMSPEC = (E, AASM, MASM)

Where:

* E is the environment

* AASM is a set of auxiliary ASMs (both sub ASMs and function ASMs)

* MASM is a set of main machines ASM that execute in parallel

The definition of a main machine ASM is the same as the definition given in

Section 4.2.3. Other definitions also remain unchanged.
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4.2.9 Light Switch Example Version 4

In version 4 of the light switch problem, the example is extended to include an extra

main machine that operates in parallel. The extra machine is used to control the

fan. Listing 4.6 gives the environment definition, including the resources and the

extra variables corresponding to the fan control. The main machine for the light

control is shown in Listing 4.7. The main machine for the fan control is shown in

Listing 4.8. The fan control machine contains time and resource annotations. The

semantics of the parallel execution, as well as the consumption of resources are given

in Section 4.3.8.

Listing 4.6 Environment definition for resources and parallel composition
ENVIRONMENT:

USER-DEFINED TYPES:

component_status := {ON, OFF};
switch_status := {UP, DOWN};

RESOURCES:

memory := [0, 16000];
power := [0, 100];

VARIABLES:

component_status light := OFF;

switch_status light_switch := DOWN;
component_status fan := OFF;

switch_status fan_switch := DOWN;

4.3 The Timed Abstract State Machine (TASM)

Language: Semantics

The semantics of the TASM language are expressed using the notions of step, state,

and update set introduced in Section 4.2.1. The TASM language extends the update

set concept with time and resource consumption. Updates to environment variables

are organized in steps, where each step corresponds to a rule execution. In this

section, the terms step execution and rule execution are used interchangeably. A rule

is enabled if its guarding condition, C, evaluates to the Boolean value True. The
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Listing 4.7 Light control main machine definition for resources and parallel compo-
sition
MAIN MACHINE:
LIGHTCONTROL

MONITORED VARIABLES:

light-switch;

CONTROLLED VARIABLES:
light;

RULES:

R1: Turn On

t
memory
power
if light =

light :=

:=

:=

OFF
ON;

[4, 10];
300;
25;
and lightswitch = UP then

R2: Turn Off

{
:= 6;

memory := 100;

power := 15;
if light = ON and light_switch = DOWN then

light := OFF;

R3: Else
{
t := next;

else then

skip;
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Listing 4.8 Fan main machine definition for resources and parallel composition
MAIN MACHINE:
FANCONTROL

MONITORED VARIABLES:

fan_switch;

CONTROLLED VARIABLES:

fan;

RULES:

Ri: Turn On

{
t := [1, 8];
memory := 100;
power := 35;
if fan = OFF and fan_switch = UP then
fan := ON;

}

R2: Turn Off

t := 2;

memory := 200;
power := 25;
if fan = ON and fanswitch = DOWN then
fan := OFF;

R3: Else

{
t = next;
else then

skip;
}
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update set for the ith step, denoted Ui, is defined as the collection of all updates to

controlled variables for the step. An update set Ui will contain 0 or more pairs (cv,

v) of assignments of values to controlled variables. A run of a basic ASM is defined

by a sequence of update sets.

4.3.1 Update Set

In TASM, when a machine executes a step, the update set that is produced contains

the duration of the step, as well as the amounts of resources that are consumed

during the step execution. The special symbol _ is used to denote the absence of an

annotation, for either a time annotation or a resource annotation. Update sets are

extended to include the duration of the step, t E R>o U {I} and a set of resource

usage pairs rc = (rr, rac) E RC where rr is the resource name and rac E R>o U {_}

is a single value denoting the amount of resource usage for the step. If a resource is

specified as an interval, rac is a value non-deterministically selected from the interval.

The symbol TRUj is used to denote the timed update set, with resource consump-

tions, of the ith step of a machine, where ti is the step duration, RCi is the set of

consumed resources, and Ui is the set of updates to variables:

TRUz = (ti, RC , UL)

The structure of the update set is explained in the following subsections by ex-

tending the update set presented in Section 4.2.1.

4.3.2 Time

When a time annotation is included in a rule, the specified time denotes possible

duration of the update set, specified as relative time between steps. The total time of

a run of a single machine is simply the summation of the individual step times over

the run. The update set concept is extended to include the duration ti of the update

set:
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The set of variable updates, U, is unchanged from Section 4.2.1. A run of a

machine that terminates after n steps becomes:

TUI, TU2, ... , TUn

The state concept is also extended to reflect the value of time for the given state.

While the time values in the update sets are relative to the previous steps, the time

values in the state are absolute. A given run starts execution at time t = 0. The

Timed State, TSi, where gt denotes the global time is defined as:

TSi = (gti, Si)

The state Si is unchanged from Section 4.2.1. Given this definition of timed state,

the sequence of states for a run that ends after n steps:

TSI, TS2, ... , TS,

The o operator is extended for the new definitions of state and update set:

TSi = TSi- 1 o TUi = (gti-1, Si- 1) o (ti, Ui) = (gti- 1 + ti, Si-1 o Ui)

For a run that ends after n steps, the total time of the run would be gtn and would

be defined as the summation of the step times over the run:

n

gt = ti
i=1

4.3.3 Resources

Update sets are also extended to reflect resource consumption at each step. Each

update set is extended to include a set of resource usage pairs rc = (rr, rac) C RC
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where rr is the resource name and rac is a single value denoting the exact amount

of resource usage for the step. If a resource is specified as an interval, rac is a value

taken from the interval. The symbol TRUi is used to denote the timed update set,

with resource usage, of the ith step, where ti is the step duration, RCj is the set of

consumed resources, and Ui is the update set:

TRUi = (ti, RCi, Ui)

The execution semantics are also extended to reflect resource usage. Because

resources are limited quantities, if an executing ASM utilizes more than a resource's

limits, execution halts. Execution is well-defined only if resource utilization falls

below the boundaries of the available resources. Resource usage is slightly different

than time in that the resource utilization for a given update set starts with the time

of the previous update set and lasts through the rule completion. The consumption

of a resource for an update set TRUi lasts during an open interval (gti-1, gti]. The

state definition is also extended to reflect resource consumption:

TRSi = (gti, SRCj, S,)

The sequence of states for a run that ends after n steps:

TRSo, TRS 1, TRS2, ... , TRSn

For update sets with time and resources, the o operator is defined as follows:

TRSi = TRSi_1 o TRU2 = (gti-1, RCi- 1, S-~) o (ti, RCi, Uj)

= (gti- 1 + tj, RCi, Sj_ o Uj)

= (gt , RC, Sj)

For all gt in the open interval (gti-1, gti), the state TRS will be (gt, RC, Si-1).

This definition reflects the behavior that resource consumption will begin with the
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start of a rule execution and will last until the rule execution is finished.

Concurrent resource usage by multiple components is assumed to be additive. For

example, if two components, x and y use the same resource A concurrently, where x

uses amount a. and y uses amount ay, then the total resource usage amount is a, +

a,. For the remainder of this chapter, the term update set refers to an update set of

the TRUi form and the term state refers to a state of the TRSi form.

4.3.4 Light Switch Example Version 2 Revisited

The semantics of a basic specification with time and resource annotations can be

illustrated using a sample run of the machine in Listing 4.3.

Three sample update sets for different initial conditions of variable values are

shown below:

* Initial condition: ((light, OFF), (switch, UP))

Update set: ((5, ((memory, 200), (power, 25)), ((light, ON))))

* Initial condition: ((light, ON), (switch, DOWN))

Update set: ((6, ((memory, 100), (power, 15)), ((light, OFF))))

* Initial condition: ((light, OFF) (switch, DOWN))

Update set: ((0, ((memory, 0), (power, 0)), 0))

Formally, the behavior and state progression of the first set of initial conditions

can be expressed as follows:

* TRSo = (0, ((memory, 0), (power, 0)), ((light, OFF), (switch, UP)))

* TRU1 = (5, ((memory, 200), (power, 25)), (light, ON))

* TRS1 = TRSo o TRUI = (5, ((memory, 200), (power, 25)), ((light, ON),

(switch, UP)))

For all times gt in the open interval [0, 5), the state TRS is (gt, ((memory, 200),

(power, 25)), So). The same logic can be applied to the other two sample runs.
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Mapping the above update set and state on the time axis yields the following states

over time:

* t < 5: (((memory, 200), (power, 25)), ((light, OFF), (switch, UP)))

* t = 5: (((memory, 200), (power, 25)), ((light, ON), (switch, UP)))

* t > 5: (((memory, 0)), ((light, ON), (switch, UP)))

The duration of 5 time units was non-deterministically selected from the interval

[4, 10]. The sample run illustrates the execution semantics of interval duration. In

the Listing 4.3, the rule duration is specified using an interval, t := [4, 10];. In a

run, the update set contains a single figure for the duration of the step. For a run to

be well-defined, the duration of the rule application for the step corresponding to this

rule must be in the interval. For the sample run, the duration of 5 time units was

selected non-deterministically and any value in the interval could have been used. The

200 units of memory resource are consumed from the beginning of the rule execution

to the completion of the rule execution. This execution model is simple and intuitive

and allows the specifier to explore various potential behaviors.

4.3.5 Hierarchical Composition

Semantically, hierarchical composition is achieved through the composition of update

sets. A rule execution can utilize sub machines and function machines in its effect

expression. Each effect expression produces an update set, and those update sets are

composed together to yield a cumulative update set to be applied to the environment.

To define the semantics of hierarchical composition, the semantic domain R>0 U {I}
is utilized. The special value I is used to denote the absence of an annotation, for

either a time annotation or a resource annotation.

Two composition operators are defined, 0 and D, to achieve hierarchical compo-

sition. The 9 operator is used to perform the composition of update sets produced

by effect expressions within the same rule:

125



TRU1  TRU 2 = (t1, RC 1, U1) 0 (t2, RC 2, U2)

= (tl t2, RC 1  RC 2, U1 U U2)

The 0 operator is commutative and associative. The semantics of effect expres-

sions within the same rule are that they happen in parallel. This means that the time

annotations will be composed to reflect the duration of the longest update set:

1t 0 12 = t2

max(tl,t2)

if t2 =

if t 1 =

otherwise

The composition of resources also follows the semantics of parallel execution of

effect expressions within the same rule. The 0 operator is distributed over the set of

resources:

RC 1 0 RC 2 = (rcll,. rc.l,TCn) (rC2 1,..., rC2n)

(= TC11 0 r 21, . . . , rc rC2n)

= ((rr, racll) (rr 21, TaC21) . ,

(Trrin, racn) 0 (rrTT2n, raC2n))

= ((rrn,racii 9 raC21),...

((rrln, racln 0 rac2n))

In the TASM language, resources are assumed to be additive, that is, parallel

consumption of amounts rl and r2 of the same resource yields a total consumption

rl + r2:
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raci if rac2 = I

rac 0& rac2 = rac2  if rac = I

rac1 + rac2  otherwise

Intuitively, the cumulative duration of a rule effect will be the longest time of an

individual effect, the resource consumption will be the summation of the consumptions

from individual effects, and the cumulative updates to variables will be the union of

the updates from individual effects.

The e operator is used to perform composition of update sets between a parent

machine and a child machine. A parent machine is defined as a machine that uses

an auxiliary machine in at least one of its rules' effect expression. A child machine is

defined as an auxiliary machine that is being used by another machine. For composi-

tion that involves a hierarchy of multiple levels, a machine can play both the role of

parent and the role of child. To define the operator, the subscript p is used to denote

the update set generated by the parent machine, and the subscript c to denote the

update set generated by the child machine:

TRUp D TRUc = (tp, RC,, Up) E (tc, RC,, Uc)

= (tp D t, RC RC, Up U Uc)

The E operator is not commutative, but it is associative. The duration of the rule

execution will be determined by the parent, if a time annotation exists in the parent.

Otherwise, it will be determined by the child:

tp ED tc = t if t

tp otherwise
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The distribution of the D operator over the set of consumed resources is the same

as for the 0 operator:

RCp @ RCc = (rCpl,..., rcrn) D (rci,, .. , rc,)

= (rcpl @ reeI,..., rc~pn rCcn)

= ((rrpl, racpl) a (rrcl, rac,1),...,

(rrpn, raCpn) E (rrcn, racen))

= ((rrpl, racpl e rac~), ...,

(rr , rac÷ E raccn))

The resources consumed by the rule execution will be determined by the parent,

if a resource annotation exists in the parent. Otherwise, it will be determined by the

child:

race
rac, Drace =

racy

if racy = I

otherwise

Intuitively, the composition between parent update sets and child update sets is

such that the parent machine overrides the child machine. If the parent machine

has annotations, those annotations override the annotations from child machines.

If a parent machine doesn't have an annotation, then its behavior is defined by the

annotations of the auxiliary machines it uses. These semantics enables the abstraction

of timing analysis common in the real-time community [89] where program units, such

as function calls, are annotated with timing bounds without analyzing the underlying

behavior of the units. Furthermore, these semantics enable bottom up construction

of specifications where the timing behavior can be defined by as the sum of the

parts. The hierarchical composition semantics maintain the semantics of ASM where

everything that occurs within a step happens in parallel. As in the case of ASM,
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conflicting updates to variables yield update set inconsistency.

Figure 4-2 shows a hierarchy of machines for a sample rule execution. Each num-

bered square represents a machine. Machine "1" represents the rule of the main

machine being executed; all other squares represent either sub machines or function

machines used to derive the update set produced by the main machine. Machine "3"

is an example of a machine that plays the role of parent (of machine "7") and child

(of machine "1").

Figure 4-2: Hierarchical composition

Each machine generates an update set TRUi, where i is the machine number. The

derivation of the produced update set is done in a bottom-up fashion, where TRUret

is the update set returned by the main machine:

TRUret = TRU1 D ( (TRU2 5 (TRU5 0 TRU6))®

(TRU3 D TRU7)®

TRU4)

4.3.6 Light Switch Example Version 3 Revisited

The semantics of hierarchical composition are illustrated using the example from

Listing 4.4 and Listing 4.5. Two sample runs are shown to illustrate the invocation

of a sub machine and of a function machine. The first step of two sample runs are

shown below:

* Initial environment: ((light, OFF), (switch, UP))
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Update set: (1, ((memory, 128)), ((light, ON)))

* Initial environment: ((light, ON), (switch, DOWN))

Update set: (6, ((memory, 1024)), ((light, OFF)))

The first sample run invokes the function ASM and obtains the step duration from

the main ASM definition and the resource consumption from the function ASM. The

second sample run obtains the variable updates and rule duration from the sub ASM

and the resource consumption from the main ASM.

The first sample run can be detailed as follows:

* TRSo = (0, ((memory, 0)), ((light, OFF), (switch, UP)))

* Update set from function ASM: FTRUI = (5, ((memory, 128)), 0)

* Update set from main ASM: RTRU1 = (1, ((memory, 1)), ((light, ON)))

* Combined update set: TRU1 = RTRU1 E FTRU1 = (1 E 5, ((memory, I))

D ((memory, 128)), ((light, ON)) U 0) = (1, ((memory, 128)), ((light, ON)))

* TRS1 = TRSo o TRU1 = (0, ((memory, 0)), ((light, ON), (switch, UP)) o (1,

((memory, 128)), ((light, ON))) = (1, ((memory, 128)), ((light, ON), (switch,

UP)))

The second sample run can be detailed as follows:

* TRSo = (0, ((memory, 0)), ((light, OFF), (switch, UP)))

* Update set from sub ASM: STRU1 = (6, ((memory, 1)), ((light, OFF)))

* Update set from main ASM: RTRU1 = (I, ((memory, 1024)), (0))

* Combined update set: TRU1 = RTRU1 $ STRUI = (I E 6, ((memory,

1024)) E ((memory, 1)), OU ((light, OFF))) = (6, ((memory, 1024)), ((light,

OFF)))
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* TRS, = So o TRU1 = (0, ((memory, 0)), ((light, OFF), (switch, UP))) o (6,

((memory, 1024)), ((light, OFF))) = (6, ((memory, 1024)), ((light, OFF),

(switch, UP)))

The same operators can be used to detail the first sample run, which uses the

function machine.

4.3.7 Hierarchical Composition and Expressivity

While hierarchical composition facilities are necessary in practice to enable reuse and

to ease the management of complex models, hierarchical composition does not affect

algorithmic expressivity. As Theorem 4.1 and Theorem 4.2 state, the hierarchical

composition facilities of the TASM language could be eliminated without modifying

the semantics of the language.

In the proof of Theorem 4.1, the following notation is used: the function machine

is treated symbolically as "f(params)" where "f' is the name of the function machine

and "params" is the list of parameters passed to the machine. The symbols "{exp \

val}", reused from programming language semantics, are used to denote "the resulting

expression where symbols in exp are replaced by values in va'l. More specifically, it

is used to replace the parameters in the function machine definition with the passed-

in parameters in the function machine call. A parameterized version of a function

machine, used in the proof of Theorem 4.1, is shown below:

FR1  i.f FG,1 then outvar := outexpl;

FR 2 - if FG 2 then out var := outexp2;

FR, _ if FG, then outvar := outexpn;

Where out_exp_i represents an expression used to compute the output value of the

function machine. With these definitions, Theorem 4.1 can be stated and proved.
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Theorem 4.1. For every machine that uses a function machine, there is an equivalent

machine that. does not use the function machine.

Proof. The theorem is proved by construction, by providing an equivalent machine

without the function machine. For a machine that uses a function machine, the

function machine can occur in either the rule guard Gi or in the rule effect Ei. Both

cases are considered separately:

* Case 1: Function machine in rule guard

If the function machine occurs in the rule guard, the guard will be of the form:

if gli o var = f(params) o gri then Ei

Where o represents a logical connective, gli represents the part of the guard to

the "left" of the expression where the function machine occurs, and gri represents the

part of the guard to the "right" of the expression where the function machine occurs.

The function machine call could be part of a complex expression but the simplified

version f(params) is used in the proof and can be easily generalized to any expression.

The equivalent machine can be constructed in the following way by replacing the

rule where the function call occurs with n new rules that are constructed in the

following way:

if gli o var = {outexpi \ params} o gi A {FG1 \ params} then Ei

if gli o var = {outexp2 \ params} o gri A {FG2 \params} then Ei

if gli o var = {outexpn \ params} o gri A {FG, \ params} then Ei

It can be easily seen that the guards of each of these new rules will be enabled

exactly when the function machine guards are enabled and when the guard of the

original rule is enabled. And by replacing the invocation of the function machine with
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the return expression of the function machine definition ensures that the semantics

aren't changed. Since evaluating rule guards does not consume time or resources,

annotations occurring in the function machine can be discarded.

* Case 2: Function machine in effect expression

If the function machine occurs in the rule effect, the rule where the function

machine call occurs will be of the form:

if Gi then eli; var := f(params); erj;

Where e1i represents the part of the effect expression to the "left" of the function

machine expression, eni represents the part of the effect expression to the "right"

of the function machine expression, and f(params) represents the function machine

expression. The function machine call could be part of a complex expression but the

simplified version f(params) is used in the proof and can be easily generalized to any

expression.

The equivalent machine can be constructed in the following way by replacing the

rule where the function machine call occurs with n new rules in the machine definition:

if Gi A {FG1 \ params} then e1j; var := {outexpl \ params}; eri;

if Gi A {FG2 \ params} then eli; var := {outexp2 \ params}; eri;

if Gi A {FG, \ params} then eli; var := {outexp, \ params}; eni;

It can be easily seen that the guards of each of these new rules will be enabled

exactly when the function machine guards are enabled and when the guard of the

original rule is enabled. And by replacing the invocation of the function machine

with the return expression of the function machine definition ensures that the se-

mantics aren't changed. For function machines occurring in effect expressions, time

and resources can be consumed. How the annotations from the function machine
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are included in the equivalent "flattened" machine follows the rules of hierarchical

composition of update sets described in Section 4.2.6.

These two cases can be generalized to any expression containing function machines

by being applied to all expressions containing function invocations.

O

A parameterized version of a sub machine, used in the proof of Theorem 4.2, is

shown below:

SR 1 -if SG1 then SE1 ;

SR 2 -if SG2 then SE2;

FR, if SG, then SEn;

Equipped with this definition, Theorem 4.2 can be stated.

Theorem 4.2. For every machine that uses a sub machine, there is a equivalent

machine that does not use the sub machine.

Proof. This theorem is also proved by construction. Since sub machine invocations

can only occur in effect expressions, only one case needs to be considered. An effect

containing a sub machine call will be of the form:

if Gi then eui; SUBMACHINE( ); eri;

The construction of the equivalent machine is even simpler than it is for the

proof of Theorem 4.1 since sub machines do not take in parameters. The equivalent

machine, without the sub machine call, can be constructed in the following way:
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if Gi A SG1 then eij; SE1; e•i;

if Gi A SG2 then e1i; SE 2; e,i;

if Gi A SG, then eu1 ; SEn; eri;

It can be easily seen that the guards of each of these new rules will be enabled

exactly when the sub machine guards are enabled and when the guard of the orig-

inal guard is enabled. The time and resource annotations from the sub machine

are included in the "flattened" equivalent machine following the rules of hierarchical

composition of update sets described in Section 4.2.6.

4.3.8 Parallel Composition

Because concurrency is an integral part of most real-time systems, the specification

formalism must be able to specify concurrent behavior. In the abstract state machine

world, this is achieved through multiple machines running in parallel. In the ASM

literature, concurrency is termed multi-agent ASMs [47]. There are two varieties of

multi-agent ASMs - synchronous and asynchronous. In the synchronous case, two

or more machines execute a single step in parallel and the resulting update sets are

checked for consistency, merged, and applied instantaneously to global state. In other

words, for m machines executing concurrently, each executing n steps, all groups of

step update sets, Uij, must be consistent. Uij denotes the ith step of the jth machine:

((U, U, 12 , Ulm),..., (U , Un2 . ., Unm))

If a group of update sets is consistent for a given step, the updates sets are

collected into a single update set and applied atomically to global state. The process

is repeated for each step. In the asynchronous case, there is no prespecified order in

135



which a machine executes a step. In fact, any ASM can perform any number of steps

at a given time. This lack of ordering enables the system designer to define the exact

semantics of parallel execution.

The semantics of parallel composition regards the synchronization of the main

machines with respect to the global progression of time. The global time of a run, tb,

is defined as a monotonically increasing function over R0o. Machines execute steps

that last a finite amount of time, expressed through the duration ti of the produced

update set. The time of generation, tgi, of an update set is the value of tb when the

update set is generated. The time of application, tai, of an update set for a given

machine is defined as tgi + ti, that is, the value of tb when the update set will be

applied. A machine whose update set, generated at global time tgp, lasts t, will be

busy until tb = tgp + tp. While it is busy, the machine cannot perform other steps.

In the meantime, other machines who are not busy are free to perform steps. This

informal definition gives rise to update sets no longer constrained by step number, but

constrained by time. Parallel composition, combined with time annotations, enables

the specification of both synchronous and asynchronous systems.

The operator O is defined for parallel composition of update sets. For a set of

update sets TRUi generated during the same step by i different main machines:

TRU1 ® TRU2 = (ti, 1RC, U1) 0(t2, RC 2, U2)

(tl, RCI ® RC2, U1 ) if tl < t2

(t2, RC1 O RC2, U2) if tl > t2

(tt, RC1 0 RC2, U1 U U2) if t = t2

The operator 0 is both commutative and associative. The parallel composition of

resources is assumed to be additive, as in the case of hierarchical composition using

the 0 operator:
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RC1 0 RC2 = (rc,..., rc) 0 (rc21,. . . , rc2n)

= (rTC11 rTC21,. . . , rTCl 0 rTC2n)

= ((rri•, racil) 0 (TT21, rac21),..

(rri•, raci•) 0 (rr2n, raC2n))

= ((rrj, raci 0 rac21i), ...

((rrln, racln rac2n))

The parallel composition of resources is assumed to be additive, as in the case of

hierarchical composition using the 0 operator:

rac1  if rac2 = I

rac1 0 rac2  rac2  if racl =

rac1 + rac2  otherwise

At each global step of the simulation, a list of pending update sets are kept in an

ordered list, sorted by time of application. At each global step of the simulation, the

update set at the front of the list is composed in parallel with other update sets, using

the 0 operator and the resulting update set is applied to the environment. Once an

update set is applied to the environment, the step is completed and the global time

of the simulation progresses according to the duration of the applied update set.

The concurrency semantics of the TASM language reduce to the concurrency

semantics of synchronous and asynchronous multi-agent ASMs. For a TASM speci-

fication where all machine steps have the same duration dt 4 0, the specification is

essentially a synchronous multi-agent ASM specification with linear time progression.

For a TASM specification where all machine steps have the same duration dt = 0,

the specification is essentially an asynchronous multi-agent ASM specification. In

TASM, time plays the role of delaying moves of a machine until the delay of the rule
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execution has elapsed and acts as a synchronization mechanism.

Parallel composition also introduces contention between machines for resource

consumption. In the TASM language, no machine is preempted from using a resource.

However, if the resource is exhausted, an exception is thrown and results in update set

inconsistency. The shared resource model is simple and useful to model many resource

types. Concurrent resource usage is additive. For example, if, in a time interval, two

different machines use the same resource (in amounts rl and r2 respectively), the

total amount used would be rl + r2. A more extensive application of the 0 operator

is shown to demonstrate the parallel composition of two update sets produced by two

main machines that yield update sets with different durations:

* Update set by machine 1: TRU1 = (t1, RC1, U1)

* Update set by machine 2: TRU2 = (t2, RC2, U2)

* State when update set is produced: TRSi = (gti, RCi, Si)

* if tl = t2

- Combined update set: TRU = TRU1 0 TRU2 = (t1, RC1 + RC2, U1 U

U2)

- TRS~+ 1 = TRS, o TRU = (gtI + t1, RC• + RC1 + RC2, Si C (U1U U U2)

* if tl > t2

- Combined update set: TRUi = TRU1 0 TRU2 = (t1, RC1 + RC2, U1)

- Combined update set: TRUj+i = TRU1 0 TRU2 = (t2 - ti, RC1, U2)

- TRS,+I = TRS, o TRU, = (gti + tl, RC RC + RC1 + RC2, Si 0 U1)

- TRSi+2 = TRS,+, o TRUi+i = (gti + t2, RCi + RC2, Si+l o U2)

* if tl < 12

- Combined update set: TRUi = TRU1 0 TRU2 = (t2, RC1 + RC2, U2)

- Combined update set: TRUi+1 = TRU1 0 TRU2 = (t1 - t2, RC2, U1)
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- Sj+1 = TRS, o TRU, = (gtj + t2, RCj + RC1 + RC2, Si o U2)

- Si+2 = TRSi+i o TRUi+ = (gti + tl, RCj + RC1, Si+l o U1)

4.3.9 Light Switch Example Version 4 Revisited

In Listing 4.6 and Listing 4.8, the light switch example is further extended to illustrate

the semantics of parallel composition. An extra main machine is added to represent

the control logic for a fan, operating in parallel with the light. The logic for the fan and

the light both utilize memory and power. For the initial environment ((lightswitch,

UP), (light, OFF), (fanswitch, UP), (fan, OFF)), the trace of update sets is

shown below. Each machine will execute a single step that modifies the environment.

The update sets for the step of each machine are shown below:

* Step 1 of machine LIGHTCONTROL: (4, ((memory, 300), (power, 25)), ((light,

ON)))

* Step 1 of machine FAN-CONTROL: (1, ((memory, 100), (power, 35)), ((fan, ON)))

This example shows how steps from different machines can take a different amount

of time. The value of 4 time units for machine LIGHT_CONTROL and the value of 1 time

units for machine FANCONTROL were taken non-deterministically from the intervals.

The beginning of these steps happen at the same time, but the different durations

illustrate the semantics of parallel composition. The time values of interest can be

broken into five different intervals:

* t < 1: Execution of step 1 of both machines

* t = 1: Completion of step 1 of machine FANCONTROL

* 1 < t < 4: Continued execution of step 1 of machine LIGHTCONTROL

* t = 4: Completion of step 1 of machine LIGHT_CONTROL

* t > 4: Waiting for a change in the environment
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The combined update sets for each time interval are shown below. The execution

of both machines overlaps only in the interval t < 1. In the other intervals, the

behavior is that of individual machines. Updates to the environment are produced

only at the end of the step:

* t < 1: (((memory, 400), (power, 60)), 0)

* t = 1: (((memory, 400), (power, 60)), ((fan, ON)))

* 1 < t < 4: (((memory, 300), (power, 25)), 0)

* t = 4: (((memory, 300), (power, 25)), ((light, ON)))

* t > 4: (((memory, 0), (power, 0)), 0)

Formally, the state evolution can be tracked through the following stages:

* TRSo = (1, ((memory, 0), (power, 0)), ((light, OFF), (fan, OFF)))

* TRUFANCONTROL,1 = (1, ((memory, 100), (power, 35)), ((fan, ON)))

* TRULIGHTCONTROL,1 = (4, ((memory, 300), (power, 25)), ((light, ON)))

* TRU1 = TRUFANCONTROL,1 O TRULIGHTCONTROL,1 = (1, ((memory, 400),

(power, 60)), ((fan, ON)))

* TRU2 = TRUFANCONTROL,1 0 TRULIGHTCONTROL,1 = (3, ((memory, 300),

(power, 25)), ((light, ON)))

* TRS1 = TRS0 o TRU1 = (1, ((memory, 400), (power, 60)), ((light, OFF),

(fan, ON)))

* TRS 2 = TRS1 o TRU2 = (4, ((memory, 300), (power, 25)), ((light, ON),

(fan, ON)))

The time history of variable values and resource consumption for the run is also

shown in Figure 4-3.
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Figure 4-3: Time history of variable values and resource consumption

Operator i Signature (Meaning
o State x Update Set --* State Used to apply an update set to the state
9 Update Set x Update Set --p Update Set Used to combine two update sets generated through

hierarchical composition, for update sets from
different effect expressions

$ Update Set x Update Set --* Update Set Used to combine two update sets generated through
hierarchical composition, for update sets between
a parent machine and a child machine

o Update Set x Update Set - Update Set Used to combine two update sets generated through
parallel composition

Table 4.2: Update set combination operators

4.3.10 Summary and Other Extensions

From the point of view of the effects on the environment, there is no difference whether

or not an update set is generated from a single main ASM or through multiple parallel

main ASMs. The composition of main machines and the use of sub and function

machines is indistinguishable to the environment. The environment only sees a single

update set, that is produced at each "step" of the system. Once the composition

has been achieved, the composed system behaves as a single main ASM with no

composition. The difference occurs in the internal merging of update sets. In the

case of hierarchical composition, that is, update sets produced by sub ASMs and

function ASMs, the ® and @ operators are used to obtain the resulting update set

from the use of auxiliary ASMs. For parallel composition, that is, multiple update

sets produced by main ASMs, the 0 operator is used to obtain the resulting update

set that is to be applied to the environment. The update set operators are listed in

table 4.2.
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Termination Semantics

As described in Section 2.1, the types of systems targeted by this research are reactive

real-time systems, that is, systems which continuously interact with their environment

in an infinite loop fashion [164]. In this model, the environment could be modified

outside of the machine's control. To enable this behavior the first extension to the

ASM theory is to introduce the Else Rule construct. The Else Rule construct, denoted

by the else keyword as a rule guard, is used to indicate that the machine will continue

execution, even if no other rule is enabled. Furthermore, the use of the skip keyword

is used to denote that an empty update set is produced but that execution should

still continue.

A sample loop of such systems iterates through three stages. The first stage

involves inferring the state of the environment, typically through sensors. The sec-

ond stage involves taking some action, based on logic from the inferred state of the

environment. The third and final stage involves affecting the state of the environ-

ment, typically through actuators. This loop will run continuously until the system

is stopped by an outside source such as an operator or a failure. Applications using

these types of loops are common in process controllers such as avionics and automo-

bile electronics. The ASM metaphor, through the concepts of monitored variables,

controlled variables, and steps reflects the behavior of reactive systems.

The assumption of termination when an empty update set is produced is not valid

for reactive systems. The assumption may be valid for sequential algorithms, but,

as can be observed in the light switch example, the controller should continuously

monitor the state of the switch because the state of the switch could be altered

outside of the machine's control.

Special Rule Durations

Since relative durations defines the underlying progression of time in the model, a

special annotation can be used to specify that a given machine will "wait" until some-

thing meaningful happens in the environment. This annotation is used to denote that
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the machine will not execute any rules until something changes in the environment.

This special annotation is the "t := next" construct. When a rule containing this

time annotation is executed, the duration of the rule is "indeterminate" and the

update set will be applied once another rule in another machine is executed.

Non-Determinism

While the TASM language does not include the choose construct from ASM, non-

determinism is intrinsic to the TASM language. For example, time and resource

annotations can vary non-deterministically. Input/Ouput non-determinism, in terms

of assignments to variables, can occur in TASM if one or more rules are enabled

simultaneously for a given step of a given machine. In this case, a rule is chosen

non-deterministically from the enabled rules and it is executed. This type of non-

determinism differs from ASM where multiple enabled rules are executed within the

same step and the update sets are combined. In the TASM language, such semantics

would be confusing since durations would have to be added. Furthermore, the ability

to non-deterministically chose an enabled rule is convenient when modeling the en-

vironment to capture different simulation scenarios. The environment is inherently

non-deterministic [208] and modeling this behavior is paramount to achieve realistic

simulation scenarios.

The "Else" Rule

In the syntax of a TASM specification, the "Else" rule is used as shorthand notation

for "a rule that is enabled is no other rule is enabled". While the simple keyword else

is straightforward to write and understand, the special "Else" rule does not augment

the semantics of the language. A machine definition containing an "Else" rule could

be rewritten without the "Else" rule, without affecting the semantics. If a machine

has n rules RP, whose guards are Gi and where R, is the "Else" rule, the guard of

rule R, is equivalent to the following guard:
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Showing that these two guards are equivalent by definition because the "Else" rule

is enabled whenever no other rules are enabled, which is exactly the definition of the

negation of the disjunction of the guards of all the other rules. This substitution of

the "Else" rule for a predicate over variables is important because in the rest of this

thesis, the "Else" rule does not need to be treated differently than any other rule.

Consequently, the "Else" rule is mentioned only where it is not evident from context

that it could be replaced by a predicate over variables.

Internal State

In the presented discussion and examples, all variables are global. Extending in-

dividual machines with internal state enables encapsulation by limiting the scope of

variables. A new section is added to each ASM definition, the "INTERNAL VARIABLES"

section. This section is used to define the name and types of variables internal to the

ASM.

Constructors

Reuse of specifications can be beneficial, especially for the specification of redundant

systems. ASM definitions are extended with a "CONSTRUCTOR" section. The sec-

tion lists variables whose values must be specified before a specific instance of the

ASM specification can be used. This construct enables the creation of parameterized

specifications to empower reuse.

The constructor concept introduces a new type of ASM, the template ASM. The

template ASM is defined like any other ASM except that it contains an extra section,

the CONSTRUCTOR section. Like a function ASM, the constructor section specifies the

name and value types of arguments. Main machines can be defined based on template

ASMs by using the machine name as constructor in the following fashion:
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MAIN MACHINE:

FAN-CONTROL := new FANTEMPLATE(OFF, 1)

Global Clock

Individual machines can obtain the current value of time by accessing the global clock.

The global clock can be accessed through the special keyword "now" that returns a

value denoting the current time, in the context of the querying machine. The value

returned by "now" is the time value before the execution of a rule, based on the

semantics of parallel composition from section 4.3.8.

Runs of Multi-Agent TASM Specifications

In [47], runs of synchronous and asynchronous multi-agent ASMs are described through

ordering of agent moves. Synchronous multi-agent ASMs runs are defined through a

total ordering of agent moves while runs of asynchronous multi-agent ASMs are de-

fined through a partial ordering of agent moves. In the TASM language, time plays a

key role in the synchronization of moves of agents. As mentioned in Section 4.3.8, de-

pending on the nature of the time annotations, multi-agent TASM specifications can

express both synchronous and asynchronous multi-agent ASMs. Consequently, the

TASM language can be considered a more general model that can express both asyn-

chronous and synchronous behavior, without modifying the underlying concurrency

model.

The requirements of runs of multi-agent TASM specifications can be described in

terms of partially ordered runs [115]. The ASM conditions on partially ordered runs

contains 3 criteria - finite history, sequentiality of agents, and coherence [47] (p. 209).

These three conditions also apply to runs of TASM specifications but the ordering

relation is extended to include durations. The partially ordered set (M, <) of moves

m is extended to include the timestamp of the move completion, t,. The set is ordered

with respect to tc and with respect to a partial order for moves whose timestamps are
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the same. Using this ordering relation, the sequentiality of agents and the coherence

conditions follow naturally.

The complete description of the TASM language is available in [185]. The concrete

syntax of the TASM language as well as descriptions of the logical objects of the

language, as implemented in the TASM toolset, is available in Appendix A.

4.4 Relation to Timed ASM

In [114], the authors present a specification and verification of the railroad crossing

problem using a combination of ASM and the currtime external function (most re-

cently called now). The algebra presented in [114] provides a general approach to

timed system modeling. In order to demonstrate that TASM provides a more concise

notation, the semantics of the TASM language are expressed using Timed ASM. In

order to map a TASM specification into the Timed ASM language, two domains are

introduced, namely DTASM and DASM to denote the domains of specifications ex-

pressed in the TASM language and the ASM language respectively. A function called

Desug that maps a TASM specification into an ASM specification is also introduced.

The "desugaring" function is defined for all individual elements of the TASM lan-

guage (specifications, variables, types, rules, etc.) and maps the TASM elements into

elements of the ASM language.

Desug: DTASM -- DASM

Each resource definition, Rdef, in the environment is desugared into a global

shared dynamic function:

Desug/f Rdef ] = shared Rdef

Type definitions, Tdef get desugared into static finite domains:
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Desugf/ Tdef J] = static domain Tdef

Controlled and monitored variables inside of machines get desugared into nullary

controlled and dynamic functions, respectively.

The desugaring of the rules is the most complex desugaring in the TASM language,

because this is where time and resource utilization play a role. To illustrate the

desugaring of rules, the following abstract syntax for a rule definition is utilized:

* Rules = (Rf)

* Hi = (ti r* if condi then effecti)

In the TASM, the set of rules for a given machine is implicitly mutually exclusive.

In the ASM language, the mutual exclusion is explicit. The desugaring introduces

two variables, one to keep the time when the rule application will finish executing

and one to denote that the machine is "busy" doing work. These two variables are

denoted by tcompfresh and mbusyfresh. The fresh underscore is used to indicate that

the variable name is introduced by the desugaring and enforces that it does not clash

with existing names. Both of these variables also desugar into controlled dynamic

functions:

Desugf/ tcompfresh ] = controlled tcomp initially -1

Desugf/ mbusyfres, h ! = controlled mbusy initially False

Conceptually, once a rule is triggered, a machine sets the mbusy variable to True

and will not do anything until the rule duration has elapsed. Once the rule duration

has elapsed, the machine will generate the appropriate update set atomically and will

be free to execute another rule. The desugaring of a rule is expressed as:
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Desug/{ Rule ] = Desug{/ (ti r* if condi then ef fecti) li

if/else if condi A -imbusyfresh then

mbusyfresh := True;

tcompfresh := now + getDuration(ti);

rif sh := getResourceConsumption (ri);

else if now = tcompfresh A mbusyfresh then

effects;

busy,,,reh := False;

tcompfresh := - 1;

rifresh := 0;

The function getDuration is a macro that is created using the condition and

the time annotation of the rule. It returns the duration of the rule by selecting a

duration non-deterministically from the rule annotation. The introduction of the two

auxiliary variables and the time conditions will guarantee that the machine will not

produce any update sets and that no other rules will be enabled while the machine is

executing a rule. This behavior is exactly the desired behavior to simulate "durative"

actions. Function machines are desugared as macros and sub machines are desugared

just like main machines and they are "inlined" inside the rule where they are invoked.

The desugaring of the "t := next' construct is fairly straightforward albeit tedious. It

involves caching the state at the beginning of the rule execution and creating an extra

rule which compares the cached state to the current state. If there is a mismatch, the

machine immediately resumes executing rules. If there is no mismatch, the machine

simply waits until there is a mismatch.

The one area that remains to be formally specified is the execution semantics of

resources. For each resource that is defined in the environment, an agent is created
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that is used to sum up all of the resources used by other agents. These new agents,

symbolically depicted in Listing 4.9, are used to ensure that resource usage falls within

the specified bounds.

Listing 4.9 Machine to compute resources
Agent RESOURCEi
controlled last fresh initially 0
controlled totalresourceifresh initially 0

if now = lastfresh + dt then
totalresourceifresh : um(ri)

else
if totalresourceifresh > resourceim,, then
RESOURCE_EX HAUSTED

The role of the sum macro is to sum up all of the resource annotations from

executing agents. The RESOURCE_EXHAUSTED macro simply halts execution

to note that a given resource has been exhausted.

4.5 Segue into Chapter 5

This chapter described the Timed Abstract State Machine (TASM) language through

its syntax and semantics. The following chapter, Chapter 5, describes the types of

automated analysis that can be performed on models expressed in the TASM lan-

guage. More specifically, Chapter 5 describes how functional, timing, and resource

consumption behavior of TASM models can be statically analyzed using the frame-

work.
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Chapter 5

Static Analysis

This chapter describes the analysis of models that can be performed using the frame-

work. The analysis that can be performed using the proposed framework include

Completeness and Consistency, Safety and Liveness, Execution Time, and Resource

Consumption. These four types of analyses are included in the four sections of this

chapter. The analysis is performed with readily available analysis engines, namely

the UPPAAL tool suite [157] and the SAT4J SAT solver [158]. The analysis is achieved

by mapping TASM models to the input language of these engines. Summaries of the

translation algorithms are given in this chapter but a complete version of the trans-

lation to SAT is available in Appendix B and a complete version of the translation

to UPPAAL is given in Appendix C.

5.1 Functional Analysis: Completeness and Con-

sistency

Consistency and completeness were identified as useful properties of specifications

in [123] and in [125]. In the context of the specification of embedded systems, com-

pleteness of the specification is defined as the specification having a response for every

possible class of inputs. In the same context, consistency is defined as the specification

being free of contradictory behavior, including unintentional non-determinism [125].

151



Formal definitions of these properties, in the context of TASM specifications, are given

in Section 5.1.2 and in Section 5.1.3. Traditionally, verifying these properties was ac-

complished manually by system specifiers, through inspection of specifications [66].

Because a specification is likely to evolve during the engineering lifecycle, the ability to

verify these properties automatically can ease and shorten the analysis process [124].

Language-specific verification algorithms have been proposed in [123] in the context of

the RSML requirement language and in [125] in the context of the SCR requirement

language. In contrast, the analysis approach proposed in this chapter is not language

specific and can be reused for other languages. The proposed approach achieves ver-

ification by translating specifications to formulas in propositional logic, formulating

completeness and consistency as a Boolean satisfiability problem (SAT ) [232], and

automating the verification procedure by using a generally available solver, a SAT

solver [175].

More specifically, the verification is achieved by mapping TASM specifications

to Boolean formulas in Conjunctive Normal Form (CNF). The specified mapping is

derived using the structural properties of the specification and does not require the

generation of a global reachability graph, thereby avoiding the infamous state space

explosion problem [125]. The proposed mapping could also be applied to specifications

in other languages expressed using transition systems, such as ASM specifications,

because the mapping does not consider the time or resource annotations of the TASM

language. The mapping to Boolean formulas in CNF allows for automated verifica-

tion using any SAT solver which conforms to the "DIMACS" format [158]. Using

a standard input format provides flexibility in the choice of specific solver as opti-

mizations and heuristics are constantly improving [229]. The mapping from TASM

to a Boolean formula is achieved in such a way that consistency and completeness are

expressed as unsatisfiability of the Boolean formulas. If the TASM specification is

incomplete or inconsistent, the SAT solver will generate an assignment which makes

the Boolean formula satisfiable. This assignment serves as the counterexample to

exercise the incompleteness or inconsistency of the specification. Throughout this

section, the "block form" of TASM from Equation 4.1 is used to define the concepts
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as they are introduced.

5.1.1 Related Work

The definition and automated verification of completeness and consistency of specifi-

cations were originally introduced in [123] and in [125]. In [123], the RSML language,

a hierarchical state-based language, is used to express requirements. The language is

automatically analyzed for completeness and consistency using an algorithm specif-

ically developed for the RSML language. In [125], a similar approach is used for

analysis of requirements expressed in the SCR language. These two approaches rely

on special purpose algorithms for the efficient and automated analysis of consistency

and completeness. Consequently, the proposed algorithms cannot be reused for other

languages. In contrast, the approach proposed in this work utilizes a general purpose

solver, a SAT solver. The proposed translation from TASM specifications to Boolean

formulas in CNF can be reused for other specification languages. Furthermore, the

use of a mature SAT solver guarantees that the analysis procedure is optimized since

mature implementations of SAT solvers are generally available [229].

In the ASM community, various derivatives of the ASM language have been de-

veloped, including the ASM-SL language used in the ASM Workbench [59] and the

Abstract State Machine Language (AsmL) used at Microsoft [116]. A mapping be-

tween ASM-SL and finite state machines, for the purpose of model checking, was pro-

posed in [249]. A mapping between the AsmL language and finite state machines was

proposed in [109, 110]. The mapping proposed in this thesis resembles the mappings

proposed in these two approaches except that it ignores the effect of rule applications

and does not need to generate a global reachability graph. The proposed mapping

is concerned only with relationships between rule guards inside a single machine and

hence produces a smaller state space than might be generated through a complete

reachability graph.
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5.1.2 Completeness

Informally, completeness is defined as the system specification having a response for

every possible input combination. In the TASM world, for a given machine, this

criteria means that a rule will be enabled for every possible combination of its moni-

tored variables. The monitored variables are the variables in the environment which

affect the machine execution. Formally, the disjunction of the rule guards of a given

machine must form a tautology. The letter S is used to denote an instance of the

SAT problem. The completeness problem can be expressed as a SAT problem in the

following way:

For a given machine, for n rules:

S - (G1 v G2 v ... v Gn)

TASM = complete if S not satisfiable

incomplete if S satisfiable

The completeness problem is casted as the negation of the disjunction so that

counterexamples can be generated by the SAT solver. If S is satisfiable, all the

assignments that make S satisfiable can be automatically generated by the SAT solver.

If S is not satisfiable, the specification is complete.

Trivial cases happen when an individual rule guard represents a tautology. A

specific example of a trivial case is the else rule. The else rule guarantees that the

specification of a given machine is complete since the else rule will be enabled if no

other rule is enabled.

Theorem 5.1. Completeness is preserved through hierarchical composition using sub

machines

Proof. Per the definition of completeness, for a sub machine SM with m rules whose

guards are of the form SGj, if SM is complete, its rules form a tautology:
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SGI V SG2 V ... V SGm T

Consider a machine M which uses sub machine SM in its effect expression, in

rule Rp. Per the definition of completeness, if machine M is complete, its rules form

a tautology:

G1 V G2 V ... V Gp v ... v Gn = T (2)

Per Theorem 4.2, an equivalent machine M' can be obtained by eliminating sub

machine SM from rule Rp. The proof must demonstrate that M' is complete. Per

the definition of completeness, it must be shown that the disjunction of the guards of

the rules of machine M' form a tautology:

G 1 V G2 V ... V

(GP A SGI) v (G, A SG2) V ... V (G, A SGm) V ... V G,

Equation 3 can be rewritten by grouping the guard Gi and the guards SGj and

using the distributive law of A over V [28]:

GI V G2 V ... V

[Gp A (SG, v SG2 V ... V SGm)] V ... V Gn (4)

By gathering terms and using the associativity of V, equation 4 can be rewritten:
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[G1 V G2  ... v G,]v

[G ^ A (SGC v SG2 V ... V SGm)] (5)

Equation 5 can be expanded through the distribution law of V over A [28] and

gathering terms:

[G1 V G2 V ... V G V ... V Gn] A

[(GI V G2 V ... V Gn) V(SG1 V SG2 V ... V SGm)] (6)

Given Equation 1 and Equation 6, it naturally follows that Equation 6 is a tau-

tology since it can be reduced to the conjunction of two tautologies. Consequently,

machine M' is complete and completeness is preserved through hierarchical composi-

tion using sub machines. The proof can be easily generalized to multiple sub machines

within a given rule and across multiple rules.

O

Theorem 5.1 states that if a sub machine is complete and if a machine which uses

the sub machine is also complete, then the equivalent machine without hierarchical

composition (see Theorem 4.2) is also complete. This property is important because it

implies that machines can be verified in isolation for completeness and those results

still hold when combined hierarchically. These results are meaningful because it

greatly reduces the complexity of the verification procedure since the derivation of

the equivalent machine quickly leads to state explosion through exponential growth

in the number of rules. Consequently, given Theorem 5.1, if all machines in a TASM

specification are complete, then the specification is complete.
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5.1.3 Consistency

Informally, for a state-based specification, consistency is defined as no state having

more than one transition enabled at the same time [123]. The definition given in [125]

is similar but is extended to include other properties of the specification such as

syntactical correctness and type checking. The definition of consistency adopted in

this approach is the same as in [123]. In terms of TASM specifications, this definition

states that, for a given machine to be consistent, no two rules can be enabled at the

same time. This definition will lead to a set of SAT problems to define consistency:

For a given machine, for each pair of rules Ri, Rj where 1 < i < j < n:

S - Gi A G3

TASM = consistent if S not satisfiable

inconsistent if S satisfiable

This definition yields a set of n SAT problems. The individual SAT prob-
2

lems can also be composed into a single SAT problem. As for completeness, the SAT

problem is defined in such a way that if the specification is not consistent, a coun-

terexample is automatically generated. If S is satisfiable, all the assignments that

make S satisfiable can be automatically generated by the SAT solver.

S - (G1 A G2) V (G1 A G3) V ... (G1 A G,)V

(02 A G3) V (G2 A G4) V ... (G2 A Gn)V

(Gn-1 A G,)
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A trivial case occurs if there is only one rule. Other trivial cases happen if there

are only two rules, one of which is a guarded rule and the other rule which is the

special else rule. Before the SAT instances are generated, the else rule, if it exists,

is removed from the machine specification being analyzed. It is important to note

that consistency is a desirable property of specifications but not a requirement. For

example, if the behavior of the environment is modeled, non-determinism can be

introduced in the specification. But the remainder of the specification can be verified

to be consistent even though the complete specification might not be consistent by

choice. Similarly to Theorem 5.1, consistency of a machine can be verified in isolation

and generalized to the complete specification.

Theorem 5.2. Consistency is preserved through hierarchical composition using sub

machines

Proof. In this proof, the notation from the proof of Theorem 5.1 is reused. Given a

consistent sub machine SM with m rules and a consistent machine M with n rules,

it is shown that two tautologies follow from the definition of consistency.

Since machine M is consistent, for each pair of rules Rj, Rj of machine M where

1 i<j<n:

-(Gi A Gj) -G- V -Gj = T (1)

Since machine SM is consistent,, for each pair of rules SRk, SR1 of machine SM

where 1 < k < I < m:

-1(SGk A SGt) - S-Gk V -SGI - T (2)

Per Theorem 4.2, an equivalent machine M' can be obtained by eliminating sub

machine SM. The proof must demonstrate that M' is consistent. Per the definition

of consistency, it must be shown that the conjunction guards of the rules of machine
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M' are invalid (that their negation forms a tautology). Since it is already known that

the guards not affected by the sub machine call are already consistent with respect

to each other, it is sufficient to show that the affected rules are consistent. If the sub

machine call occurs in rule Rp, the guards of the affected rules in M' will be of the

following form, per theorem 4.2, for 1 < k < m:

(Gp A SGk) (3)

When determining the consistency of the rules of machine M', two cases need to

be considered. The first case involves the consistency of an affected rule with respect

to an unaffected rule. Symbolically, it involves showing that Equation 4 forms a

tautology, for 1 < k < mn 1 <i < n, and i 5 p:

((Gp A SGk) A Gi) (4)

Equation 4 can be expanded using DeMorgan's Laws [28] and the terms can be

rearranged using the associativity of V:

((-G, V -Gi) v -SGk)) (5)

Given Equation 1, it is obvious that Equation 5 is a tautology. The second case

involves the consistency of two modified rules with respect to one another. Sym-

bolically, it involves showing that Equation 6 forms a tautology, for 1 < k < 1 <

m:k) A (G

=((Gp A SGk) A (Gp A SGI)) (6)
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Equation 6 can be expanded using DeMorgan's Laws [28] and the terms can be

rearranged using the associativity of V:

(-G, V (- SGk V -SGI)) (7)

Given Equation 2, it is obvious that Equation 7 is a tautology. Consequently,

machine M' is consistent and consistency is preserved through hierarchical compo-

sition using sub machines. The proof can also be easily generalized to multiple sub

machines within a given rule and across multiple rules.

5.1.4 Mapping to SAT

To implement the automated verification of completeness and consistency of TASM

models in the TASM toolset, rule constraints are translated to Boolean formulas and

verified using the SAT4J SAT solver. In order to translate TASM specifications to

SAT, each variable included in the rule guards must be reduced to finite domains

and mapped to Boolean propositions. The complete translation approach is detailed

in Appendix B and the algorithm is summarized below:

1. Create problem instance S depending on the property to be checked (consistency

or completeness), as explained in Section 5.1.2 and in Section 5.1.3

2. Replace function machine calls with extra rules, as explained in Section B.2.1

3. Replace symbolic right-hand sides with values from the chosen configuration,

as explained in Section B.2.4

4. Reduce integer variables to user-defined type variables, as explained in Sec-

tion B.2.3

5. Iterate through all monitored variables and create at least one clauses and at

most one clauses, as explained in section B.2.2
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6. Convert problem formulation S to conjunctive normal form and create the full

SAT instance, as explained in Section B.2.2

The details of each step of the translation algorithm are explained in Appendix B.

Some restrictions are imposed on TASM specifications that can be mapped to a

SAT instance. In the current implementation of the TASM toolset, specifications

containing float variables cannot be mapped to SAT unless a simple interval reduction

is possible, as explained in Appendix B. The input format of popular SAT solvers is

standardized according to the "DIMACS" format and must be input in Conjunctive

Normal Form (CNF) [158]. The resulting SAT problem is automatically analyzed

using the open source SAT4J SAT solver [158]. The toolset also provides the capability

to "export" the generated SAT problem, so that the problem can be analyzed and

solved outside of the TASM toolset.

5.1.5 Example

In this section, an example of the translation algorithm and the verification of com-

pleteness is provided. The example is a machine definition of the production cell case

study presented in Section 2.8.1. The specification is for the behavior of the "loader"

component, which is the component of the system responsible for putting blocks on

the feed belt. The machine specification, expressed in the TASM language, is shown

in Listing 5.1.

For the verification of completeness, the translation to SAT, for initial conditions

where "number = 5", yields 7 unique propositions:
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Listing 5.1 Definition of the loader machine
Ri: The feed belt is empty, put a block on it

{
t := 2;
power := 200;

if loadedblocks
feedbelt
loadedblocks
feedbegin

< number - 1 and feed_belt = empty then
:= loaded;
:= loadedblocks + 1;
:= True;

R2: This is the last block...

{
t := 2;
power := 200;

if loadedblocks
feed_belt
loaded-blocks
feedbegin
loader-done

= number - 1 and feedbelt = empty then

:= loaded;
:= loaded_blocks + 1;
:= True;
:= True;

R3: The feed belt is loaded, do nothing

t
t := next;

if feed_belt = loaded and loadedblocks < number then
skip;
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b : loadedblocks <= 3

b2 : loaded-blocks = 4

b3 : loaded-blocks >= 5

: feed_belt = empty

: feed-belt = loaded

: feedblock = available

: feedblock = notavailable

Once the mapping between TASM variable values and SAT Boolean propositions

has been established, the rule guards, Gi, can be expressed in terms of the Boolean

propositions. The completeness problem, S, is then constructed according to the

definition of completeness:

-bi A

b2 A

b5 A

-- (Gi

A b7

A b7

v b2)

G2 v G3)

The complete translation to SAT, in CNF, yields 13 total propositions:
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(-b 7 V -b 4 V -1bl )

S in CNF (-b7 V b4 V -b 2) A

(-Sib V--b5) A

( b2 V --b5) A

(bl V b2 V b3) A

At least one clauses (b4 V bs) A

(b6 V b7) A

At most one clauses <

(-'bl V -lb2 V -b3) A

(b, V _-b2 v -b3) A

(-b1 V b2 v -'b3) A

(--bl V -b2 V b3) A

(4b4 V -b 5) A

(--b6 V -b 7)

The SAT problem resulting from the translation is relatively small and running

it through the SAT4J solver yields a solution in negligible time. For this machine,

the rule set is not complete. The TASM toolset uses the SAT4J solver to generate

the set of counterexamples in which no rule is enabled. An assignment to proposi-

tions that makes the problem satisfiable is "b2 = true, b4 = true, b6 = true" and

all other propositions are assigned false. In terms of the TASM specification, the

counterexample which is generated is the set "loaded_blocks = 4, feed_belt = empty,

feed_block = available". To check the consistency of the rule set for the "loader"

machine, the same set of propositions is generated, but the set of clauses grows to

159. However, many of the clauses are redundant, due to the long form used for the

conversion to CNF. Future work in tool development will improve the translation to

CNF by removing redundant clauses. Nevertheless, the set of SAT problems can be
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verified to be unsatisfiable in negligible time. In other words, the rules of machine

"loader" are consistent.

5.2 Functional Analysis: Model Checking

As mentioned in Section 2.1, the functional correctness of a system can be formu-

lated as a set of liveness and safety properties [154]. Formal verification through

model checking represents one of the big successes from the formal methods commu-

nity because it provides an approach to verification which is fully automated and can

generate a witness trace [71]. Safety and liveness can be verified using a model check-

ing approach by formulating the properties as temporal logic formulas. As mentioned

in Section 2.7, a model checking approach is composed of some automata variant as

a specification formalism and a temporal logic for property specification [67]. In the

proposed framework, the model checking of functional properties utilizes the UPPAAL

tool suite [24] which is a toolset for the modeling and verification of timed automata.

In order to verify the safety and liveness properties of TASM specifications using

UPPAAL , the TASM models need to be translated to the timed automata of UPPAAL

[29]. UPPAAL is a suite of tools to analyze real-time systems and is composed of an

editor, a verifier, and a simulator [24]. Because the UPPAAL tool suite contains a

model checker, the UPPAAL verifier, the translation to UPPAAL can be leveraged to

also verify timing properties of TASM specifications using a combination of temporal

logic and observer automata [129]. Safety assertions and liveness properties can be

formulated in the temporal logic of UPPAAL , a subset of Timed Computation Tree

Logic (TCTL) [244], and analyzed using the UPPAAL verifier. The verification of

timing properties is described in Section 5.3. The TCTL of UPPAAL contains facilities

for specifying quantifiers over variables, which are applied to paths and to states

along the paths. The path quantifiers include "A", which means "for all paths" and

"E", which means "there exists a path". The state quantifiers include "[] ", which

means "for all states" and "<>", which means "there exists a state". The formula

0 is a predicate over variable values. The various combinations of the path and
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state quantifiers are given below, including the special quantifier "-->". A detailed

description of UPPAAL 's TCTL is provided in [24].

* A [] q: For all paths, 0 holds in all states.

* A <> q: For all paths, there exists a state where ¢ holds.

* E [1 0: There exists a path where 0 holds in all states.

* E <> q: There exists a path where there exists a state where 0 holds.

* 4 -- > ¢: In all paths, if ' holds, q will eventually hold at a later point in the

path.

5.2.1 Mapping to UPPAAL

To implement the automated verification of safety, liveness, and timing properties of

TASM specifications in the TASM toolset, TASM models are translated to UPPAAL

's timed automata. The translation of TASM to timed automata involves remov-

ing function machines, sub machines, and translating TASM variables to UPPAAL 'S

datatypes. The complete translation approach is detailed in Appendix C and the

algorithm is summarized below:

1. For each main machine in the TASM model, remove hierarchical composition

according to the rules of Theorem 4.1 and of Theorem 4.2

2. Translate the environment:

(a) Discard resource definitions

(b) Translate each user-defined type to a corresponding bounded integer type

of UPPAAL , as explained in Table C.2.1

(c) Translate each variable and corresponding datatype to the bounded integer

type of UPPAAL , as explained in Table C.2.1

3. For each "flattened" main machine
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(a) Create a timed automaton to represent the machine

(b) Create an initial urgent location called "pivot"

(c) For each rule R4 of the machine, add a branch from the "pivot" state

according to the approach explained in Section C.2.2

(d) If the machine contains an "else" rule, add an extra branch according to

the approach depicted in Section C.2.2

(e) For rule that contains the "t := next" annotation, build an urgent edge

using an extra automaton and an urgent channel

The details of each step of the translation algorithm are explained in Appendix C.

Some restrictions are imposed on TASM specifications that can be mapped to timed

automata. In the current implementation of the TASM toolset, specifications contain-

ing float variables cannot be mapped to timed automata. The toolset also provides

the capability to "export" the generated UPPAAL problem, so that the problem can

be analyzed and solved outside of the toolset.

5.2.2 Example

The example from Section 5.1.5 is reused in this section to illustrate the transla-

tion from TASM to UPPAAL and the verification of safety and liveness properties

using UPPAAL 's TCTL. The TASM specification given in Listing 5.1 is translated to

UPPAAL 's timed automata, and the result is given in Figure 5-1. The automaton

in Figure 5-1 has three locations, corresponding to the three rules of Listing 5.1.

The "LoaderR2_go" channel is an urgent channel used to enforce the transition af-

ter a state change has occurred, corresponding to the "t := next" annotation. The

datatypes of TASM are translated to the bounded integer datatype of UPPAAL . In

the case of the user-defined types of TASM, the enumeration members are converted

to integers, as is the case for the feedbegin variable.

Once a TASM specification has been translated to timed automata, the UPPAAL

tool suite can be used to verify safety and liveness properties of the specified system.
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For example, for the timed automaton of Figure 5-1, a safety property stating that

"the loader will never stop loading blocks until it has loaded all the blocks" can

be formulated in TCTL. Furthermore, the liveness property "eventually, the loader

loads the total number of blocks" can also be formulated in TCTL. Both properties

are shown below:

* A [] loaderdone == 1 imply loaded_blocks == number

* A <> loadedblocks == number

c >= 2
feed belt = 2,

LoaderRi feedbegin =1, Loader R2

+ 1,

LoaderR3

Figure 5-1: Timed automaton for Listing 5.1

5.3 Execution Time Analysis

This section provides a general approach to verify the minimum time and the maxi-

mum time that it takes for a TASM model to complete a path from an arbitrary state

to another arbitrary state in the model. The time that can elapse in a TASM model
is determined by the explicit time annotations contained in the specification. In the
real-time system community, the terms Worst-Case Execution Time (WCET) and
Best-Case Execution Time (BCET) [89] are used to denote properties of execution
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times of software and hardware implementations. In the real-time community, the

BCET and WCET refer to execution times resulting from implementation artifacts

where time passage is typically not explicitly stated and must be obtained through

analysis. In this section and in the remainder of this thesis, the terms WCET and

BCET are used, but in the context of a model where time passage is expressed ex-

plicitly. WCET and BCET are formulated as reachability problems in terms of the

system states defined in the model. The execution time analysis approach can be

used to perform a variety of time-related analysis, including schedulability analysis

and system level analysis such as end-to-end latency. For example, in terms of sys-

tem states, the traditional definition of the WCET of a task can be expressed as the

maximum time that it takes for a task to reach the state execution complete from a

state where the task is ready for execution. A similar formulation can be made for

the BCET of a task.

Similarly to the verification of safety and liveness presented in Section 5.2, the

verification of timing properties is achieved by mapping a TASM model to the input

formalism of the UPPAAL analysis engine. For the verification of execution time, the

timed automaton [5] formalism is used as the input language to define system states

and system behavior. More specifically, the version of timed automata used is the

extended version of the Alur-Dill formalism supported by the UPPAAL tool suite [29].

In the proposed approach, the timing analysis of system models is achieved automat-

ically using the standard functionality of UPPAAL and modeling patterns - observer

automata, the bounded liveness pattern, and temporal logic formulas [157].

The presented approach provides an approach to obtain WCET and BCET be-

tween any two system states, using an algorithm called iterative bounded liveness.

The approach formulates execution time analysis as a reachability problem, which

has been shown to be decidable for timed automata [7]. The use of observer au-

tomata removes the need to modify system models with extraneous annotations for

the sole purpose of timing analysis, as is the case in [25], and in the bounded liveness

pattern in (157]. In Section 5.3.3, the presented approach is illustrated through the

analysis of a example problem depicting a simple scheduling problem. More complex

169



examples are available in the case studies presented in Chapter 8.

5.3.1 Related Work

WCET analysis is an active research area in the real-time system community and so-

phisticated algorithms, models, and tools have been developed to analyze execution

time of implementation languages for various hardware configurations. Thorough sur-

veys of WCET techniques for programming languages and execution environments

are available in [89] and in [150]. The output of these approaches can be used to

annotate formal system models with timing properties, for the purpose of analyzing

correctness with tools such as UPPAAL or Kronos [89]. The use of a formalism like

timed automata can be used to analyze both timing correctness and functional cor-

rectness [157]. Furthermore, timed automata can be used for top-down analysis, to

gain insight into system behavior before the system is implemented, when defects are

typically cheaper to correct [37]. The approach to execution time analysis presented

in this section can be considered a complement to the WCET analysis techniques of

implementations, as performed in the real-time community. The iterative bounded

liveness approach can be used in a top-down fashion before implementations exist,

and can later be validated using bottom-up analysis provided by WCET approaches

for software and hardware, once the system is implemented.

The use of high level system models for timing analysis has been performed in the

context of statecharts [91] with compilation techniques. The approach presented in

this work differs in that it relies on the explicit timing expressed in the model instead

of translating the model to code to extract timing metrics. A similar approach was

conducted in the context of Petri Nets [236] and in the context of priced timed au-

tomata [25]. The approach presented in this section differs in that it does not require

modification of the system models for the purpose of timing analysis. Annotating the

system model can inadvertently result in changes in the semantics of the model and

clutters readability for the sole purpose of performing analysis. The use of observer

automata is similar to the work on test case generation and time optimal test suites,

summarized in [36], and in [128]. Using observer automata provides a flexible and
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non-intrusive way to analyze system models. The iterative bounded liveness approach

is beneficial in that it provides flexible and reusable means of measuring minimum and

maximum execution times between any two states of timed automata models, with-

out modifying the system model. The approach is flexible and can be used to verify

timing properties of system models such as schedulability and end-to-end latency.

5.3.2 Iterative Bounded Liveness

The approach to analyzing execution time is formulated using timed automata. In the

rest of this section, it is assumed that a TASM specification has been translated to the

timed automata of UPPAAL using the translation approach described in Appendix C.

The timed automaton formalism, also called Alur-Dill automata [5], extends finite

state automata with a set of real-valued clocks to denote the passage of time. In a

timed automaton, all transitions are instantaneous, but time elapses between transi-

tions. Transition guards can contain predicates over clocks to enforce time passage

before a transition is taken. State invariants are used to enforce upper bounds on the

time passage in a given state. The timed automata used in UPPAAL extend Alur-Dill

automata with Integer variables, Boolean variables, committed and urgent locations,

and communication channels [24]. In UPPAAL 'S timed automata, a location is equiv-

alent to a state in Alur-Dill automata. Urgent locations are used to denote that time

should not elapse in a location.

A brief review of the syntax and semantics of the timed automata of UPPAAL ,

combining terminology and notation from [29], [157], and [36] is provided. Formally,

a timed automaton is a tuple ( L, lo, C, V, I, E ), where:

* L is a set of locations

* lo C L is the initial location

* C is a set of real-valued clocks

* V is a set of variables
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* 1: B(C) -+ L is a mapping of simple clock constraints to locations, denoting

location invariants

* E C L x G x A x L is a set of edges between locations where:

- G is a predicate over variables V, simple clock constraints B(C), and

channel communications

- A is a set of output actions, including clock resets, variable assignments,

and channel communications

The semantics of a timed automaton are defined as a transition system over system

states. A state s E S is a tuple ( 1, a, u ), where:

* 1 E L is an automaton location

* a: ID -- V is a mapping of values to variables

* u: R>o -- C is a valuation function for each clock in C

The initial state is ( lo, ao, {0} -+ C ), where all clocks are assigned the value 0.

A transition is a relation T C S x S whose members satisfy the following conditions:

* ( 1, , u ) --+ ( 1', ', (u\r + t) U ({0} -- r) ) if V t': 0 < t' < t = u + t E
1(1) and

* e E = ( 1, g, a, 1' ) such that:

- g is satisfied in ( 1, a, u )

- the variable assignments in a yield ~' from a

- t is the amount of time elapsed in ( 1, a, u )

- r is the set of clock resets in a

These definitions can be easily extended to networks of timed automata by using

vectors. For a more detailed description of the syntax and semantics of UPPAAL 'S

timed automata, the reader is referred to [29].
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Maximum and Minimum Execution Time

In the analysis of system specifications, the analysis of execution time is of special in-

terest to understand the semantic properties of specifications that contain concurrent

entities. The notation a -+ b denotes the "small-step" transition from a state a E S to

a state b E S. The relation T is used to denote the set of all "small-step" transitions

a - b E T C_ S x S. The notation a F b denotes the "big step" transition from

state a to state b. The "big step" transitions can be defined in terms of "small-step"

transitions:

a F-+ b - a --- s s -, --- s, --+ b

where : a -+ sl, s~ b E TA

V 0 < i < n : si -- si+l E T

In other words, - is the transitive closure of T. The duration of a "small-step"

transition, ta--b, is defined as the time t > 0 that can elapse during a transition a -+ b

E T. The duration of a "big-step" transition ta,,b is defined in terms of durations of
(4 (E ~~~n--1 ti_, n

"small-step" transitions where taob - ('= 1 t8-1 ,,+l) + ta_--_si + tsn--+b, tmax-b and

tminab are defined as:

tmaza b tabIV ta : ab tIb tawb}

tmina b {ta,,blV ta*b : tab b ta'b

When analyzing execution time of timed automata models, the properties of in-

terest are BCET and WCET. Execution time is defined as the time, tp,,-,, that it

takes to go from a state po to a state pr. The Best-Case Execution Time (BCET)

is the lower bound of tpop•, that is, tmino., p and the Worst-Case Execution Time

(WCET) is the upper bound of tp,,-, that is, tma•po " -.

These properties can be analyzed using the UPPAAL tool suite and temporal logic

173



formulas. The general problem of determining execution time of programs is unde-

cidable because termination is undecidable, although approximations yield adequate

results [89]. For specifications expressed using timed automata and verified using

temporal logic, the reachability problem is decidable [7]. To verify execution time of

timed automata, a combination of observer automata and the bounded liveness pat-

tern [24] is used. Bounded liveness is a temporal logic formula pattern, combined with

an augmentation of the model, which can be used to verify that execution time is ap-

propriately bounded. The pattern is of the form mn,,x "A [ ](b imply (z <= t))"

where b is a fresh Boolean variable and z is a fresh clock. Both b and z augment the

timed automata model for the purpose of performing execution time analysis. The

trick is for b to be true whenever the property p being checked holds. The clock z

is reset when the property p begins to hold. Informally, the temporal logic formula

states "the property p holds for at most t time units". The same idea is used, but it

is grounds into an observer automaton instead of modifying the system model. The

analysis also seeks to "find" the value of t, instead of "verifying" whether a model

satisfies a t given a priori. To achieve this, the model is queried iteratively, to converge

on the t corresponding to BCET or WCET.

Observer Automata

An observer automaton is a timed automaton which is not part of the system model,

but which can be used to monitor certain properties of the system model. For exam-

ple, observer automata have been used successfully in [36] to monitor coverage criteria

with respect to test case generation. To verify execution time between two arbitrary

states of the system model, the properties of the states that are monitored must be

stated. The specification of properties is limited to predicates over variables and

omit locations and clock values of the system model. In the context of the observer

automaton, the time tpo-Pi, means that there exists some trace ( *, a, * ) -- ... -

( ,, o', * ) where po C a and pi C a•'. This meaning does not affect the semantics

of the model since it is part of the observer automaton and has no side-effect outside

of the behavior of the observer automaton. The observer automaton is built using
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the concept of bounded liveness and using the state path to be verified. A sample

observer automaton is shown in Figure 5-2, where z is a fresh clock variable, po (a

predicate over variable values) is the initial state from which to measure time, and pi

(a predicate over variable values) is the final state to which time is measured. The

observer automaton contains a Boolean variable b which is true (b==l) in all paths

from po to pl. Furthermore, the clock z is added and reset for each transition out of

po; the OBSERVER_go variable is an urgent channel, used to ensure that the only

time that elapses in the observer automaton is time that elapses in the system model.

Whenever a transition is enabled in the observer automaton, it is taken without delay.

Location q2 is marked urgent to ensure that no time elapses in that location.

p0 p1

OBSERVER go? OBSERVERgo?

SERVER_go!

z=0, b=0

Figure 5-2: Observer automaton

Algorithm

In order to verify the execution time, the bounded liveness pattern of [157] is utilized
iteratively. The temporal logic formula -min "A [ ](b == 1 imply (z >= t))"

states that "the property p holds for at least t time units". Conversely, the formula

Omax - "A [ ](b == 1 imply (z <= t))" states that "the property p holds for at
most t time units". 0,max is used to obtain tmaxop,.P and omin is used to obtain

tminpowpl, tmaxpopj1 is obtained by iteratively verifying bmax with increasingly large
values for t until kmax is satisfied. Conversely, tminpo•,j is obtained by iteratively
verifying qmin with smaller values for t until qmin is satisfied. Because the UPPAAL

model checker generates a counterexample when a temporal logic formula does not
hold, the values of z given by the counterexample can be used as the value of t for
the following iteration. The notation TA denotes the timed automata system model.
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The notations Cmin(x) and max(x) also denote 1 min and Cmax where t is substituted

for x. The algorithm used to obtain the WCET is shown in Listing 5.2. The algorithm

to obtain the BCET can be obtained by replacing 4ma by minj and WCET by BCET

in Listing 5.2.

Listing 5.2 Iterative bounded liveness algorithm to calculate WCET
* Verify ¢init on timed automata model TA

* If ¢i0it is satisfied, let test = z, using the value of clock z stored in the UPPAAL
simulator illustrating that init is satisfied

* Loop until kmax(test) is satisfied

- Verify max•(test) on timed automata model TA

- if Omax(test) is not satisfied, let test = z, using the value of clock z stored
in the UPPAAL simulator

* WCET = test

The initial value of t used for the iteration can be obtained using the UPPAAL

simulator and the simple reachability formula ¢init - "E <> oa.q2" where oa.q2 is

the state of the observer automaton that is reached when the path has been observed.

If i,nit can be satisfied, there is at least one path from po to pi from the initial state

of the system model. Once tmin~op 0o and tmaxpo~P, have been established, the UPPAAL

simulator can be used to generate the sequence of steps that lead to tminp,.,o and

tmax~poP1 respectively. For tmin•o"p, this can be achieved by setting t = tmino,-.

+ 1 in kmin and reading the counterexample trace in the UPPAAL simulator. For

tmazpo_+p, this can be achieved by setting t = tmaxpo-p - 1 in Cmax and reading the

counterexample trace in the UPPAAL simulator. t min~,o.ý is bounded from below by

0. If tmaxpop, is unbounded, kmax will never be satisfied. Depending on the problem

definition, a maximum value of t in qmax should be agreed upon to determine that

tmaxpwopi is unbounded. It is important to note that a cycle in the state transitions

will not lead to unbounded tmaxpo0 p, because the clock z is reset on all transitions

out of Po. Unbounded tmaxpo0 pj can occur purely as a side-effect of the properties

of locations en route to pl. For example, if a location on the path po - p1 has no
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location invariant, tmaxp 0~p 1 could be unbounded. However, given the restrictions

put on the models, this situation will never happen and tmaxzo~,l will converge, as

explained in the following subsection.

Unbounded Delays and Convergence of Execution Time

In order for iterative bounded liveness to converge, the timed automata system model

must not contain unbounded delays that can occur while the observer automaton

of Figure 5-2 is in state q1. In timed automata, delays can be bounded either by

setting a location invariant to limit how much time can elapse in a given location, or

by having an urgent edge out of a given location. With these two conditions, delays

are guaranteed to be bounded, given that urgent edges will become enabled within a

bounded amount of time. While these restrictions might seem limiting, in the context

of WCET analysis, all delays must be bounded, or a bound must be estimated as is the

case of approximations for loop bounds in program analysis [89]. For systems that

have unbounded delays, execution time analysis can occur for BCET, but WCET

analysis would be pointless. The limitations on delays are similar to the restrictions

in [235] where timed automata are restricted to be output urgent for the sake of

testability.

5.3.3 Example: The Scheduling Problem

This subsection provides an illustrative example to illustrate the analysis of execution

time. The example deals with the scheduling of the task graph shown in Figure 5-3.

The task graph contains four tasks, each annotated with BCET and WCET figures.

The arrows describe the precedence constraints for execution of the tasks. In order

for the TASM system model to have unbounded delays, it is assumed that tasks will

start executing as soon as the processor is free and when their dependencies (if any)

have completed execution. This assumption is congruent with scheduling theory and

prevents unbounded delays before the beginning of a task's execution.

The TASM model describing the scheduling problem is shown in Listing 5.3, in
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taski
[5, 10]

Figure 5-3: Task graph

Listing 5.4, and in Listing 5.5. Listing 5.3 shows the environment definition. A task

can be in 3 possible states - wait, execute, and done. The wait state is used to denote

a task that has not executed yet, the state execute is used to denote a task that is

executing, and the state done is used to denote a task that has completed execution.

The processor can be in 2 possible states - free and busy. The meaning of the processor

states is self-evident. Listing 5.4 shows the definition of the scheduler that enforces

the precedence constraints. It is interesting to note that the scheduler contains non-

determinism, meaning that the set of rules are not consistent per the definitions given

in Section 5.1.3. However, the non-determinism is introduced purposefully because

given the problem definition, taskl and task2 can execute in any order because they
do not have precedence constraints. Listing 5.5 shows the behavior of task 1. When
the task is executing, it will take between 5 and 10 time units to complete, per the
definition given in Figure 5-3. Each task is modeled as a main machine and TASM
models for task 2, task 3, and task 4 are similar to Listing 5.5. The complete TASM
model contains 5 main machines - 1 for the scheduler and 1 for each task.

The UPPAAL model, obtained through the translation algorithm described in Ap-
pendix C is shown in Figure 5-4, Figure 5-5, and Figure 5-6. Figure 5-4 shows the
timed automaton for the TASK1 main machine of Listing 5.5. In the TASK1 au-
tomaton, location pivot is used to denote the initial location, location TASKIR1 is
used to denote that the task is executing, corresponding to the execution of rule R1

in the TASM main machine specification. The clock c is used to enforce the lower
and upper bounds on the execution times of the task, through an invariant at loca-
tion TASKI_R1 and through a clock guard on the edge from the TASKI_R1 location
and the pivot location. The variable proc is used to signal that the processor is free
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Listing 5.3 TASM environment for the scheduling problem
ENVIRONMENT:

USER-DEFINED TYPES:

task_status := {wait, exec, done};
proc-status := {free, busy};

VARIABLES:

taskstatus taskl := wait;
task-status task2 := wait;
task-status task3 := wait;

taskstatus task4 := wait;

proc-status proc := free;

(proc == 1) or busy (proc == 2). There are 4 binary variables in the model, task1,

task2, taskS, task4 to denote whether a given task has finished executing (taskb ==

3) or not (taskn == 2). The TASK1 automaton has an urgent edge, enforced by the

urgent channel TASKLelse, which ensures that a task starts executing as soon as it

is capable, to avoid an unbounded delay before execution begins.

The goal of the example is to study the BCET and WCET of completing all

the tasks with their precedence constraints. In the formulation of the problem, this

property is equivalent to verifying the maximum and minimum amount of time for

a path that goes from the state where none of the tasks have started executing

(taskl == 1 && task2 == 1 && task3 == 1 && task4 == 1) to a state where all

of the tasks have completed execution (taskl == 3 && task2 == 3 && task3 == 3

&& task4 == 3). Following the convention of Section 5.3.2, the observer automaton

encodes these two conditions as edge guards, and uses the clock z and the binary

variable b to measure the time that elapses in location q1 of the observer automaton

of Figure 5-6.

Using the iterative bounded liveness approach, the BCET for all tasks to execute

can be verified to be 55 time units and the WCET can be verified to be 85 units. It

is trivial to verify that this result is correct because the BCET and WCET of the

sequential execution of all the tasks is simply the summation of the individual BCETs
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Listing 5.4 SCHEDULER main
for the scheduling problem
Ri: Execute task 1

if taski =
taski :=
proc :=

wait and
exec;
busy;

machine describing the behavior of the scheduler

proc = free then

R2: Execute task 2

{
if task2 =
task2 :=
proc :=

wait and
exec;
busy;

proc = free then

R3: Execute task 3

if task3 =
task3 :=
proc :=

wait and
exec;
busy;

taski = done and proc = free then

R4: Execute task 4
{
if task4 = wait and

task4 := exec;
task2 = done and task3 = done and proc = free then

proc := busy;

:= next;

lse then
skip;

c >= 5
taski = 3,
proc = 1

TASKI_R1
c <= 10

task1 == 2
TASK1 else?

TASKI_ELSE

task1 == 2 task1 != 2
c=0

Figure 5-4: Timed automaton for the TASK1 main machine
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Listing 5.5 TASK1 main machine describing the behavior of task 1 of the scheduling
problem

t := [5, 20];

if taski = exec then
taski := done;
proc := free;

t := next;

else then
skip;

SCHEDULER R2
C <= 0 SCHEDULERR3

SCHEDU
c

LER_R4
C <= 0

(task2 == 1 && proc 1) (taski == 1 && proc == 1) I
(task3 == 1 && task ) 3 (task2 == 1 && proc == 1)

&& proc == 1) (task3 == 1 && task == 3
(task4 == 1 && task2 3 && proc == 1)
&& task4 == 3 && proc == 1)) (task4 == 1 && task2 == 3

&& tasksk3 == 3 && proc == 1)

SCHEDULER else?
SCHEDULERELSE

Figure 5-5: Timed automaton for the SCHEDULER main machine
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task1 == 1 && task2 == 1 && task1 == 3 && task2 == 3 &&
task3 == 1 && task4 == 1 task3 == 3 && task4 == 3

OBSERVER go? OBSERVER_go?
z = 0,
b=0 b=l

qO gi q2
b=0,z=0

Figure 5-6: Observer automaton to analyze schedulability

and WCETs of each task. However, the purpose of this example was not to yield in-
sight into the scheduling problem, but to give an illustrative example of the approach.
The scheduler could also be extended to reflect a multi-processor architecture and the
scheduling algorithm could be analyzed using the same observer automaton. More
complex examples of observer automata and execution time analysis are available
through the case studies presented in Chapter 8.

5.4 Resource Consumption Analysis

This section presents an approach to analyze the minimum and maximum amount
of resources consumed by a TASM model, per the resource annotations. These mini-

mum and maximum amounts are determined through an algorithm analogous to the

algorithm to determine completeness and consistency presented in Section 5.1. The

algorithm is implemented in the TASM toolset using a combination of the translation

to SAT described in Appendix B and the translation to timed automata described in
Appendix C.

5.4.1 Related Work

The analysis of resource usage, such as memory and stack usage has been performed

in the context of programming languages [89, 119]. In the model based community,
modeling of resources is gaining popularity [180], especially in the Quality of Service

(QoS) community [252]. The approach presented in this section is unique in that
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it uses generally available solvers to calculate the best-case and worst-case resource

consumption. Furthermore, the presented approach can calculate a safe upper bound

and lower bound on resource consumption, without generating a global reachability

graph, mitigating the state explosion problem. The proposed approach is flexible

and can accommodate different levels of accuracy depending on the complexity of the

problem at hand.

5.4.2 Approach

Because parallel resource usage is additive in the TASM language, the maximum

amount of resources consumed will occur when the summation of the resource con-

sumptions of parallel machines is at a maximum. To determine this maximum

amount, the algorithm iterates through the rules of each machine and tries to find a

set of rules for each machine that satisfies the following conditions:

For a TASM model with n main machines, for 1 < i < n, where the subscript i

denotes the ith machine, and resi denotes the amount of resources consumed by the

ith machine, and Gi denotes the guard of the ith machine for the rule corresponding

to the resi resource consumption:

n

totres = Zresi (5.1)
i=O

( G1 A G 2 A ... A Gn ) is satisfiable (5.2)

totresmax = {totres I V totres' : totres' < totres} (5.3)
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The state that satisfies Equation 5.2 is reachable

The first condition simply restates the additive properties of the parallel consump-

tion of resources. The second property states that the maximum amount of resources

consumed must occur in a state where all rules consuming resources can be executed

simultaneously. The third condition defines the maximum amount of resources con-

sumed. The fourth condition states that the state that satisfies Equation 5.2 must

be a reachable state.

Listing 5.6 Algorithm to determine maximum resource usage
* Remove hierarchical composition from all main machines Mi according to the

approach explained in Theorem 4.1 and in Theorem 4.2

* totres = -1

* Loop over all sets of rules:

- Select a set of rules that includes one rule from each machine Mi

- Calculate totres' using Equation 5.1

- if totres' > totres then

* if Equation 5.2 is satisfiable and Equation 5.4 holds then totres =
totres'

* totresmax = totres

The first step of the algorithm calculates the "flattened" version of each main

machine so that hierarchical composition is removed, to enable the direct comparison

of rule guards. The algorithm loops over all sets of rules to try every combination

of parallel rules to test the resource consumption of possible parallel behaviors. For

each combination of rules, the resource consumption is calculated and the conjunction

of the rule guards is checked for satisfiability. Satisfiability is a weaker notion than

the logical properties introduced in Section 5.1 because there can be multiple states

satisfying the disjunction of the rule guards. The first concern of the analysis is to

determine whether Equation 5.2 is satisfiable. The following step of the algorithm
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concerns itself with determining whether the state that satisfies Equation 5.2 is a

reachable state of the system. If reachability is not verified, the calculated version of

totresma will yield a safe overapproximation. In other words, the calculated value

provides a valid upper bound, but that upper bound might not be attainable in

reality. For many systems, this approximation might be sufficient, in which case

the reachability analysis can be skipped. However, if an exact measure is required,

the reachability analysis will ensure that the algorithm yields an optimal value of

totres,,,ax. Clearly, the algorithm described in Listing 5.6 can be repeated for every

resource in the specification. Furthermore, an analogous algorithm can be derived to

calculate the minimum amount of consumed resources.

Implementation

The implementation of the algorithm in the TASM toolset follows the strategy of

Section 5.1 and of Section 5.3. The implementation strategy uses mapping to both

SAT and to UPPAAL 's timed automata to perform the analysis. The algorithm of

Listing 5.6 does not specify how the sets of rules are assembled. The method used to

select the set of rules can yield performance optimizations depending on the proper-

ties of the model. For example, the rules of individual machines can be sorted and

totresmax can be calculated using a breadth-first search approach. Other heuristics

can be used to perform the calculation. In the TASM toolset, the approach sorts the

rules of each machine and uses an exhaustive search. Possible optimizations could

be performed and will be considered in future work. However, for the case studies of

Chapter 8, the performance of the brute-force search proved adequate.

Verifying Equation 5.2 in the TASM toolset is achieved by translating the con-

junction of the rule guards to SAT, following the approach presented in Appendix B.

If there is a state s that satisfies Equation 5.2, the SAT solver will return the state s

to the TASM toolset. The state s is returned to the toolset as a set of variables and

associated values. The reachability analysis is implemented using the timed automata

model and UPPAAL. The timed automata model can be obtained using the approach

presented in Appendix C. If a timed automata model has already been generated for
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functional analysis or for execution time analysis, this model can be reused for the

reachability analysis. The generation of the timed automata model needs to happen

only once. To verify the reachability properties of state s, a simple reachability tem-

poral logic formula can be used, with state s translated to the language of UPPAAL

E <> s

If state s is reachable, the UPPAAL verifier will confirm that the formula holds.

5.4.3 Example

This section provides an example to illustrate the approach to verify minimum and

maximum resource usage. The example reuses version 4 of the light switch example

from Section 4.1.5, described in Listing 4.6, Listing 4.8, and Listing 4.7. Since this

example does not contain hierarchical composition, it does not need to be flattened.

Furthermore, since there are 3 rules in each main machine, there are 9 possible com-

binations of rule pairs that contain 1 rule from each machine. For each machine, the

rules and corresponding memory consumptions are summarized below:

LIGHTCONTROL: (R 1 , memory = 300) (R 2 , memory = 100) (R 3 , memory = 0)

FANCONTROL: (R 1, memory = 100) (R 2, memory = 200) (R 3 , memory = 0)

Iterating through the possible pairs of rules, it is easy to see that the maximum

memory consumption occurs when rule R1 of machine LIGHT_CONTROL is executed

and when rule R2 of machine FAN_CONTROL is executed simultaneously. However, it

must be determined whether the rule guards of these two rules can be enabled at the

same time, that is, if the following formula is satisfiable:

(light = OFF and lightswitch = UP) and

(fan = ON and fanswitch = DOWN)
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Name Value IRules State
memory 500 R 1, R2  ((light, OFF), (lightswitch, UP),

(fan, ON), (fanswitch, DOWN))
bandwidth 60 R1, R 1  ((light, OFF), (light_switch, UP),

(fan, OFF), (fan_switch, UP))

Table 5.1: Maximum resource usage

Name Value Rules State
memory 0 R3 , R3 ((light, ON), (lightswitch, UP),

(fan, ON), (fanswitch, UP))
bandwidth 0 R3, R3  ((light, ON), (light_switch, UP),

(fan, ON), (fan-switch, UP))

Table 5.2: Minimum resource usage

Translating this formula to SA T and running it through the SA T solver shows that

the formula is satisfiable with the state ((light, OFF), (light_switch, UP), (fan, ON),

(fanswitch, DOWN)). Encoding this state in a temporal logic formula and verifying

the formula with the UPPAAL tool suite demonstrates that the state is reachable.

The same algorithm can be used to determine the maximum bandwidth usage for

the model. Furthermore, the dual version of the algorithm can be used to determine

the minimum memory and power usage for the model. The results of the analysis for

the maximum resource usage are shown in Table 5.1 and the results of the analysis

for the minimum resource usage are shown in Table 5.2.

5.5 Segue into Chapter 6

This chapter described the types of analysis that can be performed on TASM speci-

fications using the proposed framework. More specifically, this chapter detailed how

the completeness and consistency, safety and liveness, execution time, and resource

consumption properties of TASM models can be analyzed automatically using the

framework. The following chapter, Chapter 6, describes how two or more TASM

models at different levels of abstraction can be meaningfully related. More specif-
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ically, Chapter 6 provides an approach to trace model features syntactically and

integrates syntactic traceability with notions of semantic equivalence to establish a

notion of semantic equivalence between the models. The presented approach enables

bi-directional traceability of TASM models through levels of abstraction all the while

ensuring semantic integrity under certain conditions.
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Chapter 6

Bi-Directional Traceability

This chapter presents an approach to relate the syntax of two disparate TASM mod-

els. The proposed relationship, called bi-directional traceability, enables the track-

ing of model features throughout lifecycle phases and levels of abstraction, both for

functional properties and for non-functional properties. Section 6.2.1 presents seven

"standard" types of changes that can occur between two TASM models, as surveyed

through modeling literature and experience with modeling. Each type of change is

expressed as a syntactical mapping between the machines and rules of two TASM

models. As presented in this chapter, traceability is a purely syntactical concept;

however, in Section 6.2.2, for each proposed type of change, a set of correctness cri-

teria is given to ensure that, if the criteria are met, the proposed change preserves

the semantics of the original model. Section 6.3 provides an illustrative example

to demonstrate the traceability approach combined with the use of the correctness

criteria to ensure semantic equivalence throughout the change.

6.1 Related Work

The growing popularity of model-driven software engineering is yielding a new set

of challenges for model management, model maintenance, and model evolution [168].

Since modeling typically happens at different levels of abstraction, often across lifecy-

cle phases, the ability to relate disparate models to one another is becoming increas-
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ingly important to ensure consistency between models. For example, in the context of

the Unified Modeling Language (UML), efforts have been exerted to define and enforce

consistency between different diagrams [138]. Furthermore, the features of a model

typically depend on a set of design decisions or assumptions. The ability to trace and

visualize the effects of these features, and hence of associated decisions and assump-

tions, is important in complex system engineering [2173. Furthermore, traceability

provides means to visualize and analyze the effects of changes to the specification,

throughout the lifecycle of the system being engineered. However, traceability is, by

definition, a syntactical concept, in the style of versioning systems, and provides no

notion of semantic equivalence between the related artifacts. In the formal methods

community, where models have precise semantics, theories of refinement have been

developed to demonstrate semantic equivalence between two different models [174].

In these refinement approaches, the emphasis is put on correctness and imposes strict

restrictions on system designers to ensure semantic correctness. In this chapter, a

novel approach to model management is presented. The proposed strategy merges

the benefits of syntactical traceability, for change management, and refinement cor-

rectness, for semantic integrity. The approach presented in this chapter provides an

agile approach to relate models at different levels of abstraction and to relate models

representing different aspects of the system such as functional behavior and timing

behavior. The proposed traceability approach supplies benefits because it provides

syntactic bi-directional traceability, augmented by a set of correctness criteria that

can guarantee semantic integrity.

6.1.1 Syntactic Change Management

In the software engineering community, models of traceability have been developed

for architecture models [94, 226] and for requirements [217]. In these approaches,

change management and heterogeneous model integration is the key motivation. Fur-

thermore, traceability models that cross lifecycle phases have been developed in [168]

using the concept of connectors. Syntactic change management, in the context of pro-

gramming languages, is widely used in the software engineering communities [78, 139].
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In the context of programming language, the term "Software Configuration Manage-

ment (SCM)" or "Version Control" are used to describe the set of tools and processes

used to visualize program changes and to create software versions. A vast suite of

tools are available to implement version control including open source offerings that

include the Concurrent Versions System (CVS) [241]. In the software engineering

community at large, notions of refinement correctness are typically overlooked and

the focus is put on change management and syntactical mapping. The primary focus

of traceability in the software engineering community is to visualize and control the

changes that are made to product implementations, without concerning itself with

the correctness of the changes.

In contrast, this chapter presents an approach to traceability that incorporates

both syntactical traceability, to track changes, and a set of correctness criteria to

maintain semantic integrity. Furthermore, in the engineering of real-time systems,

different types of models are used, such as high level models, component models, and

task graphs. The approach presented in this chapter enables traceability of model

features throughout these disparate models, all the while ensuring semantic integrity

under certain conditions.

6.1.2 Refinement Theory

The idea of software development being conducted in a controlled and provably correct

fashion, in incremental steps, goes back to the days of Niklaus Wirth [250], and Edsger

Dijkstra [80]. Since these seminal ideas, refinement theory has found widespread

adoption and development in the formal methods community. In the formal methods

community, the majority of refinement schemes revolve around two principles - the

principle of "substituvity" and the principle of state equivalence. In the principle

of "substituvity", the core idea revolves around the idea that a program could be

replaced by another program and the change would be undetectable by the user [79].

In such a scheme, a refinement is deemed "correct" if the observable behavior of a

program/model is undetectable after a refinement has occurred. The observations

can take the form of input-output pairs, pre/post states and invariant preservation
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as can be found in the B method [2]. In the principle of state equivalence, the

states of the two models to be related are enumerated, and a mapping is defined

between the sets of states [43]. Furthermore, the semantic equivalence between two

models can be established through a notion of trace equivalence through a subset

relation and bisimulation, as can be found in the process algebra community [95, 131]

and in the Input/Ouput Automata (I/OA) formalism [147]. The bisimulation proof

method serves as the basis for many refinement approaches in the formal methods

community and can express both "substituvity" or state equivalence, depending on

what information the traces contain [227].

There has been a significant amount of theory developed around refinement, such

as the refinement calculus [17], Morris' basis [174], and Roever's Data refinement [77].

These schemes aim to provide rigorous means by which refinement correctness can

establish semantic equivalence. However, they do not address the syntactic nature of

change management introduced by a refinement. The Abstract State Machine refine-

ment approach is more general and can support many popular refinement schemes

[43]. The ASM approach uses commuting diagrams as a mapping between states of

interest and an equivalence notion (-) between data in locations of interest in cor-

responding states. The approach proposed in this work is a subset of the general

ASM refinement approach, by selecting a suitable set of criteria to establish basic

correctness locally, without considering the complete semantics of the models. The

correctness criteria proposed in this work do not preclude a more general notion of

equivalence between models, as advocated in [43]. Formal approaches to refinement

can be used in conjunction of the strategy proposed in this chapter, if desired.

From a practitioner's perspective, the motivations for establishing semantic equiv-

alence between two models aim to reduce verification effort. In an ideal world, if

verification was performed on a given model, the verification results would still hold

in the refined model and the verification efforts would not need to be repeated. The

philosophy of the approach presented in this chapter is to provide a set of correctness

criteria which, if met, guarantee that verification results hold in the refined model.
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6.2 Concepts

The concept of traceability establishes a mapping between two models. In the con-

text of model-driven engineering, traceability typically happens between two models

at different levels of abstraction, where the lower level model is assumed to be a re-

finement of the higher level model [168]. In general, the refined version of a model

contains more details than the original version, although this property does not neces-

sarily hold. For example, an optimization is a refinement which could remove details

from an original model. This definition is also congruent with refinement concepts

such as simulation relations in the formal methods community [174]. In this chapter,

the concept of traceability and the concept of refinement correctness are differenti-

ated. Traceability is defined as an invertible function between two models, mapping

syntactical elements. The mappings can fall under different categories, depending on

the differences between the two models. Refinement correctness can be established

though a set of correctness criteria for the different types of syntactical mappings.

In the context of the TASM specification language, traceability is defined as a

function between the rules of two models [202]. In the TASM language, rules are

contained inside of machines. However, in the definition of traceability, the machine

structure is ignored without loss of generality since rules can be renamed using the

name of the machine as a prefix. The machine to which a rule belongs becomes

important when specifying correctness criteria, but is irrelevant for the syntactical

mappings.

Formally, traceability between model Ml and model M 2 is defined as a partial

function T over the set of rules X 1 of model MM1 and the set of rules X2 of model

M2:

T : P(X 1) -+ P(X 2)

The partial function is defined over the power set of Xi and the power set of X2 ,
as a function between arbitrary sets, to reflect the possibility that traceability does
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not have fixed arity and can be many-to-many. In the context of a partial function,

the domain of definition is the set of elements in the domain for which the function

is defined. In the context of a partial function, the codomain of definition is the set

of elements in the image for which the function is defined. Two function operators

are introduced, ddef and codef, which operate on T:

* ddef(T) A domain of definition of T

* codef(T) A codomain of definition of T

Although the function T is defined in a one-way fashion, bi-directional traceability

can be achieved by taking the inverse of T. The ability to invert the function requires

that the partial function be a bijection over ddef(T) and codef(T). Furthermore, to

define the properties of T, a definition of a partition is given, where the empty set

can be an element of the partition. Formally, a set P of subsets of X is a partition if

it has the following properties:

* The union of the elements of P = X

* The pairwise intersection of the elements of P = 0

With the definitions of ddef, codef, and partition, the formal definition of bi-

directional traceability between two models can be formulated. The definition is

given in terms of the properties of the function T:

* T is a bijection over ddef(T) -+ codef(T)

* ddef(T) must form a partition of X 1

* codef(T) must form a partition of X2

The requirement that the function be a bijection over the domains of definition

ensures that the function is invertible. This is a necessary condition for traceability to

be bi-directional. The partition requirement on the domains of definition ensures that

every rule in X1 and X2 is involved in one and only one mapping for each refinement

level. This requirement is necessary when trying to ensure semantic equivalence

between the two models using the correctness criteria.

194



6.2.1 Types of Refinements

In the previous section, traceability through levels of abstraction was established as

a mapping between the rules of two TASM models. In this section, categories of

mappings are defined so that the differences between the two models capture the

rationale for the change. More specifically, this section defines seven categories of

refinements, defined formally as elements of the function T, defined in the previous

section, which share a common property and arity. Each category defines a conceptual

type of refinement that can be traced bi-directionally.

The list of refinement types have been motivated by synthesis of refinement ap-

proaches as found in the literature [17, 174] and through experience with developing

models using stepwise refinement. At a high level, in the context of TASM models,

a refinement is defined as the addition, deletion, or modification of rules in a model

M 1 , resulting in a refined model M 2. The types of refinement described in this sec-

tion attempt to express the motivations for performing a refinement. It is important

to restate that traceability does not depend on a particular type of change since the

types of changes are simply elements of the function T, that is, mappings between

rules. But the categories are helpful syntactically, to convey the rationale behind the

mapping, and semantically, when trying to establish semantic equivalence between

the models. The categories are used in Section 6.2.2 where criteria are defined, for

each category, to establish the correctness of the refinement. The refinement cate-

gories are expressed as ordered pairs of sets of rules. For example, the refinement

described below denotes an arbitrary mapping between n rules of one model and m

rules of another model:

({Ri, R2, . , IQ, {S1, S2, ... , Sm

The subscripts of the rules denote the ordinal of the rule in the ordered set. For

certain categories, the ordering of rules is irrelevant but for other categories, the

ordering is important. When the ordering matters, it is used to denote a sequence of
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execution starting with the first ordinal and terminating with the last ordinal.

Step Expansion

A step expansion refers to a type of refinement where a "step" in model M 1 is refined

into multiple steps in model M 2. In the formal methods community, such a refinement

is called a "non-atomic" refinement [79]. In the context of the TASM language, since

a step is the execution of a rule, the expansion of a step implies a mapping between

one rule and multiple other rules, a one-to-many relationship:

Ts ex {R}, {S, 1, S2, ... , Sm})

In a step expansion refinement, the ordering of the rules Si is important, especially

when the correctness criteria are defined.

Step Contraction

The step contraction refinement is the dual of the step expansion refinement. A step

contraction refinement refers to a type of refinement where multiple steps in model

M1 are refined into a single step in model M42. The refinement is a many-to-one

mapping:

Tscon ({•R1, R2, ., Pn}, {S1})

As for the step expansion refinement, the order of the rules Ri is important.

Rule Expansion

A rule expansion refinement is a one-to-many mapping. In the context of a single

rule, a rule expansion refinement is used to add or modify a time annotation, to add

or modify resource annotations, to add more conditions to the rule guard, and to add
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extra effect expressions. The rule expansion refinement can also be used to expand a

rule into multiple rules, resulting in a one-to-many mapping. Syntactically, the rule

restriction refinement is similar to the step expansion refinement. The differences

occur in the correctness criteria used to establish the semantic equivalence between

the mapped rules. Conceptually, the step expansion refinement is meant to describe

a refined sequential execution, where the extra rules are executed in sequence. The

rule expansion refinement is meant to describe the expansion of the state, through

the addition of variables to the model or by expanding the list of members in a user-

defined type. The added state components can lead to added conditions in the rule

guards and added assignments in the rule effect expressions.

Trres A ({Ri}, {S1, , ... , Sm})

Rule Contraction

Similarly to the step contraction refinement, the rule contraction refinement is also

a many-to-one mapping. The rule contraction refinement is the dual of the rule

expansion refinement. The rule contraction refinement is used to remove or modify

a time annotation, to remove or modify resource annotations, to remove conditions

from the rule guard, and to remove effect expressions. The refinement is also used

to remove state components from the model, through the removal of variables or the

removal of members of user-defined types. Removing variables can lead to a reduced

number of rules as the number of items in the rule guards and in the rule effect

expressions are reduced.

Trexp A ({R 1, ... , Rn}, {S 1 })

Rule Addition

Rule addition refers to a type of refinement where behavior is added to a model, caused

by expansion of the state space. In terms of the TASM language, this refinement
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corresponds to the addition of one or more rules to an existing set of rules, a zero-

to-many mapping. The difference between the rule addition refinement and the rule

expansion refinement concerns the correctness criteria. A rule addition refinement

which adds p rules to a set of mn rules would yield the following mapping:

Tadd A ({ }, {Sm+I, ... , Sm+p})

Rule Deletion

A rule deletion refinement is a refinement where a set of rules is removed from an

existing set, caused by a reduction in the state space. The rule deletion refinement is

the dual of the rule addition refinement, and it is defined as a many-to-zero mapping.

A rule deletion refinement which removes p rules from a set of mn rules would yield

the following mapping:

Tdel A ({Ri, ... , Rm-p}, { })

Any

While the three categories of refinements defined above, with their associated dual,

represent common refinement types as surveyed through the literature and identified

through modeling experience, it is possible that other types of refinements are nec-

essary. Furthermore, since traceability is not dependent on the types of refinements,

it is important not to restrict the usability of the traceability features by requiring

the strict use of refinement types. Because of these motivations, a "wild card" type

of refinement is defined, to define traceability without intent. This wild card, called

an "any" refinement, is simply a generic many-to-many mapping between the rules

of two models:
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({R 1, R 2, ., , {S1, S2, ... , Sm})

Complete Traceability Relationship

These seven types of refinements are also complemented by the identity refinement,

Tid, which maps a rule from model M 1 to an identical rule in model M 2 . Conceptu-

ally, the identity refinement is simply a special case of all seven types of refinements;

consequently, it is not described as a separate refinement, but it is introduced as

special notation that is useful when establishing semantic equivalence. Given these

relationships, define the complete traceability relationship between a M 1 and a re-

fined model M 1 can be defined, through the partial function T:

T = Tsexp U Tscon U Trres U

Trexp U Tadd U Tdel U Tany U Trid

Where each Tn is a set whose elements are refinements of type Tn, corresponding

to the types of refinements defined in previous subsections. Given the definition of T,

the definition of the various categories of refinements, and the relationship between

the categories and the function T, a syntactical basis for bi-directional traceability of

software models is established. In Section 6.2.2, the syntactic notion of traceability

is complemented with the semantic notion of equivalence through defining notions

of refinement correctness. The semantic integrity is achieved by giving correctness

criteria for each category of refinement. The idea behind the correctness criteria is

such that, if a criterion holds for a given refinement, then an established property

of the original model will hold in the refined model without needing to repeat the

verification efforts.
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6.2.2 Correctness Criteria

To define the correctness criteria for each category of refinement, the internal details

of individual rules must first be syntactically related according to the traceability

approach. Listing 6.1 and Listing 6.2 contain two symbolic rules, rule Ri (1 < i < n)

from model M 1 and rule Sj (1 < j 5 m) from model M 2. Rule Ri contains a time

annotation, tr, and p resource annotations, rk. Similarly, rule Sj contains a time

annotation, ts, and p resource annotations, sk.

Listing 6.1 Symbolic rule for model M 1
Ri: Rule of Model Ml

tr := [rai, rbil;
ri := qil, ril;

rp := [qip, rip];

if RGi then
REi;

Listing 6.2 Symbolic rule for model AM2
Sj: Rule of Model M2

ts := [saj, sbj];
sl := [ujl, ujl];

sp := [sjp, ujp];

if SGj then
SEj;

}

The correctness criteria for each refinement type apply to the three aspects of the

TASM language - function, time, and resource consumption. The correctness criteria

are expressed as relationships between the annotations, the guards, and the effect

expressions of the rules contained in the sets of mappings. If certain annotations

are not present in a model, there are no restrictions on the behavior of the refined

model concerning those annotations. The goal of the correctness criteria is to establish

semantic integrity between the two sets of rules, to ensure that semantics are preserved
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between the two models. For the step expansion, rule expansion, and rule addition

refinement types, the idea surrounding the refinement correctness stipulates that if a

given semantic property holds in the original model, it will also hold in the refined

model if the correctness criteria are met. If the correctness criteria do not hold,

no semantic equivalence can be guaranteed by the approach given in this section,

although ad-hoc arguments can be used to prove correctness and verification efforts

can be exerted to ensure correctness. The correctness criteria do not need to hold for

the refinement to be correct, but if they do hold, the amount of verification that needs

to be performed on the refined model is reduced because the refined model comes with

the semantic guarantees of the original model. If no criteria hold, the refinement

comes with no guarantees and verification must be performed on the refined model

as if the model is an entirely new model.

The step expansion, rule expansion, and rule addition refinement types capture

refinements as introduced through top-down design. The general philosophy sur-

rounding the correctness criteria is that the higher level model dictates the behavior

that the refined model must exude. This philosophy relies on the reality that higher

level models might typically exist before lower level models. Consequently, higher

level models are deemed to be "correct" since analysis can be performed on the high

level models before the low level models are developed. The dual of these refinement

types, namely the step contraction, the rule contraction, and the rule deletion re-

finement types, capture refinements as introduced through bottom-up design, with

properties that hold in the lower level model being guaranteed to hold in the higher

level model, if the correctness criteria hold. For each correctness criterion, the cri-

terion is given, followed by a proof that if the criterion holds, the semantics of the

original model are preserved in the refined model.

In this chapter, the term semantics is used as a general term to denote a property

established in a model using the analysis approaches described in Chapter 5. The idea

behind the correctness criteria is such that if the criteria are met for the refinement,

properties established in the original model will also hold in the refined model. In the

context of the TASM language, the established properties that could hold through the
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refinement include safety and liveness, expressed as reachable and unreachable states,

BCET and WCET, and minimum and maximum amounts of resource consumption.

The motivations behind the approach is to reduce the amount of verification that

needs to be performed on the refined model. Since traceability is a useful syntactic

concept to track and understand design assumptions, adding notions of semantic

equivalence to the traceability approach can reduce the duplication of verification

activities. The correctness criteria govern the three aspects of the TASM language

- function, time, and resources. The correctness criteria are defined for these three

aspects by defining conditions that need to hold in the mapping for properties of

the original model to hold in the refined model. These conditions govern the three

aforementioned aspects:

* Function, through relating the rule guards and rule effects

* Time, through relating the time annotations

* Resources, through relating the resource annotations

In the following subsections, the correctness criteria for each type of refinement

is defined in terms of these three aspects. The phrase "semantics are preserved" is

used for brevity when stating the theorems to establish the preservation of proper-

ties between two models. What is meant by "semantics are preserved" is primarily

that safety and liveness analysis performed on the original model is maintained in

the refined model. Furthermore, if the conditions relating the time and resource an-

notations are strict equalities instead of inequalities, and the criteria governing the

rule guards and effect expressions hold, WCET and BCET analysis is also preserved.

A similar argument can be made for the resource annotations; for the preservation

of minimum and maximum resource consumption analysis performed on the original

model.

Step Expansion

The correctness criteria for a step expansion refinement is such that the parent rule

defines constraints on the set of expanded rules. The step expansion refinement is
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used to divide the execution of a single rule into two or more consecutive steps. The

division is typically achieved by adding an extra variable to the state space, which

acts as a program counter to enforce the sequential execution of the refined rules.

The refinement of timing behavior requires that the total execution time of refined

rules be less than equal to the execution time of the parent. This relationship is

logical since the time behavior of the children rules represents a subset of the time

behavior of the parent. If verification has been performed on the higher level model,

it is logical to assume that established functional properties will still hold in the child

model given the subset relationship. Formally, for the rule R 1 shown in Listing 6.1,

which is expanded to m rules Sj, one of which is shown in Listing 6.2, the correctness

criteria for the time annotations are shown below:

ral < sal + sa2 +...+ Sam

rbl > sbl + sb2 +...+ Sbm

Since time annotations are non-deterministic execution times for the rule, verifi-

cation performed on the model will consider all possible times inside the annotation

interval. For the quantitative timing behavior to be preserved through the refinement,
such as worst-case execution time, the relationship between the time annotations must

be equality instead of inequality. This is necessary since execution time analysis, for

WCET and BCET, depends on quantitative values of rule executions and not only

on the possible interleavings of rule executions. The correctness criteria for resource

consumption follow a similar pattern. However, since resource consumption is addi-

tive through parallel steps but not through sequential steps, the relationship involves

the maximum and minimum resource consumptions:
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q11 > min(S11, S21, ... , Sml)

qnl , min(snl, Sn2, ... , Snn)

r 11 < max(ll, U2 1 , .-*, Ulmi)

1rnl < max(uln, U2n, ... , U mn)

As for time annotations, for the results of the resource consumption analysis per-

formed on model M 1 to hold in model M 2, the inequalities should be equalities.

Furthermore, for resource consumption semantics to hold, the correctness criteria

regarding the rule guards must also hold. For the guards, the correctness criteria be-

tween M/1 and M 2 is such that the expanded model must not change the semantics

of the guard RG1. Formally, this relationship implies that the disjunction of each

guard SGj must be logically equivalent to RG1 :

RG 1 - (SG1 V ... V SGm)

Essentially, this relationship states that the disjunction of guards of the expanded

rules must form a tautology whenever the guard of rule R1 is enabled. In other words,

on of the expanded rules must execute whenever R1 would execute. For the effect

expressions, the correctness criterion requires that everything that happens in RE 1

must also happen as a result of executing the sequence of refined rules Sj. Per TASM

semantics, the effect of executing the rule is applied after the rule execution has

completed. Consequently, this effect expression relationship can be expressed as the

effect expression of rule R1 being contained in the intersection of the effect expression

of rule R1 and the union of the effect expressions of the various S,:
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RE 1 n (SE, U SE2 U ... U SEm) = RE,

Furthermore, the added effects in the rule effect expressions of the refined rules

must not affect the execution of any other rule Ri in the model. This restriction also

concerns the execution of the original rule R1. The last condition necessary for the

correctness of the refinement requires that the refined rules Sj are executed in an

atomic sequence. This means that, for every 1 < i < m, the effect of executing rule

Si causes the guard of rule Si+1 to be enabled. Furthermore, no other rule in the

model can change the sequence of execution.

These four correctness criteria involving the time, resource consumption, guard,

and effect expressions of the two sets of rules form the basis of the correctness cri-

teria for the various types of refinement. If the listed criteria hold, safety, liveness,

completeness and consistency results from model M 1 will hold in model M 2. Fur-

thermore, for the execution time analysis to hold, strict equalities must hold for the

time annotation criteria. Similarly, for the resource consumption analysis results to

hold, strict equalities must hold for the resource annotation criteria. In the following

sections, the correctness criteria of other refinement types are explained reusing the

notation introduced in this section and the notation from Listing 6.1 and from List-

ing 6.2. For each type of refinement, the correctness criteria are stated, followed by

a argument to prove that, if the criteria holds, the semantics are preserved through

the refinement.

Theorem 6.1. If the correctness criterion for the step expansion refinement holds,

the semantics of model M 1 are preserved in model M 2.

Proof. Suppose that rule R1 of model M 1 is enabled in state STo and that executing

rule R 1 in state STo yields state STI. Let ST,' be the refined state containing STk,

with the added variable to enforce sequential execution. Since the disjunction of the

refined rules Sj form a tautology when rule R1 is enabled, one of the refined rules

must be enabled in state ST'. The ordering of the execution of refined rules can
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be selected arbitrarily without loss of generality. In this case, the index of the rules

is selected as the order of execution. Let rule S1 be the enabled rule in state ST o.

Executing rule S1 in state STo yields an intermediate state STol. Since the execution

of the refined rules is required to be sequential, the execution of the rules will yield

j - 1 intermediate states. Since the effect of executing rule R 1 must be included in

one of the effect expressions of the refined rules, state STo will be contained inside one

of the intermediate states and eventually into the final state resulting from executing

the refined rules in sequence. From the requirement that no other effect expression

can affect any other rule, including rule R 1, it naturally follows that the final state

resulting from executing the sequence of refined rules Sj will be STo.  E

Step Contraction

The step contraction refinement is the dual of the step expansion refinement, with

the direction of the refinement being reversed. Consequently, the correctness criteria

detailed in the previous section are exactly the same for this refinement type, but in

the reverse direction, including the reversal of the containment relationships. In the

rule contraction refinement, the total time of the rules in the refinement for model

M 1 specify the constraints on the rule in model M 2:

ral + ra2 +...+ ram < sal

rbl + rb2 +...+ rbm > sbl

A similar relationship can be defined for the correctness criteria for resource con-

sumptions. This relationship is omitted for brevity. For the relationship between the

guards and the effect, the criteria are similar to those detailed for the step expansion

refinement:
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(RG 11 V RG12 V ... V RGim) - SG1

RE 1 n (RE, U RE 2 U ... U RE,)n SE1 = SE 1

Theorem 6.2. If the correctness criterion for the step contraction refinement holds,

the semantics of model M 2 are preserved in model M 1.

Proof. The proof of this theorem is identical to the proof of Theorem 6.1, in the

reverse order. O

Rule Expansion

The rule expansion refinement adds information to a rule, in the form of a modified

time annotation, modified resource annotations, an expansion of the guard, or an

expansion of the effect expression. For time and resource annotations, the correctness

criteria require that the annotations in rule R2 be contained in the annotations of

rule R1. In other words:

ral < saj, Vj = 1...m

rbl > sbj, V j = 1...m

qlk < sjk, Vj = 1...m, k = 1...p

rlk > ujk, Vj = 1...m, k = 1...p

The presented relation between the annotations of both models will ensure that

functional behavior is maintained for the model, as explained in Theorem 6.3. For

execution time analysis and resource consumption analysis to be preserved, the an-

notations must be equalities instead of inequalities.

If the guard is expanded by adding extra conditions to the guard, the disjunction

of the Sj guards in the mapping must be logically equivalent to the guard of R 1.
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What this means is that the Sj guards must not be true with variable assignments

that make R 1 false and one of the Sj guards must be true whenever R1 is true:

RG1 •= (SG1 V ... V SGnm)

If the effect expression is expanded, by adding extra assignments of values to

variables, the effect expression of R 1 must be contained in the effect expression of Sj:

RE 1 C SE,, Vj = 1...m

Furthermore, for any other unchanged rule Ri from the unrefined model, the

added items in the refined effect expression must not change the value of the guard

of rule Ri. The idea behind the rule expansion refinement is that the behavior of the

refined rules are contained within the behavior of the unrefined rule. Consequently, if

verification involving the unrefined rule was performed, those results should still hold

in the refined rules.

Theorem 6.3. If the correctness criterion for the rule expansion refinement holds,

the semantics of model M1 are preserved in model MA2.

Proof. Since the disjunction of the guards of the refined rules are logically equivalent

to the guard of the original rule, at least one of the Sj guards of model M 2 will be

enabled whenever rule R 1 of model M 1 is enabled. And since the effect expression

of rule R 1 of model M 1 is contained in every refined rule of model M 2, the effect of

executing rule R 1 is preserved. Furthermore, since the expanded effect expressions

do not affect the evaluation of the guards of other rules, the refinement is, in effect,

limited to the refined rule and hence preserves the semantics of model M 1. OE
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Rule Contraction

Rule contraction is analogous to rule expansion and concerns the modification of the

time annotation, the modification of resource annotations, the modification of guard

conditions, the modification of effect expressions, and the consolidation of rules. The

rule contraction refinement would be used when removing variables from the state,

resulting in a contraction of the state space and of the number of rules contained in

the model. The correctness criteria are similar to the correctness criteria for the rule

expansion refinement, but apply in the reverse order:

rai < sal, V i = 1...n

rbi < sbl, Vi = 1...n

qik> slk, Vi = 1...n, k = 1...p

rik < ulk, V i = 1... n, k = 1...p

SGI (RG, V ... V RGn)

SE1 C REi, V i = 1...n

The idea behind the rule expansion refinement is that the behavior of the unrefined

rules is contained inside the behavior of the refined rule. Consequently, if verification

involving the refined rule is performed, these results will hold in the unrefined rules.

Theorem 6.4. If the correctness criterion for the rule contraction refinement holds,

the semantics of model M 2 are preserved in model M 1.

Proof. This proof is identical to the proof of Theorem 6.3. O

Rule Addition

The rule addition refinement refers to a refinement where a set of rules is added to

a model. This refinement can be used to add steps in sequential execution or to add
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parallel rules to handle new conditions resulting from an extended state space. For

sets of rules, completeness and consistency have been defined in Section 5.1. The

correctness criteria concern the preservation of completeness and consistency through

rule addition. The functions comp and cons are defined between a set of rules and the

set { True, False}. The function returns the value True if a set of rules is complete

(consistent) and vice-versa [123]. Using the notation from Section 6.2, X 1 is the set

of rules of model AM1 and X2 is the set of rules of model AM2. Using these definitions,

the correctness criteria for rule addition ca be defined:

cons(XI) -+ cons(X 2)
comp(X1) -+ comp(X 2 )

What this criteria mean is that adding a rule to an existing rule set must not

introduce non-determinism. Non-determinism introduced through the addition of a

rule would preserve the semantics only if the effect expressions of the two inconsistent

rules would be identical. However, it is not clear why adding a rule that is essentially

a copy of another rule would be a useful refinement. If the rule is added to add parallel

behavior to handle an extended state space, its effect expression must contain only

updates to variables in the extended space. If the rules are added to augment the

number of steps in a sequence of execution, updates to the variable representing the

order of execution are acceptable, as long as the order of effect expressions is preserved

from the original set of rules and do not affect rules outside the machine where the

rule is added.

Theorem 6.5. If the correctness criterion for the rule addition refinement holds, the

semantics of model AM1 are preserved in model AM2-

Proof. The behavior of rules added to reflect the addition of sequential steps is ana-

lyzed first. Suppose that m rules Sj are added as intermediate steps between original

rule R1 and Rk. The proof follows the principles of the proof of theorem 6.1. Suppose
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rule R1 is enabled in state STo and yields state ST1, in which state rule Rk is enabled

and yields state STk after execution. The addition of the rules must follow an atomic

sequence where rule must be modified such that executing R 1 must yield a new state

ST1 where Si is enabled. The added rules must yield an atomic sequence of rule

executions that will yield state ST1 such that executing rule Rk will complete the

chain. Since the added rules are required to not have side-effects on other rules, the

behavior is preserved.

For rules that are added to handle an extended state space in parallel, the guaran-

tees of completeness and consistency ensure that the rules do not conflict with existing

rules in the machine. Furthermore, the requirement that the rules be side-effect free

is a restricted case which guarantees that the semantics aren't changed since the rules

do not interfere with existing rules. E]

Rule Deletion

Similarly, the correctness criteria for rule deletion must not affect the completeness

the rule set or the consistency of the rule set where it is added. For example, if a set

is complete, removing a rule must not make it incomplete in order to preserve the

semantics.

cons(X 1) -+ cons(X 2)

comp(X1) -+ comp(X 2)

Theorem 6.6. If the correctness criterion for the rule deletion refinement holds, the

semantics of model M 2 are preserved in model M 1.

Proof. This proof is identical to the proof of Theorem 6.5.

O
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Any

The any refinement type does not contain correctness criteria and does not carry

guarantees of semantic equivalence. This refinement is used purely for syntactic

traceability with no -semantic guarantees.

Identity

The correctness criteria for the identity refinement simply ensures that the mapping

does not modify the rule:

tr = ts

si = ri, V i = 1 ... m , m = n

RG1 = SG1

SE 1 = RE 1

It is straightforward from this identity mapping to verify that the mapping does

not modify the semantics of the model.

6.3 Example

In this section, an example is provided to illustrate the concepts explained throughout

this chapter. In Chapter 8, the Electronic Throttle Controller (ETC) case study

provides a more complex example of bi-directional traceability between disparate

models, with the correctness criteria ensuring semantic guarantees between models.

The refinements and the traceability properties of the ETC case study are presented

in Section 8.4. In this section, the light switch example, originally presented in

Section 4.1.5, is refined, first by expanding the state space and secondly through the

addition of tasks and a scheduler. The light switch example contains two components,

a light bulb and a switch. The controller software is responsible for turning on the
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light based on the switch position. A high level model might contain simple logic

to describe the behavior of the software, as shown in Listing 6.3. The model of

Listing 6.3 describes the requirement "if the switch is UP, the light shall be ON" and

the requirement "if the switch is DOWN, the light shall be OFF".

Listing 6.3 Model 1 of light switch
Ri: Turn on

{
if switch = UP then

light := ON;
}

R2: Turn off

{
if switch = DOWN then

light := OFF;

}

A refinement of the requirements might extend the functionality of the light by

introducing additional conditions on the behavior of the software, leading to a refined

model. For example, Listing 6.4 describes behavior that meets the same requirement

as in Listing 6.3 but incorporates the extra requirement "when turning the light

ON during day time, the light intensity shall be LOW while it shall be HIGH during

nighttime". This extra functionality is added to the model of Listing 6.3 by expanding

the state space. Two new user-defined types are added - one to describe the time

of day (values "DAY" and "NIGHT") and one to describe the intensity of the light

(values "LOW" and "HIGH"). Two extra variables are added to the state to denote

the time of day and the light intensity.

Establishing syntactical traceability between model 1 and model 2 is fairly straight-

forward. The refinement type for the mapping between the two rules is of the "Rule

Expansion" type, where rule R1 is mapped to rules Sil and S12. In the refinement,

items are added to the rule guards and to the effect expressions. Formally, the syn-

tactical mapping is:
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Listing 6.4 Model 2 of light switch
S11: Turn on, low {

if switch = UP and timeofday = DAY then
light := ON;

intensity := LOW;
}

S12: Turn on, high {
if switch = UP and timeofday = NIGHT then

light := ON;
intensity := HIGH;

}

S2: Turn off

{
if switch = DOWN then

light := OFF;

}
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T = Trexp U Tid = (({R 1}, {Sii, S12})) U (({R 2 }, {S 2}))

= (({R 1}, {S 11, S12 1), (R 2 }, {S2 ))

Since the guards of the rules are changed in model 2, the correctness criteria for

the rule expansion refinement must establish guard equivalence. The equivalence

can be visualized in Table 6.1 for rule R1. The truth table clearly shows that the

disjunction of rule S11 and rule S12 is equivalent to the guard of rule R1.

switch timeofday timeofday
= = = R1 S11 S12 S11 V S12
UP DAY NIGHT
T T F T T F T
T F T T F T T
F T F F F F F
F F T F F F F

Table 6.1: Truth table to verify the correctness criteria for the rule expansion refine-
ment between rule R 1 and rules S11 and S12

Since the model contains only one machine, no time annotations, and no resource

annotations, it is clear that the correctness criteria hold for the rule expansion refine-

ment. Furthermore, the changes in the effect expressions of the refined rules do not

affect any other rules, preserving the semantics of model 1. What this means is that

a statement made about the possible traces of the model 1 will hold in the refined

model. For example, the property that a "state where the switch is UP will eventually

always be followed by a state where the light is ON" will hold in both models.

In order to add interesting features to the model, a scheduler driven by a 1 ms

clock is added to the model. The scheduler fires a task that has a period of 30 ms.

The task has an execution time lasting between 1 and 10 ms. The scheduler is added

as an extra main machine, in order to drive the system and switch the task's status

between "wait" and "exec". The task is another main machine which simply waits

to be activated. The scheduler is shown in Listing 6.5 and the task is shown in

Listing 6.6.
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Listing 6.5 Model of the scheduler with 1 ms clock, firing a task with a period of 30
ms
Ti: Fire

{
t := 1;

if tick = 30 then

tick := 1;
task := exec;

I

T2: Tick

{
t := 1;

else then

tick := tick + 1;

Listing 6.6 Model of the task, model 3
Pl: Execute

{
t := [1, 101;

if task = exec then

task := wait;

P2: Wait
{
t := next;

else then
skip;

}
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In Listing 6.4, the task is simply a placeholder which does not provide any func-

tionality other than consume time. The model of the task can be combined with

model 2 of Listing 6.4 to wrap the functionality of model 2 inside of the tasking

model. The resulting model is shown in Listing 6.7.

Listing 6.7 Combined model with task implementation, model 4
D1: Turn on, low

if task = exec and switch = UP and timeofday = DAY then
light := ON;
intensity := LOW;
switch := wait;

D2: Turn on, high

if task = exec and switch = UP and timeofday = NIGHT then

light := ON;

intensity := HIGH;
task := wait;

D3: Turn off

if task = exec and switch = DOWN then
light := OFF;

D4:
I
t next;

else then
skip;

Because model 4 is a refinement of model 3 and a refinement of model 2, the

traceability relationship yields two branches. The branch between model 3 and model

4 yields the following syntactic traceability relationship:
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T = T U Tid = (( P1}, {D, D2})) U ({P2}, {D4}))

= (({P 1 }, {D1 , D2 }>, ({P2}, {D 4}))

The correctness criteria for the rule expansion refinement between rule P1 and

rules D1, D2, and D3 is shown in Table 6.2. Since the variables involved in the

refinement are binary variables, there is no need to include columns for the value

"NIGHT" and for the value "wait", since these values are captured in the columns

for the value "DAY" and for the value "exec". It is clear from the table that the

correctness criteria hold for the guards of the refined rule. The time and resource

annotations also conform to the correctness criteria. The mapping between rule P2

and rule D4 is trivially correct because the two rules are exactly the same since it is

an identity refinement.

Table 6.2: Truth table to verify correctness the criteria for the rule expansion refine-
ment between rule P1 and rules D1, D2, and D3

Furthermore, since the added effect expressions from model 3 to model 4 concern

only the newly introduced variables, the locality condition of the correctness criteria

also holds. It is interesting to note that the refinement from model 3 to model 4 could

have been achieved through hierarchical composition, by wrapping the functionality

of model 2 inside a submachine. In this case, the correctness criteria with regards to
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switch timeofday task
= = = Pi D 2 D3 D V D2 V D3
UP DAY exec

T T T T T F F T
F F F F F F F F
T F F F F F F F
F T F F F F F F
F F T T F F T T
T T F F F F F F
T F T T T F F T
F T T T F F T T



the guards would require the sub machine to be complete, leading to the appropriate

correctness criterion for the guards, according to Theorem 5.1. The machine depicted

in Listing 6.7 corresponds to the "flattened" machine that would be obtained by

removing the hierarchical composition, as explained in the proof of Theorem 4.2.

Since the correctness criteria hold for the refinement from model 3 to model 4, the

properties of model 3 are preserved in model 4. For example, the worst-case execution

time of each task is preserved, as are the schedulability attributes. A similar approach

is used in Section 8.4 for the ETC case study, where the functionality of the controller

is implemented using a set of tasks.

Model 4 can also be viewed as a refinement of model 2. The traceability branch

between model 2 and model 4 yields the following syntactic traceability relationship:

T = Trexp U T¶add = (({Sll}, {D 1}), ({S 12 }, {D 2 }), ({S2 }, {D 3})) U

(({}, {D4}), ({}, {TI, T2}))

= (({S 11}, {D1}), ({S12}, {D2}), ({S2}, {D3}),

({{}, D4}), ({}, {T1,T2}))

The correctness criteria for the mapping between rule S2 and rule D3 resembles

the criteria for the mapping displayed in Table 6.2. To be more thorough and for the

correctness criteria to hold, extra rules should be added to model 4 to reflect the cases

where the task is in the "wait" state. However, this mapping is guaranteed by the

"Else" rule. The mapping preserves the semantics of model 2 since the modifications

are local to the expanded state space. A similar argument can be made for the rule

expansion refinements of rule S11 and rule S 12. The correctness criteria get a bit more

complex to visualize for the rule addition refinements since the addition of the "Else"

rule is done to modify the termination semantics of the machine and to handle the

case where the task is in the "wait" state. Such a dual purpose refinement makes the

model simpler, but exacerbates the proof of the preservation of semantics. In order to

make the preservation easier to demonstrate, model 2 could have already contained
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the "Else" rule and model 4 could have contained 3 extra rules to handle the case

where the task is in the "wait" state. Furthermore, the addition of the scheduler,

which acts on the refined rules, complicates the problem. Nevertheless, using simple

arguments, it is possible to see that the addition of the scheduler does not affect the

order of execution of the functional model, and the property "if the switch is UP, the

light will always eventually be ON", from model 1 still holds. Properties from model

2 with regards to the light intensity also hold.

This simple example provides an illustration of the concepts outlined in this chap-

ter. The example provides an interesting application of the proposed approach, to

combine a tasking model and a functional model, all the while preserving some be-

havioral semantics during the refinement process. In the first branch of traceability,

scheduling attributes were preserved while in the second branch, functional attributes

were preserved. Section 8.4.2 uses a similar technique to achieve traceability and re-

finement correctness on a more complex example using the Electronic Throttle Con-

troller (ETC) case study.

6.4 Segue into Chapter 7

This chapter presented an approach to relate different TASM models syntactically,

through a mapping between the rules of the two models. The proposed strategy

also presented a set of archetypical refinement types, as surveyed through literature

and experience with modeling. Each refinement type is accompanied by a set of

correctness criteria which, if satisfied, preserve certain semantic aspects between the

two models. The approach was demonstrated using an extended version of the light

switch example from Section 4.1.5. The following chapter, Chapter 7, presents an

approach to generate test cases automatically based on TASM specifications. The

presented mnethod enables the automated generation of unit test cases, integration

test cases, and regression test cases.
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Chapter 7

Test Case Generation

This chapter presents an approach to automatically generate test cases based on a

model expressed in the TASM language. The generation of test cases is achieved for

unit testing, integration testing, and regression testing. The test cases are generated

to achieve coverage.of the TASM model according to the rule coverage criteria, as

defined in the ASM community. Unit test cases are generated in the context of

an individual machine without hierarchical composition. Integration test cases are

generated by combining unit test cases hierarchically. The traceability relationship,

described in Chapter 6, is leveraged to provide an approach to the generation of

regression test cases. The generation of unit, integration, and regression test cases is

provided in separate sections and illustrative examples are given at the end of each

section.

7.1 Related Work

Testing remains the main activity in industry and in software engineering circles to

build confidence into the system being engineered [220, 242]. Even though testing

can never establish the absence of defects [81], the popularity of testing has grown the

practice and theory considerably, leading to well-established definitions and concepts

in the software engineering community [26, 169, 176].

The growing popularity of testing has led to various approaches to automatically
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generate test cases [74, 86] and to the development of various tools [27]. More re-

cently, the advent of model-based software engineering has given birth to model-based

testing, an approach to test case generation where a model or specification is used

as the basis to generate test cases [32, 130, 222]. Model-based testing builds upon

previous results from the requirements engineering community where requirement

specifications are used to generate test cases [75, 112, 245]. In model-based testing,

two key approaches are used to automatically generate test cases, constraint-based

test case generation [214] and test case generation using model checkers [8]. Test case

generation using model checkers relies on some form of automata model to gener-

ate test sequences that are used to cover certain aspects of the model such as states

and transitions [102]. Notably, the UPPAAL tool suite has been used to generate test

cases for real-time systems in [128]. In [128], synchronization channels are used to

model the inputs and outputs of the system and the automata model is assumed to

be "input enabled and output urgent" to ensure that the generated test suite is time

optimal [36]. The approach described in [128] is not applicable to TASM specifica-

tions because the language does not contain synchronization channels. Furthermore,

the generation of test sequences, as performed using model checkers, relies on as-

sumptions about the system under test, which may not be applicable in practice, as

explained in Section 7.5.1. The approach presented in this chapter does not preclude

the generation of test sequences, but provides a more generic approach to test case

generation which can be tailored to a specific purpose.

The test case generation strategy presented in this chapter relies on constraint

programming and symbolic combination of test cases, a strategy related to the ap-

proach presented in [15] and in [16]. However, the definition of templates is unique

to the TASM-based approach although it resembles the theory of equivalence classes

explained in [176]. The approach presented in this chapter uses the specification as

an oracle, that is, as the authority on the correct input/output behavior of the system

under test [219]. In other words, the specification describes the expected output of the

system for each class of inputs. Much of the theory on test case generation concerns

unit testing; the strategy described in this chapter extends unit testing capabilities by
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combining unit test cases to achieve integration testing. Furthermore, the approach

presented in this chapter uses traceability attributes to generate regression test cases

in the occurrence of specification modifications or extensions. The regression test case

generation uses structured model changes as the basis for test case generation, similar

to mutation-based approaches were a well-defined set of defects are used to generate

test cases [247]. This section reviewed the popular approaches to test case generation

at a high level and situated the proposed approach in light of past efforts. In the fol-

lowing subsections, different coverage criteria are reviewed and test case generation

efforts within the Abstract State Machine (ASM) community are reviewed.

7.1.1 Coverage Criteria

The purpose of performing testing activities is to achieve a desired level of confidence

into the functionality of the system being tested. However, in order to achieve a

satisfactory level of testing, some criteria need to be put in place to decide what

to test and when to stop the testing activities. For this reason, traditional ad-hoc

approaches to testing have been replaced with structured approaches to testing whose

aim is to achieve a predetermined level of coverage of the system under test [176]. The

possible levels of coverage are captured into coverage criteria, which express properties

of the system under test, such as program branch coverage and program variable

definition and usage coverage. The list of possible coverage criteria is quite large and

a good survey is provided in [256]. In the field of safety-critical systems, the DO-178B

standard requires that an implemented system of a certain criticality level be tested

to achieve the Modified Condition/Decision Coverage (MC/DC) criterion [64, 216].

Standard DO-178B also requires that requirements be tested, expressing that the

testing of the implemented system also cover all requirements. In the field of model-

based testing and specification-based testing, the coverage criteria used for generating

test cases refer to coverage items of the model such as states and transitions [153, 184].

In the context of Abstract State Machines (ASM), coverage criteria have been

defined in [103]. The coverage criterion used in the approach presented in this chap-

ter is the rule coverage criterion presented in [103]. The rule coverage criterion is
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analogous to the transition coverage criterion described in [184] and in [256] which

concern variants of automata.

7.1.2 Abstract State Machines

In the ASM community, test cases have been generated automatically based on spec-

ifications, using model checking techniques [104]. The approach generates test se-

quences to achieve different coverage criteria, including rule coverage. The approach

presented in this chapter differs from the approach presented in [104] in that it uses

constraint logic programming to generate test cases. Furthermore, the approach pre-

sented in this chapter also generates test cases and not test sequences. Another

approach in the ASM community generates test cases based on the AsmL language,

an ASM derivative developed at Microsoft [116]. The test case generation approach

derives a finite state machine approximation of an AsmL specification for the purpose

of generating test cases using established algorithms [110]. The test case strategy is

accompanied by a tool for automated generation [109]. The AsmL approach to test

case generation provides an underapproximation of the true finite state machine, as

explained in [110] through the execution of the specification. The approach presented

in this chapter differs from the AsmL approach in that it does not rely on generating

a finite state machine. However, the concept of hyperstate described in [110] is closely

related to the concept of test case template described in this chapter. A benefit of the

approach described in this chapter is the ability to generate test cases incrementally

and locally, and combining the test cases to achieve coverage of the specification.

Furthermore, the generation of regression test cases has not been addressed in the

ASM community.

7.2 Test Case Generation Concepts

This section provides definitions of concepts that are used in the three subsequent sec-

tions when describing the test case generation algorithms. The provided definitions

are defined by the presented research. However, many of the concepts have already

224



been defined in test case generation theory [176]. Where applicable definitions bor-

rowed from the testing community are cited. The concept of a template is unique to

the test case generation approach presented in this chapter although the notion of

template has been used extensively in other software engineering branches.

7.2.1 Definitions

The test case generation strategy uses concepts from set theory to generate test cases

symbolically. Throughout the description of the algorithms, the terms template and

instance are used to explain the approach. At a high level, a template is a generic

concept which describes a family or a set of items which share a common property.

This definition is analogous to the definition of a set in discrete mathematics [232].

Analogously, an instance is a single member of a template, analogous to an element

of a set in discrete mathematics. The terms template and instance are used over set

and member because the terms are well-established terms in the software engineering

community. Furthermore, for a template/instance pair, the term template is used to

describe the properties of the members of the template while the term instance will

be generally omitted for brevity. For example, in the rest of this section terms like

variable template and test case template are used to denote a set of items sharing a

given property while the terms variable and test case are used to denote instances of

the templates.

A variable template is a variable name accompanied by a set of possible values for

the variable. A variable template is analogous to a datatype but the term template is

used to maintain consistent naming across concepts. For example, a variable template

for an integer variable named a with a lower bound of -11 and an upper bound of

50 would be defined as "a{-11 < a < 50}". A variable instance or variable for

short, is the variable with an associated value taken from the template, which, in this

case, is the interval [-11, 50]. For example, the variable "a = 0" is an instance of

the variable template "a{-11 < a < 50}". Analogously, a state template is a set

of variable templates. A state instance, or state for short, is a member of a state

template where each member of the state are variables which are, in turn, instances
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of the variable templates defined in the state template. The definition of a test case

instance is given before the definition of a test case template to avoid crowding the

definitions with the word template.

A test case instance or test case for short, TC, is a pair of state instances (S, S')

where S is the pre state and S' is the post state. A test case describes expected

behavior of a model as follows: "if a step of the model is executed in state S, the

resulting state will be state S'". It is important to note that the state S does not

need to be a complete state, that is, a state containing values for all the variables of

the model. The state S should contain enough variable values to exercise an aspect

of interest of the model, for example, a specific rule. Similarly, the state S' also does

not need to be a complete state, but needs to contain the expected changes in the

state caused by the test case. Item of the state not included in the pre state or in the

post state are assumed to have no effect on the purpose and outcome of the test case.

A test case template, TCT, is a family or set of test cases which exercise the same

aspect of the model. A test case template is composed of a pre state template, ST,

and of a post state template, ST'. For example, a test case template might dictate

that the pre state "a > 3, b < 10" exercises a desired aspect of the model with

expected post-state "a = a + b". The provided test case template describes a set

of test cases containing numerous, potentially infinite, possibilities for test cases that

satisfy the template. A test case is an instance of a test case template, whose pre

state and post state are contained in the pre state template and in the post state

template of the test case template. For example, the test case ( "a = 5, b = 6", "a

= 11" ) is an instance of the test case template ( "a > 3, b < 10", "a = a + b" ).

If some form of model coverage is the goal of the test case generation, the test

case and the test case template concepts can be augmented to include the intended

coverage item for the test case or test case template. A coverage test case (alterna-

tively, coverage test case template) is a pair that relates a test case TC (alternatively,

test case template TCT) with a coverage item CI: ( TC, CI ) (alternatively, ( TCT,

CI )).

A test suite instance or test suite for short, TS, is a set of coverage test cases
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which achieves a specific purpose. A coverage test suite is a set of coverage test cases

which seeks to achieve a specific level of coverage. A coverage test suite is said to be

adequate if its set of taste cases collectively achieve a desired coverage criterion of the

model. A coverage test suite is said to be minimal if its set of test cases is adequate

and no two test cases exercise the same coverage item. The definitions of adequate

and minimal are congruent with established test case generation theory [176].

In these definitions, the assumption is such that the model can be started in any

state and that the state is fully observable. The post state is observed after executing

a single step of the model. While this assumption might not be immediately adequate

in practice, it provides greater flexibility when generating the test cases. As explained

in Section 7.5, the test case generation strategy is generic and can be adapted to the

specific properties of the system being tested.

In the presented framework and in this chapter, the coverage criterion used for

test case generation is the "rule coverage criterion", which requires that all rules of

the specification be exercised [103]. Given this definition, an adequate test suite for

a given TASM specification would be a set of test cases which collectively exercise all

rules in all machines of a TASM specification. Given the rule coverage criterion, in

the context of TASM, a coverage test case CTCi would be of the form ( ( S, S ' ), {

R, } ), where "{ R, }" denotes a set of rules covered by the test case. For a TASM

specification M with n rules {S1, ... , Si, ... , Sn}, for an adequate coverage test

suite for specification M, the union of the coverage items in each coverage test case

contained in the test suite must be equal to the set of rules in the TASM specification

M.

7.2.2 Operations on Templates

In Section 7.4, test case templates generated for unit testing are combined to de-

rive integration test case templates. In doing so, operations are performed on test

case templates. Because the templates are defined hierarchically, test case templates

contain state templates, which, in turn, contain variable templates. To perform the

combination of templates, operations from set theory are used, including intersec-
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tion (n) and union (U). The combination operations are distributed inward and are

applied in a manner congruent with traditional set theory. For example, taking the

intersection of two test case templates would involve taking the intersection of the two

pre states. Taking the intersection of the two pre states involves taking the intersec-

tion of the two sets of variable templates. When taking the intersection of the variable

templates, the result of the intersection contains only the variables common to both

sets. Furthermore, the definition of each variable template would be intersected. For

template definitions defined as enumerations, the intersection is applied using tradi-

tional set theory. For template definitions defined as inequalities, the intersection is

applied according to the principles of interval arithmetic.

In its basic form, interval arithmetic is the definition of operations where the

operands are intervals. In the test case strategy, interval arithmetic is useful in two

facets - when combining test case templates and when computing the post state

template based on a pre state template. Since variable templates for integer and

for real variables can be expressed as equalities using >, <, <, and >, calculating

the post state template involves performing operations on templates. For templates

that contain sets of values for a variable, normal set operations apply and arithmetic

operations are defined as the cartesian product of operations. If a variable is "free" in a

test case template, that is, it appears only as a right-value, bounds on the values of the

variable can be provided by the user or can be obtained from the variable definition in

the TASM specification. The following subsection describes the principles of interval

arithmetic used in the test case generation strategy.

Interval Arithmetic

The operations performed on integer-valued and real-valued variables expressed as

intervals follow the basic conventions of interval arithmetic, as described in [148] and

in [145]. These operations are summarized below, following the convention that "["

and "]" are used to express inclusion for a bound of the interval, while "(" and ")"

are used to express exclusion for the associated bound of the interval.
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Pre State Post State
number{l0}, loadedblocks{ [LB + 1, 10), [21, UB + 1]}
loaded_blocks{[LB, 9), [20, UB]}, feedbegin{True},
feedbelt{empty } feed-belt{loaded}

Table 7.1: Pre and post state for sample test case template for Listing 7.1

[a, b] + [c,d] = [a+c,b+d]

[a, b] - [c, d] = [a - d, b- c]

[a, b] * [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b] / [c, d] = [min(a/c, a/d, b/c, b/d), max(a/c, aid, b/c, b/d)]

[a, b] n [c, d] = [max(a, c), min(b, d)]

[a, b] U [c, d] = [min(a, c), max(b, d)]

{(,)} op {[,]} = {(,)}

The last operation denotes that an operation between an inclusive bound and an

exclusive bound results in an exclusive bound. It is important to note that set oper-

ations and interval arithmetic can be combined. For example, for the rule given in

Listing 7.1, the relevant test case template and test case instance involves set opera-

tions and interval arithmetic. In the rest of this chapter, the notation "varnamevall,

..., val," is used to denote that variable "varname" can take on any value "vali",

where "vari can be an interval. The example from Listing 7.1 yields the test case

template described in Table 7.1. In the table, the interval bounds LB and UB denote

the upper bound and lower bound values of the variable, as specified in the TASM

environment definition. Since the variable number is free in the test case, its value

was arbitrarily selected to be 10, although an interval for the variable could also have

been derived from the variable definition in the TASM specification.

The test case template given in Table 7.1 can be easily converted to a coverage

test case template by adding the R1 rule to the pre state and post state pair. Fur-

thermore, since a template describes a family of test cases, it can be instantiated to

yield a coverage test case. An instance of the coverage test case template is shown in
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Listing 7.1 Rule for sample test case template
R1: The first rule

if (loadedblocks < number - 1 or loadedblocks >= 20) and feed_belt = empty then
feedbelt := loaded;
loaded_blocks := loaded_blocks + 1;
feedbegin := True;

I

Pre State Post State Coverage Item
number{l0}, loadedblocks = 11, R 1
loaded_blocks = 8, feed_begin = True,
feed_belt = empty feed_belt = loaded

Table 7.2: Coverage test case corresponding to the template of Table 7.1

Table 7.2. It is fairly straightforward to see that the test case shown in Table 7.2 is,

indeed, an instance of the test case template shown in Table 7.1.

7.2.3 Machines and Test Suites

The strategy presented in this chapter uses a combination of unit test case generation

and integration test case generation to generate test suites to cover all the rules of all

machines in a TASM specification. In the test case generation strategy, a generated

test suite is associated with a given machine in the TASM specification. In the

following sections, the terminology "the test suite of machine M" is used to describe

the test suite that covers the rules of machine M. Regardless of whether the test

suite is generated for unit testing or for integration testing, the generated test suite

is derived to cover a specific machine and remains associated with that machine. The

association can be visualized as a pair between a machine and a test suite (M, TS).

Of course this relationship also holds for other variations of test suites such as test

suite templates and coverage test suites.
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7.3 Unit Test Case Generation

Unit testing refers to the testing of a piece of software in isolation. In programming

language terms, unit testing could concern the testing of a function, the testing of

a class, or the testing of an algorithm [176]. The term unit is used to denote that

a small piece of the total program (in this case a small piece of the specification) is

targeted and that other pieces of the program are abstracted away in the test case

generation and execution. In terms of a TASM specification, the basic units of struc-

tural organization are rules and machines. While the rules are used as the coverage

items, the machines are used as the basic units for test case generation. In the unit

test case generation strategy, it is assumed that the machine for which test cases.are

being generated is "flat", meaning that it does not contain hierarchical composition.

Per Theorem 4.1 and Theorem 4.2, any machine with hierarchical composition could

be "flattened". However, the test case generation strategy does not necessarily re-

quire that a machine with hierarchical composition be flattened before generating test

cases. While this approach would work using the unit test case generation algorithm

presented in this section, Section 7.4 considers hierarchical composition as part of the

integration test case generation strategy; treating hierarchical composition as part

of the integration testing strategy leads to better complexity results than flattening

the machine and using the unit test case generation algorithm. Any TASM model

that contains hierarchical composition will also contain at least one machine which

does not contain hierarchical composition. The complete test case generation algo-

rithm described in Section 7.5 explains how the unit test case generation algorithm is

used on machines that do not use hierarchical composition and how the integration

test case generation algorithm combines the unit test cases for machines that use

hierarchical composition.

Since the algorithm performs the calculation of the pre state template and of the

post state template for each rule, the generated test suite template will be adequate

if, for each rule, the guard of the rule is satisfiable. Furthermore, if the machine

is consistent, the test suite will be minimal. The unit test case algorithm can be
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Listing 7.2 Unit test case generation algorithm for a machine M
* For each rule Ri of machine M:

- Create pre state template PreSi:

* Bind each free variable in the guard Gi
* For each other variable vij in the guard Gi

Find sets of values that make Gi True

- Create post state template PostSi:

* Calculate the post state template by executing R4 on the pre state
template

- Create test case template TCTi:

* TCTi = ( (PreSi, PostSi), Ri)
* Add the test case template TCTi to the template test suite TCTS

* Associate the test suite TCTS with machine M: ( M, TCTS )
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implemented by reusing the mapping to SAT described in Appendix B, for TASM

specifications whose rule guards meet the characteristics described in the appendix.

The SAT4J SAT solver provides the set of all solutions that satisfy the propositional

formula given as the SAT instance. Given the "discretization" of the state involving

integer and real variables, as explained in Appendix B, the iteration of solutions can

easily be aggregated to yield the pre state template and the post state template can

be calculated using the operations described in Section 7.2.

7.3.1 Complexity Analysis

Because the algorithm described in Listing 7.2 operates on a machine that does not

contain hierarchical composition, the generated number of test case templates gener-

ated will be equal to the number of rules for machine M. The number of generated

test case templates will always be fixed for the algorithm in Listing 7.2. However,

the properties of the guard of each rule greatly affects the complexity of generating

the test case. For an implementation using a SAT solver, the complexity analysis for

the translation is available in Section B.3.1. However, contrary to the usage of the

SAT solver for the verification of completeness and consistency where demonstrating

the existence of a solution is the goal, the test case generation algorithm needs to

iterate through all solutions and aggregate the results into the pre state template.

The performance of the aggregation will be linear in the number of solutions since

each variable can be expanded as needed depending on the properties of the solu-

tion. For generating the post state template, simple arithmetic is necessary, leading

to linear performance in the number of variables. The complexity of test case gener-

ation resides in the translation of the rule guards to SAT and executing the resulting

problem through the solver. The complexity of the test case generation itself is fairly

straightforward.
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7.3.2 Example

A short example is provided to illustrate the algorithm described in Listing 7.2. The

example provides 3 rules of a sample machine from the Timeliner case study, with

some modifications to illustrate the concepts of interval arithmetic and test case

templates. The Timeliner case study is analyzed in details in Section 8.5. In the

context of the example, the meaning of the machine is irrelevant as it is used solely

to generate test cases. In Listing 7.3, the variable NOMINALTEMPMID is a constant

equal to 25 and the lower bound of the temperature variable is -10 and its upper

bound is 40, inclusively.

Listing 7.3 Rules of the SEQUENCE_TEMP_MONITOR_WORK sub machine (par-
tial)
R7: b3 -> b4 {
t := 2390;

if tempseqb = b3 and temperature <= 19 then
tempseq_b := b4;
heating := on;
delta := NOMINAL_TEMPMID - temperature;

R8: b4 -> b4 {
t := 1630;

if tempseq_b = b4 and temperature < 22 then
temp_seqb := b4;
tempseqs := done;

I

R9: b4 -> bO {
t := 3195;

if tempseqb = b4 and temperature >= 22 then
temp-seqb := bO;
heating := off;
tempseqs := done;

The generation of unit test cases for the machine of Listing 7.3, yields 3 coverage

test case templates, one to cover each rule of the machine. The 3 test case templates

are listed in Table 7.3. The calculation of the post state template for rule R 7 utilizes

the interval arithmetic rules from Section 7.2 for subtraction. While this example is
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Table 7.3: Template test suite for the machine of Listing 7.3

somewhat simple, it is taken almost verbatim from the case study. This example will

also be reused in Section 7.4 and in Section 7.6 to illustrate the integration test case

generation strategy and the regression test case strategy.

7.4 Integration Test Case Generation

Integration testing concerns testing the combination of two or more units, eventually

resulting in the complete system being exercised. In the context of TASM specifi-

cations, the combination of units occur during hierarchical composition, where one

unit uses another unit in an effect expression either as a sub machine or as a function

machine.

7.4.1 Hierarchical Composition

In the TASM language, hierarchical composition is achieved via function machines

and sub machines. According to Theorem 4.1 and Theorem 4.2, hierarchical composi-

tion can be removed, yielding an equivalent "flattened" machine without hierarchical

composition. Consequently, the algorithm for generating unit test cases could be

applied to the equivalent "flattened" machine, removing the need for a special al-

gorithm to generate integration test cases. However, there are two main reasons

justifying the need for an.algorithm for integration testing. First, unit testing typi-

cally happens before integration testing, meaning that the set of unit test cases for

different machines will have already been generated when integration testing begins.
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Pre State Post State Coverage Item
tempseq_b{b3}, tempseq_b{b4}, R 7
temperature = {[-10, 19]} heating(on},

temperature{ [6, 35] }
tempseqb{b4}, temp_seqb{b4}, R8
temperature = { [-10, 22)} tempseq-s{done}
temp_seq_b{b4}, tempseqb{bO}, R9
temperature = {[22, 40]} heating{off},

tempseqs {done }



Consequently, reusing the unit test cases would save a certain amount of work since

the test case generation strategy does not need to start fresh. Secondly, obtaining the

equivalent "flattened" machine through the approach explained in Theorem 4.1 and

in Theorem 4.2 can lead to exponential growth in the number of rules of the "flat-

tened" machine, if multiple units of hierarchical composition are used within a rule.

The integration test case generation described in this section eliminates the need to

flatten the machine, hereby avoiding possible exponential growth in the numbers of

rules.

To make the generation of integration test cases slightly simpler, the approach as-

sumes that there are no function machines used in the rule guards. This assumption

is valid since the rule guards could easily be rewritten without the use of function

machines, as explained in the proof of Theorem 4.1. Furthermore, another simplifi-

cation involving function machines is used to ease the generation of integration test

cases. A function machine can be converted to an equivalent sub machine by convert-

ing the arguments to the function machine into fresh environment variables, which

become monitored variables of the sub machine. Furthermore, the variable to which

the return value of the function machine is assigned can be added as a controlled

variable of the sub machine. In the function machine, the output variable is replaced

by the controlled variable. Given these two simplifications, the test case generation

algorithm can be expressed as the combination of unit test cases of sub machines, as

explained in Listing 7.4. Suppose that a given machine M uses a sub machine SM in

the effect expression of one of its rules, rule Ri. Also suppose that a coverage test

suite template has been generated for submachine SM using the algorithm described

in Section 7.3. Machine M and sub machine SM could share monitored variables. If

they do, the algorithm must take into account the possibility that the rules of the

two machines could be enabled under different conditions for the same variables. It is

assumed that the machines do not share controlled variables because this would result

in update set inconsistency per ASM theory [42]. In the description of the algorithm,

it is assumed that the coverage test suite template for machine SM contains m test

case templates, of the form TCTsM,j = ( ( PreSsM,j, PostSsMj, ), Sj ), where the
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subscript SM, j is used to denote the machine to which the test case belongs, in this

case machine SM and the rule covered by the test case, in this case the jth rule effect

expression.

In the algorithm of Listing 7.4, if the two machines do not share monitored vari-

ables, the resulting test suite is simply the union of the test case templates for machine

SM with the test case template for rule Ri or machine M. If the two machines share

monitored variables, the variable templates for the shared variables are intersected

using the set intersection and the interval arithmetic described in Section 7.2.2. In

theory, the intersection of the pre states could be empty, but this situation would oc-

cur only if the guards of the sub machine contradict the guards of the machine which

uses the sub machine. If this situation is encountered, it would result in the rules of

the sub machine never being enabled. Such a situation would not occur purposefully,

otherwise there is no point in using the sub machine in the model.

The algorithm provided in Listing 7.4 is given for hierarchical composition for

a single sub machine. It can easily be generalized for p sub machines SMk used

in the effect expression. For k machines that do not share variables, rules can be

selected arbitrarily, one for each machine and can be aggregated into the test case

template using the union operator. If the sub machines do not contain the same

number of rules, some rule coverage will be repeated for some machines, but the

combination of rules covered by each test case template will be unique. The total

number of test case templates generated for k sub machines will be equal to the

number of rules of the sub machine that has the largest number of rules. If the

machines share monitored variables, the generated test case templates are assembled

using the intersection operator for the pre state, following the approach of Listing 7.4,

but for k machines. In this instance as well, the total number of generated test case

templates is equal to the number of rules of the sub machine that has the largest

number of rules.
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Listing 7.4 Integration test case generation algorithm for a machine M and a sub
machine SM. Machine M uses sub machine SM in the effect expression of rule R,

* Generate the pre state PreSi for rule Ri of machine M using the approach given
in Listing 7.2

- If machine M and sub machine SM do not share variables:

* Generate the post state PostSi for rule Ri of machine M, for the
effect expressions not containing hierarchical composition, using the
approach given in Listing 7.2

* For each test case template TCTsM,j for sub machine SM:
* Create m test case templates for machine M:

TCTi = ( (PreSi U PreSSM,j, PostSi U PostSsM,j), (Ri, Sj))

- If M and sub machine SM share monitored variables:

* let PreSSSM,j C PreSsM,j be the set of variable templates of machine
SM for monitored variables which are shared with machine M

* let PreSNsM,j = PreSsM,j \ PreSSSM,j

* let PreSSi C PreSi be the set of variable templates of machine M for
monitored variables which are shared with machine SM

* let PreSNi = PreSi \ PreSSi

* calculate the new pre state PreS( = (PreSSi n PreSSSM,j) U
(PreSNi U PreSNsM,j)

* Generate the post state PostSi for rule R, of machine M, for the
effect expressions not containing hierarchical composition, using the
pre state PreSi and the approach given in Listing 7.2

* For each test case template TCTsM,j for sub machine: SM:
* Create m test case templates for machine M:

TCTi = ( (PreS(, PostSi U PostSsM,j), (Ri, Sj))
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7.4.2 Complexity Analysis

Generating the integration test case templates using the algorithm described in List-

ing 7.4 avoids the exponential growth that would result from generating a "flattened"

version of the machine. Generating a flattened machine which uses multiple sub ma-

chines in its effect expression adds a number of rules to the host machine equal to the

product of the number of rules of the sub machines. A coverage test suite template for

the flattened machine would contain one test case per rule and hence an exponential

number of test cases. For the algorithm given in Listing 7.4, the number of test cases

necessary to cover the host machine and the sub machines is equal to the number of

rules of the machine with the largest number of rules. The complexity for generating

the pre state template of machine M is identical to the complexity of generating the

pre state template for unit test cases, as explained in Section 7.4.2. Combining the

test suite from machine M with the test suite from machine SM is linear in the number

of rules for both machines. Calculating the post state template and the combination

of the pre state template depends on the properties of the variables used in the rules.

7.4.3 Example

The example from Section 7.3.2 is extended to illustrate the generation of integration

test cases. Two machines are added to the machine described in Listing 7.3. The

first machine added, shown in Listing 7.5, does not contain hierarchical composition,

and is analogous to the machine given in Listing 7.3. The humidity variable has a

lower bound equal to 0 and an upper bound equal to 100. The test suite template

for the machine of Listing 7.5 is given in Table 7.4 and has been obtained using the

algorithm described in Listing 7.2.

The second machine which is added to the example uses both the machine from

Listing 7.3 and the machine from Listing 7.5 in one of its rule effect expression. The

machine is also adapted from the Timeliner case study with extensions to illustrate the

generation of integration test cases. The machine of interest is shown in Listing 7.6.

The coverage test case template for rule P4 is easily generated using the algorithm
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Listing 7.5 Rules of the SEQUENCEHUMIDITYMONITORWORK sub machine
(partial)
S9: c4 -> cO {

t := 1950;

if humid_seqb =
humid_seq_b :=
humidseq_s :

S10: c5 -> c5 {
t := 1630;

if humid_seq_b =
humid_seq_b :=
humidseq_s :=

Sil: c5 -> cO {
t := 3195;

if humid_seq_b =
humid_seq_b :=
humidifier
humid_seq_s :=

c4 and humidity > 39 then
cO;
done;

c5 and humidity < 50 then
c5;
done;

c5 and humidity >= 50 then
cO;
off;
done;

Pre State Post State Coverage Item
humid_seqb{ c4}, humidseq-b{cO} S9
humidity = {(39, 100]} humid_seq_s{done}
humid_seq_b{c5}, humid_seq_b{c5}, Slo
humidity = {[0, 50]} humidseqs{done}
hurnidseq_b{c5}, humidseq_b{cO}, S11
humidity = {[50, 100]} humidifier{off},

humidseq_s{done}

Table 7.4: Template test suite for the machine of Listing 7.5
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from Listing 7.2. The generated test suite is shown in Table 7.5 and contains 4

coverage test case templates. The test suite covers all the rules of the machines. The

generated test suite shows the benefits of the integration testing strategy compared

to generating a "flattened" machine and using the unit test case generation strategy.

Generating an equivalent "flattened" machine would yield 10 rules, requiring 10 test

cases to cover all the rules of the "flattened" machine. By using the integration test

case generation algorithm described in Listing 7.4, 4 test cases are sufficient to cover

all the rules of both machines.

Listing 7.6 Rules of the EXECUTE_PLANTSIM_SEQUENCES sub machine
P3: Execute sequences

if exec.seq = not done then
SEQUENCEHUMIDITYMONITORWORK ();
SEQUENCETEMPMONITOR_.WOIRK ();
exec_seq := done;

P4: Bundle finished

{
if exec seq = done then
plantsims := done;
execseq := not done;

In order to add another level of hierarchical composition, which will prove useful

in Section 7.6.4, an extra machine is introduced, which uses the machine shown in

Listing 7.6 in rule V1. The definition of the machine is shown in Listing 7.7. The test

suite for the machine can easily be generated using the integration testing algorithm

shown in Listing 7.4, combined with the test suite template shown in Table 7.5. The

resulting test suite template is shown in Table 7.6.

7.5 Complete Test Case Generation Algorithm

The complete test case generation algorithm combines the unit test case generation

approach from Section 7.3 and the integration test case generation strategy described

in Section 7.4. The algorithm described in this section can be used on a machine at
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Pre State Post State Coverage Item
execseq{not_done}, exec_seq{done }, P 3, S9 , R7
humidseqib{c4}, humid_seqb{cO},
humidity = {(39, 100] }, humidseq_s{done}
tempseq_b{b3}, tempseq_b{b4},
temperature = {[-10, 19]} heating{on},

temperature{ [6, 35 }
execseq{notdone}, execseq{done}, P3, S10, R8
humidseqb{c5}, humidseqb{c5},
humidity = {[0, 50]}, humidseqs {done}
temp-seqb{b4}, tempseqb{b4},
temperature = {[-10, 22)} tempseqs{done }
execseq{not_done }, exec seq{done }, P3, S1 , R9
humidseq_b{c5}, humid-seqb{cO },
humidity = {[50, 100]}, humidifier{off},
tempseqb{ b4}, humidseqs{done}
temperature = { [22, 40]} tempseq-b{b0},

heating{off},
temp_seqs {done}

execseq{done}, execseq{notdone}, P4

plantsim-_s{done},

Table 7.5: Template test suite for the machine of Listing 7.6

Listing 7.7 Rules of the PLANTSIM_BUNDLE sub machine
Vi: Bundle Active
{
if plantsim_bundle_status = active then

EXECUTE_PLANTSIM_SEQUENCES ();

}

V2: Bundle Inactive

if plantsim_bundle_status = inactive then
plantsim_s := done;

I
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Pre State Post State Coverage Item

exec_seq{notdone}, execseq{done}, V1 , P3 , S9, R7
humidseqb{c4}, humidseqb{cO},
humidity = { (39, 100]}, humidseqs {done}
temp_seqb{b3}, tempseq_b{b4},
temperature = {[-10, 19]}, heating{on},
plantsimbundlestatus{active} temperature{ [6, 35] }
exec_seq{notdone}, execseq{done}, V1, P3, Sio, R8
humidseq_b{c5}, humidseq_b{c5},
humidity = {[0, 50])}, humidseq_s{ done}
temp_seq_b{b4}, temp_seq_b{b4},
temperature = {[-10, 22)}, tempseqs{done}
plant simbundlestatus{active}
execseq {notdone} , execseq{done}, V1 , P3 , S11, R9
humid_seqb{c5}, humidseqb{cO},
humidity = {[50, 100]}, humidifier{off },
temp_seq_b{b4}, humidseqs{done}
temperature = {[22, 40]}, temp_seq_b{bO},
plantsimbundle_status{active} heating{off},

tempseqs{done}
execseq{done}, execseq{notdone}, V1 , P4
plantsimbundle_status{active} plantsims{done }
plantsim_bundle_status{ inactive} plantsims {done } V2

Table 7.6: Template test suite for the machine of Listing 7.7
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any level. The core idea behind the test case generation strategy is that a test suite

can be associated with an individual machine to test the machine. The test cases are

generated in a "bottom-up" fashion, by reusing the test suites already generated for

machines which are combined through hierarchical composition. The complete test

case generation algorithm is given in Listing 7.8.

Listing 7.8 Complete test case generation algorithm for a given TASM specification
* For a given TASM specification:

- For each machine Mi which does not contain hierarchical composition:

* Generate a coverage test suite template TCTSi using the algorithm
described in Listing 7.2

* Associate the test suite with the machine: ( Mi, TCTSi )

* Add the pair to the test suite for the specification

- For all remaining machines Mfj which do not have a test suite associated
with them:

* Gather all machines Pk used for hierarchical composition in A§j

* Loop recursively until all machines Pk have an associated test suite in
the model:

Generate a template coverage test suite, TCSTk, for machine Pk
using the algorithm described in Listing 7.4

Associate the test suite with the machine: ( Pk, TCTSk )

Add the pair to the test suite for the specification

* Generate a coverage test suite template, TCSTj for machine Afj using
the algorithm described in Listing 7.4

* Associate the test suite with the machine: ( Aj, TCTSj )

* Add the pair to the test suite for the specification

* Loop until all machines are included in the test suite for the specifi-
cation

7.5.1 Test Sequences

The test case generation strategy described in this chapter concerns the generation

of test cases to exercise a single rule, and hence a single step of the specification. The

assumption, as stated in Section 7.2, is that the specification can be executed in any

state and that the state resulting from a step execution is fully observable. However,
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in practice, this is not necessarily the case since intermediate steps could be present

between the consumption of inputs and the generation of outputs. For this reason,

related approaches to test case generation often produce test sequences, which are

sequences of inputs and outputs used to exercise the specification and the underlying

system under test. The approach presented in this chapter could certainly be used to

generate test sequences but provides a more flexible strategy to the execution of test

cases. Since the test case templates are used to exercise a single rule, sequences could

be generated by concatenating test case templates whose post states and pre states

are congruent. Furthermore, a generic approach to test case generation could be

devised by describing the properties of initial states and by describing the properties

of observable states. Which such a theory, test sequences could be assembled using

the concatenation of test case templates, with the pre state of the first test case

template in the sequence meeting the property of the initial state and the final test

case template in the sequence containing a post state which meets the observability

criteria.

The test case generation strategy can be viewed as generating a set of ordered

dominoes, where the top face is the pre state template and the bottom face is the

post state templates. The dominoes can be assembled linearly to achieve a desired

purpose, in the form of a test sequence. As long as all the test case templates from a

given test suite are involved in a test sequence, the rule coverage criteria would still

be preserved. These ideas are explored in the Timeliner case study in Section 8.5 and

as part of future work in Chapter 9.

7.6 Regression Test Case Generation

Regression testing concerns the testing of an existing system which has already been

tested to a certain extent, after changes have been made to either the system itself or

to the specification. Conceptually, regression testing occurs after both unit and inte-

gration testing have been accomplished, to validate the correctness of a change made

to the system or to the specification, during a late of the lifecycle [176]. Such a change
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could be the fixing of a defect, a change in requirements, or the introduction of new

functionality. During regression testing, it is generally assumed that it is not feasible

to complete repeat the unit testing and the integration testing efforts, due to time

and budgetary constraints. If the unit and integration testing efforts can be repeated

without too much toil, there is no need for a specific approach to the generation of

regression test cases. The goal of regression testing is to identify a subset of both unit

and integration testing that should be performed to adequately validate the change in

the system or in the specification. In terms of a TASM specification and the concepts

introduced so far, the regression test case generation strategy focuses on two aspects

- which test cases need to be generated and/or modified to accommodate the change

and which test cases need to be executed and/or repeated to validate the change. The

goal of the strategy is to provide a minimal set of tasks that need to be performed to

gain confidence into the correctness of the change, as opposed to repeating the entire

testing activities for every single change that occurs. However, it is generally under-

stood that the validation of the correctness of the changes could equally be achieved

through repeating the unit and integration testing activities described in the previous

sections, albeit at a higher cost.

The generation of regression test cases is achieved by combining the approaches

for unit test case generation and for integration test case generation with the trace-

ability approach explained in Chapter 6. The idea behind the test case generation

strategy is to provide a mapping between the original specification and the modified

specification, using the archetypical refinement types from Section 6.2.1. For each

type of refinement, the correctness criteria explained in Section 6.2.2 are used to

guide the generation of test cases. It is important to distinguish specification changes

between defect correction and functionality addition. This distinction is important

because defect correction purposefully alters the semantics and the goal of the change

is not to preserve semantics. Consequently, the refinement would most likely be of

the "any" variety. However, if the defect correction is limited to a single rule, the

regression test case strategy can handle this case appropriately. For changes that

span multiple facets of the model and where no refinement types can be applied, the
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generation of test cases would most likely need to be started anew using the algorithm

of Section 7.5. In the following subsection, each type of refinement from Section 6.2.1

is listed and its effect on generation of regression test cases is analyzed.

7.6.1 Refinement Types

The regression test case generation strategy revolves around two basic concepts -

adding/removing test cases to/from a test suite and modifying existing test cases.

The specific approach depends on the type of refinement. Furthermore, the regression

test case generation approach propagates changes upstream and downstream through

hierarchical composition. When exploring the different types of refinement, 3 cases

are considered. The first case considered is the situation where the change happens in

a machine that is not involved in any sort of hierarchical composition. The second case

to consider is the case where the modified machine is used for hierarchical composition,

in the effect expression of another machine. Finally, the third case concerns the

use of hierarchical composition in the rule of the machine where the change occurs.

While these three cases are not mutually exclusive, they can be studied in isolation

and the results can be generalized to a situation involving more than 1 of these

situations. While the traceability approach presented in Chapter 6 aimed to provide

an incremental approach to specification building, the regression test case strategy

can be used as an incremental approach to test case generation. In the following

subsections, it is assumed that unit test suites and integration test suites exist before

the change is performed and the regression test cases are generated.

Step Expansion and Rule Expansion

As a reminder, the step expansion refinement is used to divide a step into multiple

steps. Furthermore, the rule expansion refinement is used to modify an existing rule

by adding items to the rule guard or to the effect expression. While both types of

refinements capture different purposes, the regression test case generation strategy

is the same for both of these types of refinements. As explained in Section 6.2.1,

247



both types of refinements are one-to-many mappings where the rule of the original

machine M 1, Ri, is divided into m rules of a modified machine M'1, SI (1 < j <

mn). For the case where M 1 is not involved in hierarchical composition, the coverage

test case template that covers rule Ri is removed from the test suite, and mrr new

coverage test case templates are generated using the approach described in Section 7.3,

corresponding to the added rules in the modified machine. The rules Sj of machine

M' are used as the coverage items. The new test case templates can be added to the

test suite without any changes.

For the case where a modified rule Sj uses hierarchical composition in its effect

expression, each test case template which covers rule Ri is removed from the test

suite. Integration test case templates can be generated and added to the test suite

using the approach described in Section 7.4 for each respective rule Sj.

For the case where the machine is used in the effect expression of another machine,

M 2, the test suite of machine M 2 needs to be regenerated for the test case templates

where rule Ri is in the coverage items. For each test case template containing rule

P-, m new coverage test case templates are generated, to cover the rule where the

hierarchical composition occurs in machine M 2 and the new rules Sj used for the

step or rule expansion. The changes in the test suite of machine M 2 are then prop-

agated bottom-up, wherever a test case template covers a rule involved in the chain

of changes. The algorithm which incorporates the three concepts is summarized in

Listing 7.9.

Rule Addition

The test case generation strategy for the rule addition refinement is similar but slightly

different than it is for the step and rule expansion refinements. Because the rule

addition refinement introduces a new rule Si which is unrelated to any rule in machine

M 1, the rule cannot already be involved in existing test case templates. Consequently,

the rule addition refinement will introduce new test case templates, but does not need

to remove or modify existing test case templates. If a rule is added to a machine,

a test case template is generated for the added rule according to Listing 7.2 if the
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Listing 7.9 Regression test case generation for a step or rule expansion refinement
* Generate test suite for machine M' by duplicating the test suite for machine

M1

* For rule Ri of machine M1:

- If rule Ri does not contain hierarchical composition:

* Remove the test case template which covers rule R,
* Generate new test case templates for each refined rule Sj using the

approach described in Listing 7.2

- If rule Ri contains hierarchical composition:

* For rules Sj which contain hierarchical composition, generate test case
templates using the approach described in Listing 7.4

* For rules Sj which do not contain hierarchical composition, generate
test case templates using the approach described in Listing 7.2

* Add all generated test case templates to the test suite for machine M'

- If machine M1 is used for hierarchical composition in another machine M2:

* Remove test case templates in machine M1 where rule Hi is in the
coverage item

* For each rule Dk of machine M2 which uses machine M1 in its effect
expression:

add m new test case templates to the test suite of machine M2,
using the approach described in Listing 7.4
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added rule does not use hierarchical composition, and according to Listing 7.4 if the

rule contains hierarchical composition. If machine M 1 is used by another machine

through hierarchical composition, coverage of rule Sj needs to be propagated upwards

by adding a new test case template to each test suite associated with a machine which

uses machine M1 as a sub machine in one of its rule effect expressions. As is the case

for the step and rule expansion refinements, when the modified machine is used for

hierarchical composition the changes to the test cases need to be propagated upwards

throughout the chain of hierarchical composition.

Step Contraction, Rule Contraction and Rule Deletion

For a step contraction refinement, a rule contraction refinement, and a rule deletion

refinement, the regression test case generation strategy is different because rules are

removed and hence test case templates must be removed. If the rules being removed

do not contain hierarchical composition, the corresponding test case templates can

be removed directly in the test suite of machine M 1 and in all other test suites

where a removed rule is part of the coverage criteria. However, if a removed rule

contains hierarchical composition, the situation is more complex. For the rule deletion

refinement, the corresponding test case templates can be removed directly because

the hierarchical composition will no longer be part of machine M'1. The deletion

of test case templates can be propagated'upwards. A problem occurs if there are

multiple levels of hierarchical composition involving machine M 1, where the rule is

removed. If multiple levels are present, removing the rule and the associated test

case template upwards could cause the coverage test suite of a given machine to be

incomplete. If this case occurs, the template test suite for the faulty machine can

be generated anew, using the algorithm described in Listing 7.4. Furthermore, the

test suites of all affected machines should also be regenerated fresh, using the same

algorithm.
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The Any Refinement

Since the "any" refinement is a type of refinement used for refinements that do not fit

the listed types, the mapping is defined as a many-to-many mapping. Because there

is no clear structure for the "any" refinement, regression testing strategies cannot be

devised. If the arity of the refinement is analogous to the arity of the refinements

mentioned previously, the strategies previously expressed could be used. However,

if the arity of the refinement does not match the cases mentioned previously, the

test case generation must start anew, using the algorithm described in Listing 7.8,

invalidating all machine test suites affected by the "any" refinement.

7.6.2 Test Case Execution

The primary purpose of the regression testing strategy is to modify existing test

suites to accommodate the changes introduced in the specification. In what has been

discussed so far, the goal of the approach is to minimize the amount of test case

generation that needs to be performed, if unit and integration test suites already

exist. However, another important facet of regression testing is identifying which test

cases need to be executed to fully exercise the changes introduced in the specification.

Given the structure of the test case generation strategy expressed in Section 7.3 and

in Section 7.4, the test suite associated with each machine contains coverage criteria

for each test case template by listing covered rules. Determining which test cases need

to be executed to exercise the change is fairly straightforward because the influenced

rules can be easily identified through the coverage criteria. Consequently, by using

the traceability approach from Chapter 6, and the regression test case generation

strategy described in the previous section, the test cases that need to be executed

can be easily identified.

7.6.3 Complexity Analysis

The worst-case scenario for the generation of regression test cases occurs when all the

test suites of all the machines need to be regenerated, leading to the complexity of
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the complete test case generation algorithm described in Listing 7.8. The complexity

of that algorithm builds on the complexity of the unit test case generation algorithm

and on the complexity of the integration test case generation.

For test case generation where only a subset of the test suite needs to be re-

generated, the complexity of the test case generation will depend on the number of

affected rules and of affected test case templates. In turn the number of affected test

case templates will depend on the hierarchical composition properties of the TASM

specification. In the worst case for hierarchical composition, the affected number of

test cases will vary linearly with the number of machines in the specification and the

number of modified/added rules in the changes made to the specification.

7.6.4 Example

The example from Section 7.4.3 is modified to demonstrate the test case generation

strategy for regression testing. The machine shown in Listing 7.6 is refined through

a step expansion refinement into two rules. The resulting machine is shown in List-

ing 7.10. In Listing 7.10, rule P3 from Listing 7.6 is refined into two rules, rule D3

and rule D4. The traceability relationship for the refinement can be expressed as:

T = Tsexp U T•d (({P 3}, {D 3, D4})) U (({P 4}, {P 4}))

- (({P3 }, {D 3, D4 }), ({P 4 }, {P4 }))

For all other rules of all other machines in the example, the traceability is achieved

through identity refinements.

Given the approach described in Section 7.6.1 for the step expansion refinement,

only the test cases involving the P3 rule as a coverage item need to be regenerated and

executed. The test suite of machine SEQUENCEHUMIDITYMONITOR WORK,

shown in Table 7.3, and the test suite of the machine SEQUENCETEMPMONI-

TOR WORK, shown in Table 7.4 do not need to be modified. For the EXECU-

TEPLANTSIMSEQUENCES, only the last row of the test suite shown in Table 7.5,
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Listing 7.10 Rules of the refined EXECUTEPLANTSIMSEQUENCES sub ma-
chine
D3: Execute sequences

if exec-seq = not-done and seq = humid then
SEQUENCEHUMIDITYMONITORWORK();
seq := temp;

D4:. Execute sequences

if exec_seq = notdone and seq = temp then
SEQUENCETEMPMONITORWORK();
execseq := done;
seq := humid;

I

P4: Bundle finished

if exec seq = done then
plantsims := done;
exec_seq := notdone;

253



Table 7.7: Test suite template for the machine of Listing 7.10

the test case template which covers rule P4, does not need to be regenerated. The

test case templates to cover the refined rules, rule D3 and rule D4 , are regenerated

using the algorithm given in Listing 7.4. The resulting test suite is given in Table 7.7.

It is important to note that the EXECUTEPLANTSIMSEQUENCES machine is

used as a sub machine in a rule effect expression of machine PLANTSIMBUNDLE,

in rule V1, as shown in Listing 7.7. Consequently, the changes in the test suite for the

EXECUTEPLANTSIMSEQUENCES need to be propagated in the test suite of the

PLANTSIM_BUNDLE machine. The resulting test suite for the PLANTSIM_BUN-

DLE machine is shown in Table 7.8.
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Pre State Post State Coverage Item
execseq {notdone}, humidseqb{cO}, D3 , S 9
seq{humid}, humidseqs{done},
humidseqb{ c4}, seq{temp}
humidity = {(39, 100]}
execseq{notdone}, humidseqb{c5}, D3, S10
seq{ humid}, humid-seqs{done },
humidseqb{c5 }, seq{ temp}
humidity = {[0, 50]}
execseq{not-done}, humidseqb{cO }, D3 , S11
seq{ humid}, humidseqs { done},
humid_seq_b{c5 }, seq{temrnp },
humidity = {[50, 100]} humidifier{off}
execseq{not_done }, execseq{done }, D4 , R 7
seq{temp}, temp-seqb{b4},
tempseqb{b3}, heating{on},
temperature = {[-10, 19]} temperature{ [6, 35]},

seq{humid}
execseq{not_done }, execseq{done }, D4 , R 8
seq{temp}, temp-seqb{b4},
temp_seq_b{b4}, seq{humid}
temperature = {[-10,22)}
execseq{notdone }, exec-seq{done }, D4 , R9
seq{temp}, tempseqb{b0},
temp-seq b{b4}, heating{of f},
temperature = {[22, 40]} seq{humid}
exec-seq{done} execseq{notdone}, P4

plant-sim.s {done},



Pre State Post State Coverage Item

execseq{not-done}, humidseqb{cO}, V1 , D3 , S9
seq{ humid), humidseqs {done},
humid-seqb{c4}, seq {temp}
humidity = {(39, 100]},
plantsim-bundle-status {active}
execseq{notdone}, humidseqb{ c5}, VI, D3 , S10
seq{ humid), humidseqs {done},
humid-seq-b{c5), seq{temp}
humidity = {[0, 50]},
plantsimbundlestatus{active}
execseq{not-done), humid-seqb{cO}, V1, D3, S11
seq{ humid), humidseqs {done},
humid-seq-b{c5}, seq{temp),
humidity = {[50, 100]}, humidifier{off)
plantsim _bundle_status { active }

execseq{notdone}, execseq{done), V1 , D4 , R7
seq{temp), temp-seqb{b4),
tempseqb{b3 }, heating{on},
temperature = {[-10, 19]} temperature{[6, 35]},
plantsim-bundle-status{active) seq{humid}
execseq{not-done}, exec-seq{done}, V1, D4 , R8
seq{temp}, tempseqb{b4),
tempseq_b{b4}, seq{humid}
temperature = {[-10, 22)},
plantsim-bundl estatus{active}
exec-seq{not-done}, exec-seq{done}, V1, D4 , R9
seq{temp}, temp_seq_b{bO},
tempseqb{ b4}, heating{off},
temperature = {[22, 40]), seq{humid)
plantsim-bundlestatus{active }
execseq{done}, execseq{notdone), Vl, P4
plantsim bundle-status{active} plantsims{ done }
plantsim_bundlestatus {inactive } plantsim.s{ done } V2

Table 7.8: Test suite template for the machine of Listing 7.7
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Table 7.9: List of test cases that need to be executed to cover the refinement

Test Case Execution

Based on the generation of regression test cases, only a subset of the test case tem-

plates need to be executed to validate the correctness of the change. The set of test

cases which need to be executed are shown in Table 7.9, for each machine affected by

the change. Because there was no change to the Si rules and to the R, rules, only rule

D3 and rule D4 need to be exercised in machine EXECUTEPLANTSIMSEQ UENCES.

A test case template to cover each rule was selected arbitrarily from Table 7.7. A

similar approach is used for machine PLANTSIMABUNDLE, where only 2 test case

templates need to be executed to validate the effect of the change.

7.7 Segue into Chapter 8

This chapter presented an approach to automatically generate test cases based on

a.specification expressed in the TASM language. More specifically, facilities were

presented to automatically generate unit test cases, integration test cases, and re-

gression test cases. The test case generation capabilities represent the final feature of

the proposed framework. In the next chapter, Chapter 8, experimentation using the

presented framework is performed using three case studies.
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Chapter 8

Case Studies

This chapter presents the results of the three case studies that are used to evalu-

ate the capabilities of the presented framework. The applications used for the case

studies are explained in details in Section 2.8. In this chapter, each case study is pre-

sented in a separate section and each section presents the TASM specification of the

case study, the functional analysis results, the execution time analysis results, the re-

source consumption analysis results, and the test case generation results. In addition,

he Electronic Throttle Controller (ETC) case study, analyzed in Section 8.2, in Sec-

tion 8.3, and in Section 8.4, utilizes the bi-directional traceability strategy by relating

three separate models of the ETC - a high level model, and tasking model, and a low

level model. The ETC case study is also used to demonstrate the test case generation

approach for regression testing. The other case studies are used to demonstrate the

unit and integration test case generation capabilities of the framework.

For each case study, the TASM model is described in each respective section, but

only a subset of the model listings are provided. The complete TASM models for each

case study are provided in the appendices. The model for the production cell case

study is provided in Appendix D, the model for the ETC case study is provided in

Appendix E, and the model for the Timeliner case study is provided in Appendix F.

Furthermore, for each case study, the UPPAAL model obtained through the translations

is described, but the resulting complete UPPAAL model is not included, for brevity.

Each case study is followed by a brief discussion of the results and a commentary
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on the practical usefulness of the framework features. The overall evaluation of the

framework, in light of the results of the case studies, is presented in Chapter 9.

Chapter 9 also recapitulates the contributions of the thesis in light of the research

objectives presented in Chapter 1.

8.1 Production Cell

The production cell case study is an automated manufacturing system which is based

on an industrial plant in Karlsruhe in Germany [163]. The case study is described

in details in Section 2.8.1. As a reminder, the logical view of the production cell is

provided in Figure 8-1 and contains 5 hardware components to achieve the system's

goals - a loader, a feed belt, a robot, a press, and a deposit belt. The embedded

controller must command each component to stamp blocks, which are introduced in

the system by the loader. The controller reads the state of the system through a

set of sensors, listed in Table 2.4 and commands the various hardware components

through a set of actuators, listed in Table 2.2.

Deposit Belt

Press

RR,

Loader Feed Belt

Figure 8-1: Top view of the production cell

8.1.1 Model

The TASM model of the production cell is described in great detail for this case

study, because it is the first case study presented. The models pertaining to the other.
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Name Type Purpose
Controller Main Commands the actuators
Loader Main Loads blocks onto the feed belt
Feed Main Carries blocks from the loader to the robot
Robot Main Simulates the rotation of the robot
ArmA Main Simulates arm a
ArmB Main Simulates arm b
Press Main Stamps blocks
Deposit Main Carries blocks out of the system

Table 8.1: List of main machines used in the production cell model

case studies are described in less details. In the production cell TASM model, each

component of the production cell is modeled as a main machine, except for the robot.

As a reminder, in the TASM language, a main machine is a unit of concurrency. The

robot component is modeled as three separate main machines to capture the parallel

behavior of the motion base, arm a, and arm b, all of which can be commanded

independently. Sub machines and function machines are used, mostly to structure

the actions of the controller. The complete list of main machines is shown in Table 8.1.

In the following sub sections, as each main machine is explained, the sub machines

and function machines that are used in the model are given. The complete list of all

machines used in the production cell case study model, is available in Table D.1 in

Appendix D.

The Environment

As a rcmindcd, in a TASM model, the environment contains the list of user-defined

types, the list of global variables, and the list of resources used in the model. The

list of user-defined types used in the production cell model is given in Listing 8.1.

The status type is used to keep track of whether various parts of the system (e.g.,

the belts, the arms, and the press) are loaded or empty. The armposition type is

used to represent the position of the arms with respect to the robot angle, in discrete

steps. For example, if arm a is at the feed or at the press, the controller takes certain

actions. If arm a is neither at the feed nor at the press, the arm is in transit. This

"discretization" is used because if an arm is not at the press, at the deposit belt, or
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at the feed belt, it makes no difference to the controller whether the robot angle is

31, 32, or 33 degrees. The discrete positions of the arms were obtained through the

specification of the desired behavior of the controller in the problem definition [163].

The models for the arms use a slightly different approach than the rotation of

the robot base. Instead of relating a continuous length to a set of discrete values,

two discrete values of interest are used via the armextension type - retracted and

extended. The Actuator type is used to indicate whether a motor or a magnet is

on or off. The Polarity type is used to set the polarity of the various motors. The

Stamp data type is used to set the block status in the press. Finally, the Error type is

used to catch certain types of errors when performing safety analysis of the controller.

The use of the Error type and the topic of functional analysis and verification are

treated in Section 8.1.2.

Listing 8.1 User-defined types of the production cell model
status := {empty, loaded};
armposition := {atfeed, atpress, atdeposit, intransit};
armextension := {retracted, extended};
Actuator := {on, off};
Polarity := {positive, negative};
Stamp := {notfinished, finished};
Error := {none, invaliddrop, invalidpickup};

The user-defined types of the model are used to restrict the set of values that the

variables of the system can take. A subset of the variables that are used in the model,

with their associated initial conditions, are shown in Listing 8.2. The complete list of

variables is given in Listing D.2 and in Listing D.3 in Appendix D. The variables are

grouped into sensors, which correspond to the sensors of Table 2.4, actuators, which

correspond to the actuators of Table 2.2 and Table 2.3, constants, and redundant

information. The redundant information is used to keep track of the system's state,

inside the software, as the controller performs actions. For example, the feed belt is

loaded once the loader puts a block on it and stays loaded until the robot picks up

the block. The loaded_blocks and the processed_blocks variables are used to keep

track of how many blocks have been inserted in the system and how many blocks

have exited the system. The wait variable and the robot_wait variable are used to
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synchronize the controller and the robot rotation. Essentially, they are used to enforce

fairness [30], to make sure that the system's state can progress and that the robot

can process a command from the controller. More specifically, since the controller

actions are instantaneous, the wait variable is used to enable the environment to

make progress between controller actions. Without this constraint, the controller

could perform an infinite number of actions before other components get a chance to

perform a single action, leading to so-called Zeno runs [30].

The convention of the robot_angle variable is that it is 0 when arm a is at the feed

and arm b is at the press, as in Figure 8-1. As the robot rotates counter clockwise,

the angle increases by 30 degrees. When the value of the robotangle variable is 90,

arm a is at the press and arm b is at the deposit. For the controller strategy used

in this model, the value of the robot_angle variable will remain between 0 degrees

and 90 degrees inclusively. The model also contains one resource, power, which gets

consumed when the hardware components are operating.

Throughout the model, as a convention, capital letters are used to describe con-

stants and sub machine calls. The ROTATION-ANGLE constant is used as the discrete

angle by which the robot is rotated when the motor-robot actuator is on. The value

"30" was selected as the delta of rotation because it fits the problem description of

the durative actions listed in Table 2.5.

In the following subsections, the main components, modeled as main machines, are

described one by one. The description of the ArmB main machine and of the Deposit

main machine are omitted because they are similar to the ArmA main machine and to

the Feed main machine, respectively. The complete TASM model for the production

cell case study is available in Appendix D.

Loader

The loader is the component that drives the system by putting blocks on the feed

belt. The rules of the Loader main machine are shown in Listing 8.3. In the listing,
the variable number is an integer variable that is internal to the Loader machine.

This variable is used in the constructor to determine how many blocks the loader will
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Listing 8.2 Variables of the production cell model (partial)
//sensors
Integer[O, 90] robot_angle := 0;
Stamp press_block := notfinished;
Boolean feed_begin := False;
armextension armaext := retracted;
armextension armbext := retracted;
Boolean feed end := False;
Boolean
Boolean

//redundant
armposition
armposition
status
status
status
status
status

deposit_begin
depositend

:= False;
:= False;

info, derivable from sensors

armapos
armbpos
arma
armb
feedbelt

deposit_belt
press

//other variables
Boolean
Boolean
Integer[O, 50]
Integer[O, 50]
Boolean
Error
armposition

//actuators
Actuator
Actuator
Actuator

Actuator
Actuator
Actuator
Actuator
Actuator

Polarity
Polarity
Polarity
Polarity
Polarity
Polarity

wait
robot_wait
loadedblocks
processed_blocks
loader_done
error
robot destination

motorpress
motorarma
motor_armb

magnet_arma

magnet_armb

motorrobot

motor_feed
motor_deposit

motor_press_p
motor_arma_p
motor_armb_p
motorrobot_p
motor_feed_p
motordeposit_p

:= atfeed;
:= atpress;
:= empty;
:= empty;
:= empty;
:= empty;
:= empty;

:= False;
:= False;

:= 0;
:= 0;
:= False;
:= none;
:= atfeed;

:= off;
:= off;
:= off;
:= off;
:= off;
:= off;
:= off;
:= off;

:= positive;
:= positive;
:= positive;
:= positive;
:= positive;
:= negative;
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insert in the system. The first rule, rule RI, loads blocks on the feed belt as soon as

the feed belt is empty. Per the properties of the actions listed in Table 2.5, loading

a block on the belt takes 2 time units and consumes 200 units of power. Once the

action is complete, the feed belt is loaded and the feedbegin sensor is set to true, to

notify the controller that there is a block on the feed belt.

Listing 8.3 Rules of the Loader main machine
Ri: The feed belt is empty, put a block on it

{
t := 2;
power := 200;

if loaded-blocks < number - 1 and feed-belt = empty then

feed-belt := loaded;
loaded-blocks := loadedblocks + 1;
feed-begin := True;

R2: This is the last block...

{
t := 2;
power := 200;

if loaded-blocks = number - 1 and feed-belt = empty then.

feedbelt := loaded;
loaded-blocks := loadedblocks + 1;
feedbegin := True;
loader_done := True;

I

R3: The feed belt is loaded, do nothing
{
t := next;

if feedbelt = loaded and loaded_blocks < number then
skip;

Rule R2 is used to put the last block on the feed belt and to notify the controller

that the loader will no longer put blocks on the feed belt, through the loaderdone

variable. The last rule, rule R3, is used to wait and elapse time until the next state

change. The "t := next" construct is used to keep the machine alive until a change

to monitored variables occurs. Once all blocks have been loaded in the system, no rule

will be enabled for the Loader machine and the machine will stop, per the semantics
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of the TASM language described in Section 4.3.

Feed Belt

The Feed main machine is a simple machine that contains only two rules. The rules of

the machine are shown in Listing 8.4. Rule R1 is the only rule that changes the state.

The rule is enabled when there is a block on the belt, that block is at the beginning

of the belt, the motor is on, and the polarity of the motor is positive. When this

condition is met, the rule will take 5 time units to complete and will consume 500

units of power, per the description in Table 2.5. The effect of executing this rule

will be such that the block will move from the beginning of the feed belt to the end,

and the appropriate state change is reflected in the sensors feedbegin and feedend by

setting the appropriate variables.

Listing 8.4 Rules of the Feed main machine
Ri: Block goes to end of belt
{

t := 5;
power := 500;

if feed_belt = loaded and feed-begin = True and
motorfeed = on and motor_feed_p = positive then
feedbegin := False;
feedend := True;

R2: Else

t := next;

else then
skip;

Rule R2 will be enabled and fired whenever rule R1 is not enabled. Rule R2

has no effect on the environment and is used solely to keep the machine running.

Once again, the "t := next" construct is used to indicate that the machine will not

perform any steps until a change to its monitored variables occurs.
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Press

The Press main machine is similar to the Feed main machine. It simply reacts to the

motor being on and causes the state change to take place once the stamping of the

block is completed. The rules of the machine are shown in Listing 8.5.

Listing 8.5 Rules of the Press main machine
Ri: Press is loaded, motor is on

t 11;
power := 1500;

if motorpress = on and press = loaded and pressblock = notfinished then
pressblock := finished;

R2: Else

t := next;

else then
skip;

}

The Deposit main machine is also similar to the Feed main machine shown in

Listing 8.4. It is interesting to note that the three components described so far

update the state only through the sensors and react to state changes only through

the information available through actuator values. The Loader main machine is a

bit different than the other machines explained so far because it is used to drive the

system and is an active component, in contrast to the feed, press, and deposit which

are purely reactive components.

Robot

The Robot main machine is used to describe the rotation of the base of the robot.

The machine, whose rules are shown in Listing 8.6, uses the robot_wait variable

to give a chance for the controller to stop the motor before rotation resumes. This

behavior could also have been enforced by the use of a communication channel. The

Robot main machine differs from other machines described so far because it uses
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a sub machine called ROBOT_MOTION. As a refresher, a sub machine is a unit

of hierarchical composition. The behavior of the main machine is defined in terms

of the sub machine by merging the update set yielded by the sub machine with

update sets yielded by other sub machines, if applicable and with other updates to

variables included in the rule effect expression. For rule R1, the updates to variables

yielded by the ROBOT_MOTION sub machine will be merged with the update to

the robot_wait variable. Since rule R1 does not have a time or resource annotation,

the duration and resource consumption of the rule execution are defined by the sub

machine annotations, if they are present. In the case of the ROBOTMOTION sub

machine, the machine contains time and resource annotations, which will be used to

determine the time and resource behavior of the Robot main machine.

Listing 8.6 Rules of the Robot main machine
Ri: do

if robot wait = False then
ROBOT_MOTION();
robot_wait := True;

}

R2: wait

t := next;

if robot wait = True then
robot_wait := False;

The use of a sub machine can be viewed as a nested if statement. Sub machines

are nothing more than syntactic sugar to help structure specifications, as explained in

Theorem 4.2. The rules of sub machine ROBOTMOTION are shown in Listing 8.7.

In Listing 8.7, rules R1 and R2 are used to rotate the robot clockwise and counter

clockwise depending on the polarity of the motor. Rule Ri of the sub machine uses

two function machines, rotateClockwise and armPosition. In the TASM language,

function machines are macros that are analogous to functions in programming lan-

guages. Function machines have no side-effect in that they do not change environment

variables. The rotateClockwise function is used to return the resulting angle of doing
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Listing 8.7 Rules of the ROBOTMOTION sub machine
Ri: rotate clockwise
{

:= 2;
power := 1000;

if motor-robot = on and motor-robotp = negative then
robotangle := rotateClockwise();
armapos := armPosition(ARM_AFEEDANGLE, ARMADEPOSITANGLE,

ARMAPRESSANGLE, rotateClockwise());
armbpos := armPosition(ARMBFEEDANGLE, ARM_BDEPOSITANGLE,

ARMBPRESSANGLE, rotateClockwise());

R2: rotate counterclockwise

{
:= 2;

power := 1000;

if motor-robot = on and motorrobotp = positive then
robot-angle := rotateCounterClockwise();
armapos := armPosition(ARM_AFEED-ANGLE, ARMADEPOSITANGLE,

ARMA-PRESS-ANGLE, rotateCounterClockwise());
armbpos := armPosition(ARMBFEEDANGLE, ARMBDEPOSIT_ANGLE,

ARM_B_PRESSANGLE, rotateCounterClockwise());

R3: Else

{
else then

skip;
}
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one rotation step. The function machine also ensures that the angle doesn't go below

0 or over 360. Essentially, it returns (robotangle + ROTATIONANGLE) modulo

360. The armPosition function machine is used to set the position of each arm based

on the resulting robot angle. Since the robot_angle will not be updated until after

the rule has been completed, the armPosition function machine needs to anticipate

what the robot angle will be, which explains the call to the rotateClockwise function

machine as a parameter. The rules of the function machine armPosition are shown

in Listing 8.8. The durations and power consumptions used for the robot rotation, in

rules R1 and R2, are in accordance with the problem definition given in Table 2.5. For

the armPosition function machine, the new robot angle is passed in through the value

parameter. The other parameters include feed_angle, depositangle, and press_angle.

These values are used to determine whether the rotation will result in a given arm

being at the feed, at the press, at the deposit, or in transit.

Listing 8.8 Rules of the armPosition function machine
Ri: CCW rotation will put arm at feed
{
if value = feed angle then

out := atfeed;
}

R2: CCW rotation will put arm at deposit
{
if value = depositangle then

out := atdeposit;

R3: CCW rotation will put arm at press
{
if value = press_angle then

out := atpress;
}

R4: Else, CCW rotation will put arm in transit

else then
out := intransit;

}
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Arm A

The ArmA main machine is used to simulate the behavior of arm a. The action that

arm a can perform include extending, retracting, picking up a block, dropping a block.

The main machine uses two sub machines, DROPARMA and PICKUPARMA.

Listing 8.9 Rules of the ArmA main machine
Ri: Extend arm

{
t := 3;
power := 1200;

if motorarma = on and motor_armap = positive and

armaext = retracted then
armaext := extended;

R2: Retract arm
{
t := 2;
power := 1100;

if motorarma = on and motorarma-p = negative and

armaext = extended then
armaext := retracted;

R3: Pick up block

if magnetarma = on and arma = empty and
armapos = atfeed and feedend = True then

PICKUPARMA();

R4: Drop block

if magnetarma = off and arma = loaded then
DROPARM_A();

R5: Else

{
t := next;

else then
skip;

The rules of the DROP_ARMA sub machine are shown in Listing 8.10. The sub

269



machine is interesting because it uses the error variable to communicate an erroneous

state. More specifically, the sub machine will set the error variable to invaliddrop

if the controller commands the arm to drop a block and the arm is not extended, if

the controller commands the arm to load the press and the press is already loaded, or

if the controller commands the arm to drop a block while the arm is in transit. The

controller should not command the magnet to drop a block under these conditions.

Using the variable is not necessary to detect that an erroneous state is reachable, but

it illustrates the clever use of rules. The safety requirements to ensure that blocks

are not dropped under undesirable conditions could be phrased using the value of the

variable, such as "the value of the error variable is never equal to invaliddrop".

Listing 8.10 Rules of the DROPARMA sub machine
Ri: Drop at press

t := 2;
power := 800;

if armapos = atpress and arma = loaded and
armaext = extended and press = empty then

arma := empty;
press := loaded;
pressblock := notfinished;

R2: Invalid drop

if armapos != atpress or arma = empty or
press = loaded or armaext != extended then
error := invaliddrop;

As a reminder, rule R4 of Listing 8.9 does not contain time or resource con-

sumption annotations. Consequently, the duration and resource consumption of the

rule execution will come from the DROP_ARMA sub machine, since that machine

contains time and resource annotations.

Controller

The Controller main machine is the most complex machine of the model. In a fash-

ion similar to the Robot main machine, the Controller machine uses a variable called
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wait to enable the environment to make progress before performing an action. For

the controller, this waiting is necessary because all the actions of the controller are

instantaneous and the environment must be given a chance to make progress. Other-

wise, the controller could perform an infinite number of steps before an environment

change happens. In real-time system terms, the Controller main machine can be

viewed as a sporadic task which gets released whenever a sensor value changes. The

rules of the Controller main machine, shown in Listing 8.11, make heavy use of sub

machines. The semantics of sub machines and hierarchical composition are such that

all sub machines operate in parallel and the resulting update sets of each machine are

composed with one another. The commanding of all of the actuators are performed

independently, in parallel.

Listing 8.11 Rules of the Controller main machine
R1: Issue Commands
{
if wait = False then
OPERATEFEED();
OPERATEDEPOSIT();
OPERATEROBOT();
OPERATEARMA();
OPERATEARM_B();
OPERATEPRESS();
wait := True;

R2: Wait for a step

{
t := next;

else then

wait := False;

The rules of the OPERATEDEPOSIT sub machine are shown in Listing 8.12.

The listing shows how the controller uses only sensor values to interpret the state of

the system, and uses only the actuators to command the various components of the

system. Listings for other sub machines of the "OPERATEABC' nature are similar

and are given in Appendix D.
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Listing 8.12 Rules of the OPERA TEDEPOSIT sub machine
Ri: turn on motor

{
if motordeposit = off and depositbegin = True then
motordepositp := negative;
motor_deposit := on;

I

R2: turn off motor

I
if motordeposit = on and deposit-end = True then
motor_deposit := off;

R3: nothing to do

else then

skip;

Complete Model

The complete production cell TASM model contains 8 main machines, one for each

component shown in Figure 8-1, and one for the controller. The model also contains

3 function machines, and 16 sub machines. The complete production cell model is

documented in Appendix D where the list of all machines is given in Table D.1.

8.1.2 Functional Analysis

The purpose of the production cell case study, as outlined in [163], is to evaluate and

compare different formal methods. Part of the problem definition is to understand

how different approaches model and prove properties of the production cell case study.

Some of the properties that should be proved include restrictions on the commands

that the controller sends out to the hardware components. For example, the controller

shall not command the robot to drop blocks in places other than the press and the

deposit belt. Furthermore, the robot should never be rotated when the arms are

extended. In order to verify these properties in the TASM model, model checking

presents a natural fit since the model is finite and the safety properties can be easily

formulated as temporal logic properties over the variable values of the model.
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Safety and Liveness Properties

For this case study, three safety properties are verified using a model checking ap-

proach. The safety properties are verified using two different strategies. The first

strategy uses a simple safety invariant property over the variable values of the model,

to express that "a certain state shall never be reached". Two safety properties are

verified using this strategy. The first safety property states that "the robot shall

not rotate while an arm is extended". The second property states that "arm a shall

only be extended at the press and at the feed belt" The temporal logic formulas

corresponding to the two properties are shown below:

* A G (motor_robot = on) -p (arma = retracted A armb = retracted)

* A G (arma = extended) -- (armapos = atpress V armapos = atfeed)

The first temporal logic formula states that it is always true in the model that

whenever the robot motor is on, the arms are retracted. The second temporal logic

formula states that it is always true in the model that whenever arm a is extended,

arm a is at the press or arm a is at the feed. The second strategy to verify safety

properties involves embedded error values inside of the model, in a manner analogous

to assertions in programming languages [132]. In the TASM model, the user-defined

type Error in Listing 8.1 is used to create errors that can be embedded in the model.

For example, in Listing 8.10, the error variable is set to invaliddrop if the controller

tries to drop a block from arm a at a place other than the press. Similar rules

were added to the DROPARMB, PICK_UPARMA, and PICKUPARMB sub

machines. The first safety property wraps a set of safety assertions, including "the

robot shall not drop blocks in places other than the press and the deposit belt", "the

robot shall not drop a block in the press if the press is already loaded", and "the

robot shall not drop a block if the arm is not extended". The second safety property

also wraps a set of safety assertions similar to the first safety property, but concerns
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the picking up of blocks. The included properties in the assertion include "the robot

shall not pick up blocks in places other than the press and the feed belt". These two

properties can be easily stated using the error variable and expressing the assertion

as a simple safety invariant on the values of the variable:

* A G error = invaliddrop

* A G error = invalidpickup

The temporal logic formulas state that the error variable is never set to invaliddrop

and is never set to invalidpickup. The assertions could be formulated in other

ways, and other assertions could also be added to verify all of the properties specified

in [163]. However, for the sake of the case study, these four properties are sufficient to

demonstrate the functional verification capabilities of the framework using modeling

and model checking.

Because the TASM model of the production cell is finite, it can lend itself quite

naturally to the model checking capabilities of the presented framework, using the

UPPAAL tool suite. Furthermore, the safety properties that have been expressed as

temporal logic formulas can be easily translated to the query language of the UPPAAL

model checker.

UPPAAL Model

In order to model check the TASM model for safety assertions, the production cell

TASM model leverages the UPPAAL model checker, using the translation approach

documented in Appendix C. The UPPAAL model is generated only once and is also

used to analyze execution time of the production cell system in Section 8.1.3. Because

the timed automata used in UPPAAL do not have hierarchical composition facilities,

the TASM main machines need to be "flattened" per the approach described in the

proof of Theorem 4.1 and in the proof of Theorem 4.2. The removal of hierarchical
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composition can lead to exponential growth in the number of states in the "flattened"

machine when multiple units of hierarchical composition are used in the same rule.

For all machines in the production cell TASM model, except for the Controller main

machine, the flattening of the machines is tractable because the machines make lim-

ited use of hierarchical composition. However, the Controller main machine makes

heavy use of hierarchical composition within its main rule, and a basic flattening of

the main machine yields over one million rules (3 * 3 * 3 * 3 * 2 * 8 * 3 * 6 * 7 * 3 *

6 * 6 + 1 = 1, 765 969). Clearly, this approach is not feasible to generate the UPPAAL

model. This explosive growth occurs because rule R1 of machine Controller uses 6 sub

machines, which, in turn, make use of other sub machines. One way to mitigate the

exponential growth is to operate each component in sequence, instead of in parallel.

The sequential operation can be achieved by using an extra variable, which orders the

operations in sequence. In order to maintain the semantics of the original model, the

values of the sensors and actuators are "cached", through "dummy variables", at the

beginning of the operation phase and the outputs are "buffered", also through tem-

porary variables, until the end of the operation phase. The Controller main machine

is modified to use the cached variables in its decisions and to output to the buffered

variables. The modified Controller main machine is shown in Listing 8.13. The mod-

ified main machine contains 9 rules and the "flattened" version of the machine in

Listing 8.13 contains 48 rules - 1 rule to flatten rule R 1, 3 rules to flatten rule R2,

3 rules to flatten rule R3 , 10 rules to flatten rule R4, 13 rules to flatten rule R5 , 13

rules to flatten rule R6 , 3 rules to flatten rule R7, 1 rule to flatten rule R8 , and 1 rule

for rule R9 . Clearly, this definition of the machine is more manageable. The original

model is maintained in order not to affect the modeling because of the translation

details. If it can be demonstrated that the Controller model of Listing 8.13 is equiv-

alent to the model of Listing 8.11, then the modified model can be used to generate

the UPPAAL timed automata for the controller behavior without loss of semantics.

In order to show equivalence between the machine of Listing 8.13 and the machine

of Listing 8.11, two basic principles are invoked. The first one relies on the fact that

all controller actions are instantaneous and, hence, occur in the same quantitative
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Listing 8.13 Rules of the modi
Ri: Cache {

if wait = False and seq = cache then
CACHEDATA();

seq := operatefeed;

}

fied Controller main machine

R2: Feed {
if wait = False and seq = operate-feed then
OPERATEFEED();
seq := operatedeposit;

}

R3: Deposit {
if wait = False and seq = operate_deposit then
OPERATEDEPOSIT();

seq := operaterobot;
}

R4: Robot {
if wait = False and seq = operaterobot then

OPERATE_ROBOT();

seq := operate_arma;
}

R5: Robot {
if wait = False and seq = operatearma then
OPERATEARMA();
seq := operatearmb;

}

R6: Robot {
if wait = False and seq = operate_armb then
OPERATEARM_B();

seq := operatepress;
}

R7: Press {
if wait = False and seq = operate_press then

OPERATE PRESS();
seq := output;

}

R8: Press {
if wait = False and seq = output then

OUTPUT();
seq := cache;
wait := True;

}

R9: Wait for a step {
t := next;

else then

wait := False;

}

time period. Furthermore, the operations do not depend on one another and can be

performed in parallel or in any sequence since they do not share variables. Also, by

using the "dummy variables" to cache the state and buffer the output, the decisions

at each step are not affected by the actions of other main machines or by the output
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Machine Rules Flattened Rules
Loader 3 3
Feed 2 2
Robot 2 6
ArmA 5 7
ArmB 5 7
Press 2 2
Deposit 3 3
Controller 2 1, 765 969
Controller' 9 48

Table 8.2: Number of rules for flattened main machines

of each operation. This semantics is equivalent to the semantics of performing each

operation in parallel in a single step. The second principle relies on the fact that

all changes that modify sensor values involved in the decisions of the controller are

achieved through durative actions of other components. The two principles guarantee

semantic equivalence because each output of the controller will appear in the sensors

after a time delay, hence after a controller step has been performed. The number of

rules for each flattened main machine of the production cell TASM model is shown

in Table 8.2.

The complete UPPAAL model contains 14 timed automata, including 8 automata

for each main machine of the TASM model and 6 automata to enforce the "Else rules"

of 6 of the main machines. The timed automata for the Feed main machine is shown

in Figure 8-2. The safety properties given as temporal logic formulas can be easily

translated to UPPAAL 's TCTL query language. The UPPAAL queries corresponding to

the safety properties described in the previous section are shown below:

* A [] (motorrobot == 1) imply (armaext == i && armbext == 1)

* A[] (armaext == 2) imply (armapos == 1 && armapos == 2)

* A[] (error != 2)
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SA[] (error != 3)

feed belt == 1 &&
c >= 5 feed-begin == 1 &&

feed begin = 0, motor feed ==1 &&
feed end = 1 motor feed_p == 1

Feed_R1
C <= 5 FeedELSE

feedbelt == 1 && !(feed_belt == 1 &&
feed begin == 1 && feedbegin == 1 &&
motor feed == 1 && motor feed ==1 &&
motor_feed_p == 1 motor feed_p == 1)

c=O

Figure 8-2: Timed automaton for the feed main machine

These properties were verified successfully by running the queries through the

UPPAAL verifier. The model can also be queried to verify certain liveness properties.

For example, the property "eventually, all blocks loaded into the system get car-

ried out of the system" can be expressed in the query language of UPPAAL . This

property can be formulated as the liveness property "E<> processed_blocks ==

loadedblocks". Other liveness and safety properties can be formulated in a similar

fashion, as needed. The UPPAAL model derived in this section is reused in Section 8.1.3

when execution time is analyzed.

Completeness and Consistency

The analysis of completeness and consistency was performed using the approach de-

scribed in Section 5.1. The results of verifying completeness are shown in Table 8.3.

The table shows, for each machine, the number of propositions, the number of clauses,
and whether or not the machine is complete. For machines that are trivially complete,
the number of propositions and clauses is listed as "N/A". A similar table, Table 8.4,
presents the results of verifying the consistency of each machine.

In Table 8.3, the only machine which is not complete is the Loader main machine.

The machine is not complete because it stops after loading the predefined num-
ber of blocks. The counterexample generated by the SAT solver is the state where
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Name Propositions Clauses Complete
Loader 5 11 No
Feed N/A N/A Yes
Deposit N/A N/A Yes
Press N/A N/A Yes
Robot 2 4 Yes
ArmA N/A N/A Yes
ArmB N/A N/A Yes
Controller N/A N/A Yes
armPosition N/A N/A Yes
rotateClockwise N/A N/A Yes
rotateCounterClockwise N/A N/A Yes
OPERATEFEED N/A N/A Yes
OPERATEDEPOSIT N/A N/A Yes
OPERATE-ROBOT N/A N/A Yes
OPERATEARMA N/A N/A Yes
OPERATEARM_B N/A N/A Yes
OPERATE-PRESS N/A N/A Yes
PICKUPARMA 10 23 Yes
PICKUPARM_B 10 23 Yes
DROP_ARMA 10 23 Yes
DROPARMB 10 23 Yes
ARMAFEED N/A N/A Yes
ARMAPRESS N/A N/A Yes
ARM BDEPOSIT N/A N/A Yes
ARMBPRESS N/A N/A Yes
ROBOT_MOTION N/A N/A Yes
ROTATE ROBOT N/A N/A Yes

Table 8.3: Completeness analysis results for the production cell model

"loadedblocks >= number, feedbelt = empty". The machine was designed to

stop after the number of loaded blocks exceeds the predefined threshold, so the in-

completeness is to be expected. In Table 8.4, main machines Deposit, ArmA, and

ArmB are inconsistent. These components model the environment of the controller

and hence the lack of consistency uncovers assumptions about the behavior of the

environment. For the Deposit main machine, the counterexample generated by the

SAT solver is the state where "depositbelt = loaded, depositbegin = True,

motordeposit = on, motor-deposit.p = negative, depositend = True". In this

counterexample, rule R1 and rule R2 are both enabled. The assumption about the

environment is that depositbegin variable and the depositend variable cannot

be true at the same time. This assumption is congruent with the problem definition
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Table 8.4: Consistency analysis results for the production cell model

which states that the robot will not put a block on the belt if it is already loaded

and which can be verified as a safety property. And since the block can be at one

end of the belt only and not at both ends simultaneously, only one of the two sensors

can be true at any given time. This assumption can be validated against the UPPAAL

model by running the query "A[] ! (depositend == 1 && deposit_begin == 1)"

to verify that the aforementioned state is not reachable in the model. Similar rea-

soning can be carried out for the other two inconsistent machines, ArmA and ArmB.

For these machines, the environmental assumption is that the magnet will never be

on if an arm is retracted and empty.
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Name Propositions Clauses Consistent
Loader 5 71 Yes
Feed N/A N/A Yes
Deposit 10 15 No
Press N/A N/A Yes
Robot 2 4 Yes
ArmA 10 40 No
ArmB 10 40 No
Controller N/A N/A Yes
armPosition 7 129 Yes
rotateClockwise N/A N/A Yes
rotateCounterClockwise N/A N/A Yes
OPERATEFEED 6 10 Yes
OPERATEDEPOSIT 6 10 Yes
OPERATE.ROBOT N/A N/A Yes
OPERATEARM_A 6 18 Yes
OPERATEARMB 6 8 Yes
OPERATEPRESS 6 12 Yes
PICK.UPARMA 10 23 Yes
PICK.UPARMB 10 23 Yes
DROP-ARMA 10 23 Yes
DROP-ARM_B 10 23 Yes
ARM_AYFEED 12 80 Yes
ARMAYPRESS 12 80 Yes
ARMBDEPOSIT 12 80 Yes
ARMBPRESS 12 80 Yes
ROBOT_MOTION 4 8 Yes
ROTATE-ROBOT 16 255 Yes



8.1.3 Execution Time Analysis

Since the controller model does not contain time annotations, the execution time anal-

ysis is not concerned with the performance of the software, but with the performance

of the manufacturing system with regards to the controller strategy. For the model,

one time property to verify is the amount of time required to process n blocks. This

property can be stated over the state variables as the time required to complete a path

from a state where "loaded_blocks = 0, processed.blocks = 0" to a state where

"loaded.blocks = n, processed_blocks = n". To demonstrate the approach, n is

selected to be 10 blocks. Using the approach described in Section 5.3, an appropriate

observer automaton is added to the UPPAAL model. The observer automaton, shown

in Figure 8-3, observes the relevant path and measures the time required to complete

the path.

loaded blocks == 0 && loaded blocks == 10 &&
processed_blocks == 0 processed_blocks == 10

OBSERVER _go? OBSERVERgo?

qO b= 0 q1 q2

z=0,b=0

Figure 8-3: Observer automaton to verify the time needed to process 10 blocks

Using the UPPAAL verifier, the time required to process 10 blocks is verified to

be 386 time units. Because the timing of the various components is deterministic,

386 time units corresponds to both the best-case execution time and the worst-case

execution time, given the controller strategy.

8.1.4 Resource Usage Analysis

The production cell case study contains one resource, power. Power is consumed

when the hardware components are operating, for example when the motor of the

feed belt is turned on. Analogously to the time annotations, the controller model

does not consume any resource and it is justified to assume that the power consumed

281



by the controller is negligible compared to the power consumed by the hardware com-

ponents. Consequently, the Controller machine can be excluded from the iterative

algorithm used to converge on the maximum and minimum resource consumption val-

ues. According to the algorithm described in Section 5.4, the derivation of minimum

and maximum resource consumption uses flattened versions of each main machine.

The flattened version of the Controller main machine contains the most rules. Re-

moving the controller main machine greatly reduces the complexity of the algorithm.

Without the Controller main machine, the algorithm described in Section 5.4 iterates

through 10584 combinations of rules (3 * 2 * 6 * 7 * 7 * 2 * 3) to find the optimal

solution. The maximal solution consumes 6600 units of power, which is obtained

by executing rule R1 of all main machines, in parallel, which consumes the most

power, per Table 2.5. As mentioned in Section 5.4, the algorithm used to determine

maximum resource consumption can lead to an overapproximation of the consumed

resources. The UPPAAL model can be used to determine whether the state which sat-

isfies the maximum resource consumption is reachable. This can be achieved using a

simple reachability query over the value of variables in the form of "E<> (variable

values".

Executing the reachability query for the state which yields the maximal power

consumption, as given by the SAT solver, reveals that it is not a reachable state. A

simple analysis of the suggested state shows that the state is not reachable because

the loader cannot be loading a block while the feed belt is on. By iterating through

other solutions yielded by the resource consumption verification algorithm, the max-

imal resource consumption where the satisfying state is reachable yields a resource

consumption of 6200 units of power. This state corresponds to both arms being re-

tracted, while the press is stamping a block, the deposit belt is carrying a block, and

the feed belt is carrying a block. Summary results are presented in Table 8.5. In

the table, the first column shows the value of consumed power. The second column

shows, for each main machine, the rule being executed to yield the listed resource

consumption. The composite rule names describe which rules are being executed in

machines used for hierarchical composition. The third column shows the state which
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satisfies the parallel execution of the rules. The fourth column indicates whether the

state is reachable or not, as verified using the UPPAAL model.

Value Rules State Reachable
6600 Loader: R 1  loadedblocks < 9, feedbelt = empty, No

Feed: R1  feedbelt = loaded, feedbegin = True,
Deposit: R1  motorfeed = on, motorfeedp = positive,
Press: R1  deposit_belt = loaded, deposit_begin = True,
ArmA: R 1  motorfeed = on, motorfeedp = positive,
ArmB: R1  motor_press = on, press = loaded,
Robot: R1R3  pressblock = notfinished,

motor_arma = on, motorarma_p = positive,
armaext = retracted, motorarmb = on,
motor_armbp = positive, armbext = retracted,
robotwait = False, motorrobot = on

6200 Loader: R3  loaded_blocks < 10, feedbelt = loaded, Yes
Feed: R 1  feedbelt = loaded, feedbegin = True,
Deposit: R1  motorfeed = on, motorfeedp = positive,
Press: R1  depositbelt = loaded, depositbegin = True,
ArmA: R2  motorfeed = on, motorfeedp = positive,
ArmB: R 2  motorpress = on, press = loaded,
Robot: R1 R3  pressblock = notfinished,

motorarma = on, motorarmap = negative,
armaext = extended, motorarmb = on,
motorarmbp = negative, armbext = extended,
robotwait = False, motor.robot = on

Table 8.5: Resource consumption analysis results for the production cell

For the minimum resource consumption, a trivial case happens after all blocks

have been loaded and the robot is at the feed belt, waiting for a block to arrive.

In this case, the power consumption is 0 units. The minimum non-zero resource

consumption occurs at the beginning of the production process when there are no

blocks in the system and the loader is putting the first block on the feed belt. In this

case, the power consumption is 200 units.

8.1.5 Test Case Generation

In the production cell case study, the Controller main machine is the only main ma-

chine describing the behavior of software. The other main machines describe the

behavior of hardware components considered part of the environment. Consequently,

test cases are generated only for the machines linked to the Controller main machine,
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using the algorithm described in Listing 7.8. The results of the test case generation

are shown in Table 8.6. In Table 8.6, the first column provides the machine name, the

second column lists the number of test case templates in the test suite template for

the machine, and the third column lists the number of test cases from the test suite

required for unit testing of the machine. Per the approach described in Chapter 7, the

test cases are generated using the rule coverage criterion, explained in Section 7.1.1.

Because the test case generation strategy does not require the machines to be "flat-

tened", the generation of test cases is achieved using the Controller machine shown in

Listing 8.11, not the modified version provided in Listing 8.13. In Table 8.6, the test

case results are for unit testing are equal to the number of rules for each machine.

Furthermore, the number of test cases in the test suite are the test cases used to

achieve both unit testing for the given machine an integration testing for sub ma-

chines used in hierarchical composition. The Controller main machine contains the

most number of test cases, 14, which are used to cover the rules Controller main

machine and the rules of all the sub machines. The number 14 is obtained through

the maximum number of rules for the sub machines, in this case 13, plus 1 more test

case used to exercise rule R 2 of the Controller main machine.

Machine Test Suite Unit Testing
Controller 14 2
OPERATE-FEED 3 3
OPERATEDEPOSIT 3 3
OPERATE-ROBOT 10 2
OPERATEARMA 13 3
OPERATEARM3B 13 3
OPERATE-PRESS 3 3
ARMAFEED 6 6
ARM.APRESS 6 6
ARM._BDEPOSIT 6 6
ARMBPRESS 6 6
ROTATE_ROBOT 9 9

Table 8.6: Test case generation results for the production cell model

A sample test case template from the Controller main machine test suite is shown

in Table 8.7.
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Pre State Post State Coverage Item
wait{False}, wait{True}, Controller.R1,
motor-feed{off}, motor-feedp{positive}, OPERATEFEED.R1 ,
feedbegin{True }, motor-f eed{on}, OPERATEDEPOSIT.R1,
motor-deposit{off}, motor-deposit_p{negative }, OPERATEROBOT.R2,
depositbegin{True}, motor-deposit{on}, OPERATEARMA.R3 ,
armaext{ extended}, motor-press{off} OPERATEARMB.R3,
armbext{extended}, OPERATEPRESS.R2
armapos{ intransit },
armbpos{intransit},
motorpress{on},
press{loaded},
pressblock{finished

Table 8.7: Sample test case template from the test suite for the Controller main
machine

8.1.6 Discussion

The production cell provides a case study of moderate complexity with interesting

properties to verify. The TASM model of the production cell contains a model of

the controller software, the crux of the model, and simplified models of the hardware

components. Having a complete system model enables analysis of system properties,

such as resource consumption and the amount of time required to process a fixed

number of blocks, e.g., 10 blocks. Furthermore, reachability analysis yielded insight

to analyze the reachable states in the controller and in the environment, given the

controller strategy. This analysis was performed using safety invariants and using

errors embedded in the model. The completeness and consistency analysis uncov-

ered interesting environmental assumptions that could be validated using the UPPAAL

model, such as the impossibility that the feed_begin and feedend sensors be true

simultaneously. The completeness and consistency analysis proved to be a valuable

aid in building and debugging the TASM model. While the completeness and consis-

tency results aren't incredibly insightful once the model is completed, the capabilities

were useful during development.

The translation from TASM to UPPAAL uncovered an important limitation in the

translation algorithm with respect to the hierarchical composition mechanisms of the

TASM language. Because UPPAAL does not have hierarchical composition facilities,

285



the construction of a "flattened" machine is a necessary step of the translation. The

number of rules of the "flattened" machine grows exponentially with the number of

sub machines used in parallel for hierarchical composition, for a given rule. Never-

theless, with minor modeling modifications, an equivalent TASM model was derived,

which yielded a scalable translation. The primary purpose of the production cell case

study is to demonstrate the modeling and analysis capabilities of the proposed frame-

work. As such, the case study proved useful since it provides a model of moderate size

and demonstrates the analysis of functional properties, execution time, and resource

consumption.

The test case generation for the production cell case study was fairly straightfor-

ward since the Controller main machine and its associated sub machines do not use

real or integer variables. Furthermore, when hierarchical composition is utilized, the

composed machines do not share variables, hereby reducing the complexity of combin-

ing the test suites of different machines. It is interesting that the test case generation

strategy proved scalable, even through the heavy use of hierarchical composition in

the Controller main machine. This situation would not have been possible using

model checking approaches, unless the model was altered as described in Listing 8.13.

8.2 Electronic Throttle Controller:

High Level Model

The Electronic Throttle Controller (ETC) case study is based on a Simulink model [167]

developed by Griffiths et al. and by an industrial automotive manufacturer [111].

The case study is described in details in Section 2.8.2. The case study is used to

illustrate the modeling capabilities of the TASM language, to exercise the analysis

features of the framework, to illustrate the bi-directional traceability approach, and

to demonstrate the test case generation capabilities, including regression testing. The

case study is presented in three different sections. The first version of the model, de-

scribed in this section, describes a high level model of the ETC for the mode switching
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logic of the controller and for the calculation of the desired current. The following

section, Section 8.3, presents a tasking model and a scheduler which are used to im-

plement the ETC functionality. Finally, Section 8.4 presents the combination of the

tasking model with the high level model presented in this section, and adds resource

consumption to the model.

As a reminder, the ETC operates based on "modes", which are set by the controller

based on environmental factors such as vehicle parameters, driver inputs, and climate

conditions. The operation of the ETC is divided into major modes of operation

and minor modes of operation. During nominal operation, the major modes of the

controller are grouped into "driving modes" and "limiting modes". The limiting

modes, defined as undesirable vehicle conditions that need to be remedied by the

controller, take precedence over driving modes. Limiting modes are divided in minor

modes, namely "traction control", where the wheels rotate with too little friction,

and "revolution control", where the engine operates over a threshold rotation per

minute. The driving modes are also divided into minor modes of operation, namely

"human control", where the driver dictates the behavior of the controller, and "cruise

control", where the behavior of the controller is determined using set parameters. The

different modes are shown in Figure 8-4, adapted from [111], represented visually as a

statechart variant [120]. The "XOR" label indicates mutual exclusion between modes

and the "AND" label indicates parallel composition of modes.

As a reminder, the ETC uses the major and minor modes of operation to calculate

the output of the ETC, the desired current, which is output to the throttle. The

desired. current dictates the throttle angle and controls how much air enters the engine

and, consequently, on much torque and RPM the engine produces. The high level

requirements governing the logic for determining the modes of operation and the

associated calculation of the desired current can be summarized as follows:

* Req 1.1: The controller shall operate in two major modes, the driving mode

and the limiting mode

- Req 1.1.1: The-driving mode shall be active when the limiting condition
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Figure 8-4: ETC modes
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is False.

- Req 1.1.2: The limiting mode shall be active when the limiting condition

is True.

- Req 1.1.3: The limiting mode and the driving mode shall be mutually

exclusive and collectively exhaustive.

* Req 1.2: The limiting mode shall be divided into over revolution mode and

traction control mode

- Req 1.2.1: The over revolution mode shall be active when the engine

RPM is over 6000 rotations per minute

- Req 1.2.2: The traction limiting mode shall be active when the engine

torque is over 110 kPa

* Req 1.3: The driving mode shall be divided into human mode and cruise

control mode

- Req 1.3.1: The cruise control mode shall be active when the gear is in

drive, the vehicle speed is over 30 miles per hour, the break pedal is de-

pressed, and the cruise switch is on

- Req 1.3.2: In all other conditions, the control mode shall be inactive

* Req 1.4: When calculating the desired current, the limiting modes shall take

precedence over the driving modes

- 1.4.1: When the limiting mode and the driving modes are active, the de-

sired current is calculated using the limiting mode
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* 1.4.1.1: When the over revolution limiting mode and the traction

limiting mode are active, the desired current is calculated using the

minimum value of the desired current calculated using these two modes

separately

* 1.4.1.2: When only one of the limiting modes is active, this mode is

used to calculate the desired current

- 1.4.2: When the limiting mode is inactive, the desired current is calcu-

lated using the driving mode

* 1.4.2.1: When both the human driving mode and the cruise con-

trol driving modes are active, the desired current is calculated using

the maximum value of the desired current calculated using these two

modes separately

* 1.4.2.2: When only one of these modes is active, this mode is used to

calculate the desired current

8.2.1 Model

The Simulink model of the ETC is adapted into the TASM language by modeling

the control of the desired current as a main machine. This main machine, called

CONTROLLER, implements the requirements described above by performing 5 main

steps: reading the state of the environment (vehicle, driver inputs, and climate)

through sensors, setting the mode of the controller (major and minor), calculating

the output current, and monitoring the health of the system. When the car is turned

on, this sequence of operations executes indefinitely in a loop, until the car is turned
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off. The rules of the CONTROLLER main machine are shown in Listing 8.14.

Listing 8.14 Rules of the CONTROLLER main machine
Ri: Controller loop when nominal {
if controlmode = sample then

SAMPLE_STATE();
control-mode := modeset;

}

R2: Controller loop to set major mode {
if controlmode = mode-set.major then

SET_MAJOR_MODE();
controlmode := modeset.minor;

R3: Controller loop to set minor mode {
if control-mode = mode-set-minor then
SETMINORMODE();
controlmode := output;

R4: Controller loop to output current {
if control-mode = output then
CALCULATEOUTPUT();
control_mode := health;

R5: Controller loop to find failure {
if control-mode = health then
MONITORHEALTH();
control_mode := sample;

Per the requirements, the mode of operation of the controller is set using a major

mode and a minor mode. The steps of the actions of the controller are captured

through the Control.mode data type. Since this version of the ETC model is a

high level model, the output current is abstracted through a user-defined type called

DesiredCurrent, as shown in Listing 8.15. The current is abstracted using the type

because it eases verification and makes explicit what actual current is being output

based on the logic. This simplification is justified for a high level model, and can later

be refined when the calculation of the current is implemented using a specification

type of controller.

The Mode datatype is used to set the major mode of operation. The Binarylode

datatype is used to set the cruise, limiting, over revolution, and over torque minor
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Listing 8.15 User-defined types of the ETC high level model
Binary-Mode := {active, inactive};
Binary_Status := {on, off};
Health_Status := {nominal, fault_detected};
Mode := {off, startup, shutdown, driving, limiting, faulty};
Gear_Status := {park, drive};
Control_Mode := {sample, mode_set_major, mode_set_minor, output, health};
Desired_Current := {none_c, human_c, cruise_c, traction_c, rev_c, min limiting_c,

max_driving_c, fault_c, error_c};
Simulation_Mode := {begin_s, drive s, random_s, stop_s};

modes. The high level ETC model does not contain time or resource annotations since

the model describes high level behavior. The model makes heavy use of hierarchical

composition to structure the logic for mode switching and for the logic to calculate the

desired current. The Simulation_Mode datatype is used to express various simulation

scenarios, as explained in the functional analysis section, Section 8.2.2..

Complete Model

The complete TASM model contains 3 main machine, 13 function machines, and

10 sub machines. The complete electronic throttle controller high level model is

documented in Appendix E, Section E.1, where the list of all machines is shown in

Table E.1.

8.2.2 Functional Analysis

The functional analysis of the high level model concerns the correct transitions be-

tween modes and the correct calculation of the desired current based on the mode of

operation. The analysis of the model is achieved through both simulation scenarios,

model checking, and verification of completeness and consistency.

Scenario Modeling

The electronic throttle controller reacts to changes in the state of the vehicle (vehicle

speed, wheel traction, etc.) and operator inputs (gas pedal angle, cruise control

switch, ignition, gear position, etc.). In order to exercise the various modes of the
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ETC, different simulation scenarios were devised. For example, the throttle controller

always begins in the "off' mode, until ignition is turned on. Because the throttle

controller will do nothing until the ignition is turned on, the functionality of the ETC

can be exercised by either selecting different initial conditions e.g., starting the ETC in

"driving" mode, or by modeling environment behavior to trigger the different modes.

For example, nominal operation of the driver would turn on the ignition, put the car

in drive, and start driving by pressing the gas pedal. The cruise control mode can only

be initiated by the driver, by setting the cruise switch to the on position, when the

other conditions of the vehicle are met. Traction mode and engine revolution mode

are triggered through a combination of driver input and environmental conditions

such as a slippery or uneven road surface.

In order to exercise the behavior of the controller, a main machine modeling driver

behavior and a main machine modeling the car behavior have been designed. The

first machine, called DRIVER, simply performs nominal initiation actions by turning

on the ignition, setting the car gear in drive, and activating the gas pedal. Once the

driver has transitioned the car into nominal driving mode, the driver can arbitrarily

press the inputs - the cruise control switch, the break pedal, and the gas pedal.

The second machine, called VEHICLE, arbitrarily varies the vehicle speed, engine

speed, and vehicle traction. The detailed dynamics of the vehicle and the driver

transfer function are not modeled in details, but are encoded into hardcoded values.

As such, the behavior of the driver and the behavior of the vehicle are not directly

linked. For example, if the driver presses the gas pedal, it won't necessarily directly

translate to an increase in the speed of the vehicle. While this lack of causality seems

nonintuitive, it leads to a much more simplified model. Furthermore, the behavior of

the driver and the behavior of the vehicle, as modeled in the two machines, provide

an overapproximation of the true behavior of the vehicle and driver. For example,

it is possible for the driver to press the gas pedal and for the vehicle to decrease

its velocity. This behavior might seem counterintuitive, but it captures a richer set

of scenarios and makes few assumptions about the behavior of both the driver and

the vehicle. The only restrictions on the reachable states of both the driver and the
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vehicle follow widely accepted automotive principles such as the car gear being in

"drive" can only occur if the ignition is "on" and the ignition can be turned off only

if the car gear is in "park". Furthermore, the car gear can only be in "park" if the

vehicle speed is 0.

The DRIVER main machine will arbitrarily affect the driver inputs. Three sample

rules of the DRIVER main machine are shown in Listing 8.16. These rules will non-

deterministically change the status of the cruise switch with nominal speed, rule R 4,

and with speed that is too low for the cruise control to take effect in the ETC, through

rule R 3. The complete DRIVER main machine is documented in Listing E.4 and in

Listing E.5.

Listing 8.16 Two rules of the DRIVER main machine
R3: Turn on cruise, slow speed

if driver_s = random_s and cruiseswitch = off then

cruise_switch := on;
vehicle_speed := 10;

}

R4: Turn on cruise, normal speed
{
if driver s = random s and cruise switch = off then

cruise_switch := on;
vehicle_speed := 30;

}

R5: Turn off cruise

{
if driver_s = random_s and cruise_switch = on then

cruise_switch := off;

The VEHICLE main machine will arbitrarily affect the state of the vehicle and will

wait for the proper action by the controller to return the vehicle to a nominal state.

The combination of the DRIVER main machine and the VEHICLE main machine

exercise the full behavior of the controller. Two sample rules of the VEHICLE main

machine are shown in Listing 8.17. These rules will non-deterministically change the

engine speed and the vehicle torque over the desired threshold, through rule R 4, and

wait until the correct desired current is output to return them to nominal values, as
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achieved through rule R7. The complete VEHICLE main machine is documented in

Listing E.6 and in Listing E.7.

Listing 8.17 Two rules of the VEHICLE main machine
R4: Randomly change Both

{
if driver s = random s and vehicle_overrev_s = False and

vehicle over_tor_s = False then
enginespeed := MAXENGINE-SPEED + 1;

vehicle overrevs := True;
vehicle-torque := MAXTORQUE + 1;

vehicle-overtor_s := True;

R7: Randomly change both, correct

{
if driver s = randoms and vehicle-over-rev-s = True and

vehicle-overtors = True and desiredcurrent = minlimiting.c then
vehicle-torque := MAX TORQUE;
vehicle-over-tor-s := False;
engine-speed := MAXENGINESPEED;

vehicle_overrev-s := False;

Safety and Liveness Properties

Verifying the safety properties of the controller involves asserting that certain states

are not reachable while certain states must be reached after a certain condition is

met. Since the controller operates in steps, it is important to formulate the state

conditions over the "cached" state in order to avoid writing queries over the state

that could change during the controller sequence of steps. The safety properties to

be verified fall into two distinct categories - verifying that the correct mode is set

depending on environmental conditions and verifying that the correct output current

is set depending on the mode of operation.

In the first category of properties, verifying the that the limiting mode is cor-

rectly set involves checking that, whenever the engine revolution is over the maximum

threshold or the vehicle torque is over the maximum threshold, the controller is in

the limiting mode. These two properties can be easily formulated as temporal logic

formulas:
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* A G (cengine_speed > MAX_ENGINE_SPEED A controlmode = output) -+

(controller_ mode = limiting)

* A G (c_vehicle_torque > MAXTORQUE A controlmode = output) -4 (con-

trollermode = limiting)

These two properties are stated over the "cached" values of the state cengine_speed

and cvehicletorque to avoid cases involving non-deterministic state changes dur-

ing controller operation. Furthermore, the control-mode variable is added to the

query to ensure that the mode is correctly set after the controller has finished set-

ting the mode. In the temporal logic queries, for the properties of interest, the

control-mode variable should set to output to denote that the mode has already

been set. Similar queries can be formulated for the driving mode and for the other

minor modes such as the cruise control mode being set when the cruise condition is

enabled. The second category of properties involves verifying that the correct de-

sired current is output based on the controller mode. The correct desired current is

defined according to the requirements listed in Section 8.2. Some basic properties

can be stated about the desired current to ensure that minimal guarantees exist. For

example, whenever the controller mode is driving, the desired current is either the

human current, the cruise control current, or the minimum value of the two currents.

In temporal logic, this property can be stated as:

* A G (controller_mode = driving A contrwoLmode = health) -t (desired current

= human_c V desired_current = cruise_c V desired current = max_driving_c)

The query uses the control-mode variable to ensure that the desired current is

correctly calculated after the controller has finished calculating the current. This is

achieved by ensuring that the control-mode variable is set to health, which occurs

only after the desired current has been calculated. The query concerning the desired
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current also illustrate the benefits of abstracting away the actual numerical value

of the current being output. If a real variable were output, it would be difficult

to determine exactly what numerical value the current should be without taking

into account the actual speed and dynamics of the vehicle. A similar query can be

formulated for the limiting major mode. More complex properties can be verified

by querying based on both major and minor modes and ensuring that the current

calculation logic is correct with respect to the requirements. For example, the limiting

mode takes precedence over the driving mode and if both the over revolution mode

and the traction mode are active, the minimum current of both limiting modes is

used as the desired current output. This property can be formulated as:

* A G (controllermode = limiting A cruise-mode = active A revlimitingmode =

active A tractionmode = active A controlmode = health) -- (desiredcurrent

= minlimiting_c)

Similar properties can be formulated for the other combination of modes. After

establishing that the modes are correctly set based on environmental conditions and

establishing that the output current is correctly calculated based on the controller

mode, it naturally follows that the ETC behaves correctly according to the require-

ments.

UPPAAL Model

In order to verify the TASM model for the aforementioned safety assertions, the

ETC TASM model leverages the UPPAAL model checker, using the translation ap-

proach documented in Appendix C. Because the timed automata used in UPPAAL

do not have hierarchical composition facilities, the TASM main machines need to be

"flattened" per the approach used in the proof of Theorem 4.1 and in the proof of

Theorem 4.2. The removal of hierarchical composition leads to exponential growth

in the number of states in the "flattened" machine where multiple units of hierar-

chical composition happen in parallel. In the ETC model, only the CONTROLLER
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Machine I Rules Flattened Rules

CONTROLLER 5 33
DRIVER 11 11
VEHICLE 9 9

Table 8.8: Number of rules for flattened main machines for the high level ETC model

main machine uses hierarchical composition and is the only machine that needs to

be flattened. In the definition of the CONTROLLER main machine, the invocation

of the SETMINORMODE_ WORK sub machine is the only place where hierarchical

composition is performed in parallel using multiple sub machines. Consequently, this

is the only place in the model that leads to exponential growth in the number of rules

of the flattened machine. However, this growth is tractable since it leads to only 8

rules (2 * 2 * 2). The number of rules for each flattened main machine of the TASM

model is shown in Table 8.8.

The complete UPPAAL model contains 5 timed automata, including 3 automata

for each main machine of the TASM model and 2 automata to enforce the "Else

rules" of the DRIVER main machine and of the VEHICLE main machine. The

safety properties given as temporal logic formulas can be easily translated to UPPAAL

's TCTL query language. The UPPAAL queries corresponding to the safety properties

stated above are shown below, in the order in which they were introduced:

* A[] (c_enginespeed > MAX_ENGINE_SPEED && controlmode == 4 &&

system_health == 1) imply (controllermode == 5)

* AI] (c_vehicletorque > MAXTORQUE && control-mode == 4 &&

systemhealth == 1) imply (controller-mode == 5)

* A[] (controllermode == 4 && controlmode == 5) imply

(desiredcurrent == 2 II desiredcurrent == 3 I

desired_current == 7)
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* A[] (controllermode == 5 && cruise-mode == 1 &&

rev_limiting-node == 1 && traction-mode == 1 && controlmode == 5)

imply (desiredcurrent == 6)

These properties were successfully verified by running the queries through the

UPPAAL verifier. The first two properties differ slightly from the original stated asser-

tions because if a fault is present, the controller mode will be set to the faulty mode

instead of being set to the limiting mode. The detection of a fault takes precedence

over all the other modes of operation. The extended query adds a condition to state

that the limiting mode is set when one of the two limiting conditions are true and

the system health is nominal, through the systemhealth variable. The model can

also be queried to verify certain liveness properties, to ensure that the model behaves

correctly. For example, the property "eventually, the car is in cruise control" can be

verified. This property can be formulated as the liveness property "E<> cruise-mode

== 1". Other liveness and safety properties can be formulated in a similar fashion,

as needed.

Completeness and Consistency

The analysis of completeness and consistency was performed using the approach de-

scribed in Section 5.1. The results of verifying completeness are shown in Table 8.9.

The table shows, for each machine, the number of propositions, the number of clauses,

and whether or not the machine is complete. For machines that are trivially com-

plete, the number of propositions and clauses is listed as "N/A". A similar table,

Table 8.10, presents the results of verifying the consistency of each machine.

In Table 8.9, all machines are complete. In Table 8.10, machines DRIVER and

VEHICLE are not consistent, as expected. These components model the environment

of the controller and hence the lack of consistency uncovers assumptions about the be-

havior of the environment. For the DRIVER machine, one of the generated counterex-

amples by the SAT solver is the state where "drivers = random, cruiseswitch
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Table 8.9: Completeness analysis results for the ETC high level model

= off". In this state, rule R3 and rule R4 are both enabled. This behavior is expected

since it was modeled this way, to simulate driver behavior where the cruise switch is

set to on and the driver speeds up over the cruise speed threshold, and to simulate

the driver behavior where the cruise switch is set to on and the driver slows down

under the cruise speed threshold. For the VEHICLE machine, the generated coun-

terexample is the state where "drivers = random, vehicleover_rev_s = False,

vehicle_over-tor-s = False". In this state, rule R1 and rule R2 are both enabled.

In a similar fashion, this behavior is expected since these two rules were designed to

model vehicle behavior which stays nominal, and vehicle behavior which arbitrarily

transitions to an engine RPM over the maximum threshold.

Since the high level ETC model does not contain time or resource annotations,

this version of the model does not contain analysis results for execution time and for
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Name Propositions Clauses Complete
CONTROLLER 5 32 Yes
DRIVER N/A N/A Yes
VEHICLE N/A N/A Yes
Cruise N/A N/A Yes
Cruise-Mode N/A N/A Yes
CruiseThrottleC N/A N/A Yes
DriverThrottleC N/A N/A Yes
DrivingThrottle_C N/A N/A Yes
Fault N/A N/A Yes
LimitingThrottleC N/A N/A Yes
OverRev N/A N/A Yes
OverRevMode N/A N/A Yes
OverRevThrottle_C N/A N/A Yes
OverTorque N/A N/A Yes
OverTorqueMode N/A N/A Yes
OverTorqueThrottleC N/A N/A Yes
CALCULATEOUTPUT 6 64 Yes
DOSHUTDOWN N/A N/A Yes
DOSTARTUP N/A N/A Yes
HANDLE_FAULT N/A N/A Yes
MONITORHEALTH N/A N/A Yes
SAMPLE-STATE N/A N/A Yes
SET_MAJOR_MODE N/A N/A Yes
SET.MAJORMODEWORK N/A N/A Yes
SETMINORMODE N/A N/A Yes
SETMINORMODEWORK N/A N/A Yes



Name Propositions Clauses Consistent
CONTROLLER 5 32 Yes
DRIVER 18 88 No
VEHICLE 19 529 No
Cruise N/A N/A Yes
Cruise-Mode N/A N/A Yes
CruiseThrottleC N/A N/A Yes
DriverThrottleC N/A N/A Yes
DrivingThrottleC 5 11 Yes
Fault N/A N/A Yes
Limiting-ThrottleC 4 7 Yes
Over-Rev N/A N/A Yes
OverRevMode N/A N/A Yes
OverRev-ThrottleC N/A N/A Yes
Over-Torque N/A N/A Yes
OverTorque-Mode N/A N/A Yes
OverTorqueThrottleC N/A N/A Yes
CALCULATE-OUTPUT 6 64 Yes
DOSHUTDOWN N/A N/A Yes
DOSTARTUP N/A N/A Yes
HANDLEFAULT N/A N/A Yes
MONITORHEALTH N/A N/A Yes
SAMPLE-STATE N/A N/A Yes
SETMAJORMODE 8 63 Yes
SETMAJORMODEWORK 16 78 Yes
SET-MINORMODE N/A N/A Yes
SETMINORMODEWORK N/A N/A Yes

Table 8.10: Consistency analysis results for the ETC high level model

resource consumption.

8.2.3 Test Case Generation

In the ETC case study, all the machines describe the behavior of the software except

for the DRIVER and the VEHICLE main machines which describe environmental

behavior. Consequently, test suites are generated for all the machines except for the

DRIVER and VEHICLE machines, using the algorithm described in Listing 7.8. The

results of the test case generation are shown in Table 8.7. In Table 8.7, the first

column provides the machine name, the second column lists the number of test case

templates in the test suite template for the machine, and the third column lists the

number of test cases from the test suite required for unit testing of the machine.

Per the approach described in Chapter 7, the test cases are generated using the rule
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coverage criterion, explained in Section 7.1.1. Because the ETC high level model

contains multiple function machines, some transformations need to be applied to the

model in order to generate test cases, as explained in Section 7.4. For example,

when function machines are used in a rule guard, the guard needs to be rewritten

so that the function machine is removed, per the approach described in the proof of

Theorem 4.1. Furthermore, function machines used in effect expressions are converted

to sub machines, as described in Section 7.4. The CONTROLLER main machine

contains the most test cases in its test suite, 33 in total, because it is the most complex

machine, since it uses hierarchical composition. Because the machine uses hierarchical

composition in many of its rules, the total number of rules required to cover the rules

of the CONTROLLER main machine and the rules of the sub machines it uses will be

approximately the sum of the number of rules of all the machines in the model. The

total number of rules is slightly lower than the total summation because certain rules

can be covered in parallel during the invocation of the SETMINOR_MODE_ WORK

sub machine, which uses multiple units of hierarchical composition in its rules.

A sample test case template from the CONTROLLER main machine test suite is

shown in Table 8.12.

8.2.4 Discussion

Adapting the Simulink ETC model into the TASM language enabled the verification

of consistency and completeness for the mode switching logic and desired current

calculation logic. Determining these properties was helpful during the early modeling

stages to ensure that no cases were missed and that no cases were conflicting. Some

of this analysis uncovered inconsistencies and incompleteness in the Sirnulink model.

For example, the cruise control throttle current calculation was unreachable in the

Simulink model. Furthermore, the Simulink model does contain the modeling of

non-deterministic driver behavior to set the cruise switch or to activate the break

pedal. The Simulink model contains driver behavior for gas pedal input only, which

is modeled as a deterministic scenario using a hardcoded transfer function.

The completeness and consistency verification was established in isolation, by
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Machine Test Suite Unit Testing
CONTROLLER 33 5
Cruise 2 2
Cruise.Mode 3 3
CruiseThrottleC 1 1
DriverThrottleC 1 1
DrivingThrottleC 3 3
Fault 2 2
LimitingThrottleC 6 4
OverRev 2 2
OverRevMode 3 2
Over-RevThrottle.C 1 1
OverTorque 2 2
OverTorque-Mode 3 2
OverTorque.ThrottleC 1 1
CALCULATE-OUTPUT 15 6
DOSHUTDOWN 2 2
DO-STARTUP 2 2
HANDLEFAULT 2 2
MONITORHEALTH 3 2
SAMPLE_STATE 1 1
SETMAJORMODE 11 3
SET.MAJORMODE.WORK 9 7
SET_MINOR.MODE 3 2
SET_MINORMODEWORK 3 1

Table 8.11: Test case generation results for the ETC high level model

Pre State Post State Coverage Item
controlmode{health}, control-mode{sample}, CONTROLLER.R5 ,
fault{False} system.health{nominal} MONITORHEALTH.R2

Table 8.12: Sample test case template from the test suite for the CONTROLLER
main machine

verifying the properties on a machine-by-machine basis. The hierarchical composition

of the TASM language and toolset ensures that systems can be designed bottom-up

using pre-verified auxiliary machines that are known to be complete and consistent.

The completeness and consistency results will be reused in the following sections,

where the ETC model developed in this section is extended and implemented using

a set of tasks and a scheduler.

By translating the TASM model to UPPAAL , safety properties were verified to

ensure that the controller behaves correctly with respect to the requirements. The

303



original verification of the controller also uncovered corner cases that the Simulink

model did not cover, such as the injection of a fault overriding the limiting and driving

controller modes. This case study provided a good example of an embedded controller

and how a high level model can be analyzed using the proposed framework. The

refined version of this model, presented in the following sections builds on the model

and analysis of this section and illustrates other features of the presented framework,

including the bi-directional traceability capabilities and the generation of test cases

for regression testing.

8.3 Electronic Throttle Controller:

Tasking Model

The high level version of the electronic throttle controller, presented in Section 8.2,

focused on the logic used to set the mode of operation of the controller and focused

on the logic used to calculate the desired current. In this section, the tasking model

and the scheduler used to implement the ETC are presented and analyzed using the

framework. The tasking model and scheduler presented in this section are later used,

in Section 8.4, to implement the mode setting logic and desired current calculating

functionality of the ETC. The model presented in this section introduces the time-

dependent behavior of the throttle controller.

In the Simulink model described in [111], the functionality of the throttle controller

is implemented using three tasks - a manager task, a monitor task, and a servo

task. The manager task is responsible for setting the major and minor mode of the

controller. The monitor task is responsible for detecting failures and monitoring the

health of the system. The servo task is responsible for calculating and outputting

the desired current. The three tasks operate at different frequencies, based on the

performance requirements of the ETC. The servo task is responsible for the closed-

loop control of the ETC and must operate at a rate of 300 Hz. The manager task

must operate at a rate of 100 Hz. The monitor task is less critical with an operation

304



frequency of 30 Hz being acceptable. The tasks are driven by a scheduler which

operates at a clock speed of 1 kHz. The performance requirements have been obtained

from [111].

In order to model the tasks and to perform analysis of the scheduling strategy,

the Best-Case Execution Time (BCET) and Worst-Case Execution Time (WCET) of

each task must be estimated. These calculations have been performed in past research

in [48] by aggregating the operations from the Simulink model and calculating the

number of clock cycles required for each operation on a PowerPC 405. The number

of clock cycles for each operation is shown in Table 8.13.

Operation Execution Time
Branch 1-3
Division 120
Multiplication 20
Addition 4-8

Table 8.13: Execution time for floating point operations for a PowerPC 405 (in clock
cycles)

For each task, the number of operations is compiled and the resulting BCET and

WCET can be estimated using the PowerPC 405 processor operating at 10MHz. The

resulting values of BCET and WCET are shown in Table 8.14.

Task Manager Monitor Servo
#Branches 2-5 4 6
#Divisions 0 0 1

#Multiplications 0 80 30
#Additions 0-1 24 32

BCET (cycles) 2 1700 854
WCET (cycles) 23 1804 994

BCET (ms) 0.0002 0.17 0.0854
WCET (ms) 0.0023 0.1804 0.0994
Period (ms) 10 30 3

Table 8.14: Timing properties for the ETC tasks

These timing estimates are a bit coarse and rely on the details of the implementa-

tion. While this level of analysis might seem inappropriate for the level of modeling

performed in this section, the coarseness of the analysis yields realistic upper and
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lower bounds on the timing of the tasks, bounds which can readily be used for mod-

eling at the task level. Furthermore, for BCET execution, certain properties such as

pipelining, instruction caching, and data caching were ignored. Sophisticated tools

and algorithms for execution time analysis exist, as documented in [89], and can

later be used when the functionality is implemented to validate the early estimates.

Furthermore, the bi-directional strategy can be leveraged to track the assumptions

about the BCET and WCET of each task. Afterall, the goal of this model is not

to derive precise metrics, but to demonstrate the capabilities of the TASM language

and associated framework. Consequently, it is justifiable to round the execution time

estimates into safe and tight bounds. In order to discuss the timing data in terms

of integers, Ips are used. For the manager task, the execution time bounds can be

rounded to [0, 5] ps. For the monitor task, the execution time bounds can be rounded

to [100, 200] Mas. For the servo task, the execution time bounds can be rounded to [70,

100] 1ts. The scheduling algorithm used in the Sirnulink model does not follow the

optimal and widely used Rate Monotonic Analysis (RMA) [58] scheduling algorithm.

Instead, the Simulink model gives precedence to the manager task first, followed by

the monitor task, followed by the servo task. The priority scheme is statically as-

signed and hardcoded in Stateflow. Furthermore, the scheduler is non-preemptive,

meaning that tasks cannot be interrupted once they have begun execution.

Since the execution times of each task are much smaller than the periods of each

task, it is obvious with simple analysis to observe that the set of tasks is schedulable.

Furthermore, given the priority scheme, the major cycle, that is, the amount of time

required for all tasks to complete and start repeating the pattern, is 30 ms; the major

cycle is clearly identified since the combined worst-case execution time of all tasks,

305 tis, fits inside of the period of the task with the fastest rate, the servo task, whose

period is 3 ms. Furthermore, taking into account the resolution of the scheduler, 1

ms, the worst-case execution time for each individual tasks will fit inside the 1 ms

blocks meaning that the maximum delay before the beginning of the execution of a

task will be 2 ms. Since the worst-case execution time of the servo task is 100 ps,

taking into account the potential 2 1ts block delays, the worst-case completion time
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for the servo task would be 2100 pts, which still falls under the deadline of 3 ms.

8.3.1 Model

The tasking structure and the scheduler are modeled in the TASM language to per-

form various forms of analysis, including schedulability analysis. The 1 ms clock is

modeled as a main machine, named SCHEDULER which constantly performs steps

in 1 ms increments. The tasks are modeled as a single main machine, named TASKS,

to reflect the single processor implementation. Tasks can be in 4 possible states -

waiting, released, executing, and finished. The waiting state denotes a task that is

waiting for the next period to begin its execution. The released state denotes a task

that is ready to execute. The executing state denotes a task that is currently exe-

cuting. The finished state denotes a task that has finished execution for the current

release. The TASKS main machine is purely reactive and will perform steps if one

of the tasks is in the executing state. Otherwise, the machine waits for a task to

be granted execution. The main machine representing the task execution is given

in Listing 8.18. In Listing 8.18, the time annotations correspond to the BCET and

WCET estimates derived in the previous subsection.

The states of the tasks are manipulated by the scheduler, which is also modeled as

a main machine. The scheduler follows the ticks of the 1 ms clock, releases tasks when

the periods expire, and sends tasks to execute on the processor based on the priority

scheme. There are no stoppage conditions for the model. The complete model of

the scheduler and tasks contains 3 main machines, 1 function machine, and 10 sub

machines. The complete scheduler model is documented in Appendix E, Section E.2,

where the complete list of all machines is given in Table E.2.

8.3.2 Functional Analysis

Modeling the ETC tasking model in the TASM language enables analysis through

model checking by translating the TASM model to UPPAAL . The properties that

can be verified within UPPAAL include schedulability, that is, the absence of missed
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Listing 8.18 TASKS main machine
Ri: Execute manager {
t := [0, 5];

if managers = executing then
manager_s := finished;

R2: Execute monitor {
t := [100, 200];

if monitors = executing then
monitor_s := finished;

R3: Execute servo {
t := [70, 100];

if servo_s = executing then
servo_s := finished;

R4: Else, do nothing, wait for an event {
t := next;

else then

skip;
}
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Machine IL Rules I Flattened Rules
CLOCK 2 16
SCHEDULER 4 28
TASKS 4 4

Table 8.15: Number of rules for flattened main machines

deadlines, and safety and liveness properties of the scheduler logic.

UPPAAL Model

In order to model check the TASM model for safety assertions and schedulability

properties, the ETC TASM model leverages the UPPAAL model checker, using the

translation approach documented in Appendix C. Because the timed automata used

in UPPAAL do not have hierarchical composition facilities, the TASM main machines

need to be "flattened" per the approach in the proof of Theorem 4.1 and in the

proof of Theorem 4.2. The removal of hierarchical composition leads to exponential

growth in the number of states in the "flattened" machine where multiple units of

hierarchical composition happen in parallel. In the ETC tasking model, the CLOCK

main machine and the SCHEDULER main machine both use hierarchical composition

and need to be flattened. In the definition of the CLOCK main machine both rules

utilize hierarchical composition in parallel, but the growth is tractable since it leads

to only 16 rules (2 * 2 * 2 * 2). A similar growth occurs in the SCHEDULER main

machine when executing the rule to wake up the various tasks. The number of rules

for each flattened main machine of the TASM model is shown in Table 8.15.

The complete UPPAAL model contains 4 timed automata, including 3 automata for

each main machine of the TASM model and 1 automata to enforce the "Else rule" of

the TASKS main machine.

The UPPAAL verifier can be used to ensure that the scheduler behaves correctly

according to expected functionality. For example, simple liveness queries can involve

verifying that each task is eventually finished. For example, verifying that the man-

ager task eventually executes can be expressed in the UPPAAL query language as "A<>

manager_s == 4". Similar queries were formulated for the other tasks as well. An im-
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portant safety property of the scheduler is that it enforces the single processor nature

of the execution platform by not setting more than one task to the executing state.

This safety assertion can be formulated as "A [] !((monitors == 3 && manager_s

== 3) 11 (monitors == 3 && servos == 3) I (managers == 3 && servo_s

3))". Other safety and liveness properties can be formulated as well, as needed.

Completeness and consistency

The completeness and consistency of the tasking model was verified successfully fol-

lowing the approach presented in 5.1. The results of the completeness analysis, for the

machines which are not trivially complete in shown in Table 8.16. The consistency

analysis results are shown in Table 8.17.

Name Propositions Clauses Complete
CLOCK 3 7 Yes
SCHEDULER 4 15 Yes
SETEXECUTION_PRIORITY 12 46 Yes

Table 8.16: Completeness analysis results for the ETC tasking model

Name Propositions Clauses Consistent
CLOCK 3 7 Yes
SCHEDULER 4 15 Yes
TASKS 12 39 Yes
SETEXECUTION_PRIORITY 12 46 Yes

Table 8.17: Consistency analysis results for the ETC tasking model

For the tasking TASM model, most machines are trivially complete because the

"Else rule" is used extensively, except for the CLOCK main machine and for the

SET_EXECUTION_PRIORITY sub machine. Most machines are also trivially con-

sistent, since most machines have very few rules, except for the 3 main machines and

the SET_EXECUTIONPRIORITY sub machine. The TASKS main machine is the

only machine that is not consistent and the counterexample generated by the SAT

solver is the case where two tasks are executing simultaneously. Clearly, this case is

not reachable in the model since the tasking structure is executed on a single proces-
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sor and this safety property of the scheduler was verified against the UPPAAL model

in the previous subsection.

8.3.3 Execution Time Analysis

The execution time analysis of the tasking structure concerns whether any of the 3

tasks could ever miss a deadline given the scheduling priority and the execution time

of individual tasks. For the servo task, analyzing whether there is a possibility that

the task could miss a deadline can be obtained by measuring the longest running

time from the task being released to the task being finished. This model path can

be easily formulated using the approach described in Section 5.3.3. The resulting

observer automaton to measure the time necessary to complete this path is shown in

Figure 8-5.

servo s == 2 servo s == 4
OBSERVER .go? OBSERVER. go?

z= 0, b1
qO b=0 qI q2

b=0,z=0

Figure 8-5: Observer automaton to verify the execution time of the servo task

After 2 iterations, the worst-case execution time of the servo task is measured to

be 2100 lis, which is congruent with the preliminary analysis in the tasking model

description. For the monitor task, the worst-case execution time is measured to be

1200 /is, corresponding to a one block execution delay and the worst-case execution

time of the task. For the manager task, the worst-case execution time is 5 tus, with no

delay before starting execution. This result is also expected since the manager task

has the highest priority of all the tasks and the other tasks' execution times will fit

inside the 1 ms blocks.
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8.3.4 Test Case Generation

In the ETC tasking model, the TASM machines describe the behavior of a sched-

uler and a set of tasks with different periods. For the test case generation, it is

assumed that all the machines in the TASM model represent software components.

Consequently, for all the machines in the model, test suites are generated using the

algorithm described in Listing 7.8. The results of the test case generation are shown

in Table 8.18. In Table 8.18, the first column provides the machine name, the second

column lists the number of test case templates in the test suite template for the ma-

chine, and the third column lists the number of test cases from the test suite required

for unit testing of the machine. Per the approach described in Chapter 7, the test

cases are generated using the rule coverage criterion, explained in Section 7.1.1.

Machine I Test Suite Unit Testing
CLOCK 4 2
SCHEDULER 20 4
TASKS 4 4
finishedtowaiting 3 3
MANAGERTICK 2 2
MONITOR.TICK 2 2
SERVO-TICK 2 2
SETEXECUTINGTASK 9 2
SETEXECUTION_PRIORITY 8 8
UPDATE_TASKSTATUSES 4 2
WAKEUPMANAGER 2 2
WAKEUPMONITOR 2 2
WAKEUPSERVO 2 2
WAKEUPTASKS 6 2

Table 8.18: Test case generation results for the ETC tasking model

A sample test case template from the SCHEDULER main machine test suite is

shown in Table 8.19.

8.3.5 Discussion

Modeling the tasking structure and scheduler in the TASM language enabled the veri-

fication of safety and liveness of the scheduler. Furthermore, the analysis of complete-

ness and consistency uncovered missing cases in the model during the development
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Pre State Post State Coverage Item
scheduler_s{wakeup}, schedulers{execute}, SCHEDULER.R2 ,
oldtick{3}, oldtick{5}, WAKEUP-TASKS.R 1,
tick{5}, managers{released}, WAKEUP.MANAGER.R 1,
manager_s{released}, monitor s{released}, WAKEUP-MONITOR.R1,
managertick{MANAGER.PERIOD}, servos{released} WAKEUPSERVO.R1
monitor_s{released} ,
monitortick{MONITORPERIOD },
servo_s{released},
servotick{SERVO.PERIOD }

Table 8.19: Sample test case template from the test suite for the SCHEDULER main
machine

stages. While the scheduler is fairly straightforward since it uses a static fixed priority

scheduling scheme with no preemption, modeling it in the TASM language shows the

versatility of the language. Furthermore, analyzing the TASM tasking model using

the framework uncovered errors in the Simulink model which were not immediately

apparent. The Simulink model did not model the mutual exclusion of each task cor-

rectly. In part, this is due to the confusion surrounding the semantics of Stateflow;

however, Simulink and Stateflow do not provide any verification facilities to ensure

that these cases cannot happen. By modeling the scheduler and tasks in TASM and

by using the proposed framework, the scheduler was verified to ensure that all tasks

are executed while ensuring mutual exclusion.

The execution time analysis displays another application of the observer automa-

ton paradigm, to evaluate whether certain deadlines are missed. The worst-case

execution times for each task to complete its execution, while taking into account

the priority scheme, were obtained to make sure that no deadlines are missed. Once

again, this type of analysis is not.possible with Simulink and Stateflow. In this case,

the schedulability analysis was quite simple, and could have been done with pen

and paper; however, more complex schedulability problems would not require many

changes to the TASM model and the analysis approach could be reused without any

modifications. The execution time analysis also uncovers some limitations in the ob-

server automaton described in Section 5.3. Since the form of the automaton observes

only simple paths between a fixed start state and a fixed final state, certain properties
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cannot be expressed in this paradigm. For example, it is not possible to formulate a

path to measure the execution time required for all tasks to complete their execution.

Formulating this property is possible through a custom observer automaton with

a structure more complex than the basic structure presented in Figure 5-2. Other

properties that cannot be estimated using the proposed observer automaton structure

include determining the major cycle. Nevertheless, the proposed approach has yielded

interesting results in verifying the absence of missed deadlines for the tasking model.

Furthermore, by translating the TASM model to UPPAAL , an end-user is free to use

UPPAAL freely without imposing limits to the functionality provided by the framework

which is usable and flexible, but represents only a subset of the capabilities of UPPAAL

8.4 Electronic Throttle Controller:

Low Level Model

The high level version of the electronic throttle controller, presented in Section 8.2,

focused on the logic used to set the mode of operation of the controller and focused

on the logic used to calculate the desired current. In this version of the ETC model,

the throttle controller functionality modeled in Section 8.2 is implemented using the

tasking model and the scheduler modeled in Section 8.3. This model combines time-

dependent behavior with the mode switching logic and with the current calculation

logic. The model presented in this section also extends previous models by adding

resources that are consumed by the throttle controller. The analysis presented in

this section is used to illustrate the bi-directional traceability capabilities of the pre-

sented framework, as described in Chapter 6, and the generation of unit test cases,

as described in Section 7.6.
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8.4.1 Model

In order to model the implementation of the throttle controller using the tasking

structure described in the previous section, the functional model developed in Sec-

tion 8.2.1, referred to as model F0 , is combined with the tasking model developed

in Section '8.3.1, referred to as model To. For the most part, the machines of model

F0 and the machines of model To can be combined directly without changes, except

for the CONTROLLER main machine of model To and the TASKS main machine of

model To. The datatypes and environment variables can also be combined without

modification.

The resources that are included in the model are "memory" and "power". The

amount of memory available for the throttle controller is 2048 kilobytes, per the prop-

erties of the target platform implementation platform [251]. For power consumption,

there is typically no upper bound, so a large value is chosen as the resource upper

bound, 1 Mega Watt. The case of power consumption is interesting because analyz-

ing the power consumption is not done to establish whether a finite amount will be

exhausted, but is done to understand what the peak power consumption will be. The

modeling of resources is included in the "final" model resulting from the combination

of model F0 and model To, a model called model FT 1. The "final model" is obtained

through successive refinements of each model. The following subsections describe the

refinements used to obtain model FT 1.

Refined Tasking Model Level 1: T1

The first step of combining model F0 and model To is to divide the manager task

of model To into two steps - one step to set the major mode and one step to set

the minor mode. To maintain the semantics of the manager task, the steps should

be consecutive and atomic within the manager task execution. This refinement is

achieved through a "step expansion refinement", as described in Section 6.2.1. The

step expansion is achieved by dividing rule R2 of the TASKS main machine, shown

in Listing 8.18, into 2 rules, R 11 and R12. The consecutive execution of the two
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refined rules is achieved by introducing a new variable called managers_step, whose

responsibility is to ensure that rule R11 and rule R12 are executed in sequence. The

modified rules of the refined model, called model T1, are shown in Listing 8.19.

Listing 8.19 Rules of the TASKS main machine of model T1 (partial)
R11: Execute manager - set major mode

t := [0, 3];

if manager-s = executing and manager_s_step = major_mode then
manager_sstep := minormode;

R12: Execute manager - set minor mode

t := [0, 2];

if manager_s = executing and manager_s_step = minor_mode then
manager_s_step := major mode;
manager_s := finished;

The traceability relationship from model To to model T1 is simply the identity

mapping of all rules of all machines except for rule R1 of the TASKS main machine,

whose traceability mapping is included in the set of "step expansion refinements".

The complete traceability relationship can be expressed as:

T = To +-+ T = Tid U Tsexp

Where:

Tid = identity mappings for all rules of all machines except for rule R1 of ma-

chine TASKS

* Tsexp = (( {TASKS.R 1}, {TASKS.Ril, TASKS.R 12} ))
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It is fairly obvious to see that the correctness criteria of Section 6.2.2 for the step

expansion refinement is met since the time annotations of rule R11 and rule R12 are

contained within the time annotation of rule R1. Furthermore, the guards of the

refined rules also meet the correctness criteria, as shown by the truth table shown in

Table 8.20.

manager-s = manager-s-step = manager.s-step = Gi G11  G12 (Gi V G12 )
executing major-mode minor-node

T T F T T F T
T F T T F T T
F T F F F F F
F F T F F F F

Table 8.20: Truth table for the step expansion refinement between rule R1 of model
To and rules R11 and R 12 of model T1

Furthermore, no other rule changes the value of managers from executing to

another value, no other rule changes the value of managersstep, the two rules

are sequential through managersstep, and the result of executing both rules in

sequence is the same as the result of executing rule R1. Because the correctness

criteria holds for the step expansion refinement, the analysis performed on model To,

in Section 8.3, still holds in model T1. Since the time annotations in both models

are equivalent through equality bounds, the analysis results that are preserved from

model To include the functional analysis, the schedulability analysis, and the worst-

case execution time analysis. Consequently, the absence of deadlines and the safety of

the scheduler, as determined in Section 8.4.4, are preserved through the refinement,

in model T1.

Refined Tasking Model Level 2: 72

In the second refinement level, elements manipulating the state from model Fo are

introduced into model T1. The first refinement for this level happens with the SCHED-

ULER main machine. The refinement is of the type "step expansion", performed by

adding rule Ro to the rules of the SCHEDULER main machine to be executed after

rule R4 and before rule R 1. The refinement is achieved by expanding the Scheduler

317



datatype by adding an extra member, called updatestate. The refinement occurs so

that the scheduler reads the state of the sensors at 1 ms intervals, at the beginning of

each tick. This is achieved by reusing the SAMPLESTATE sub machine defined in

Section 8.2. The added rule, rule Ro, and the modified version of rule R4 are shown in

Listing 8.20. The refinement adds a step to the scheduler execution, at the beginning,

by caching the state at the beginning of each execution cycle. The state updating

rate is congruent to the functionality of the Simulink model described in [111], which

is driven by a 1 ms clock.

Listing 8.20 Modified rules of SCHEDULER main machine of model Ti
RO: Step 0, update state
{
if scheduler_s = updatestate then
SAMPLESTATEO;
schedulers := update_tasks;

}

R4: Wait for a tick
{
t := next;

if scheduler = wait then

scheduler_s := updatestate;

Using a structure and an argument similar to the step expansion refinement for

the TASKS main machine in model TI, it can be shown that the step expansion

refinement preserves the semantics of model T1i and, by associativity, the semantics

of model To. The refinement meets the correctness criteria of Section 6.2.2, since the

refined rules follow sequentially, and the updates introduced by the SAMPLESTATE

sub machine affect only the expanded state space and no other rule in model Ti.

The second refinement that occurs at this level is the addition of state manip-

ulating functionality for the task executions. Analogously to the refinement of the

SCHEDULER main machine, this refinement is achieved by reusing sub machines

from model Yo, namely the SET_MAJORMODE, SETMINOR_MODE, MONI-

TORHEALTH, and CALCULATEOUTPUT sub machines. The refined TASKS
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main machine is shown in Listing 8.21. For this refinement, the refinement is of type

"rule expansion", where each rule Rj of the TASKS main machine of model T1 is

mapped one-to-one to each rule of the TASKS main machine of model T2. It is easy

to see that, in the mapping, each time annotation and each guard is equivalent. The

difference happens in the effect expressions. Since the sub machines that are used

in the refinement do not depend or modify the state of model TI, it can be shown

that the refinement preserves the semantics of model T1, and by associativity, the

semantics of model To. The equivalence of the guards in the mapping can be easily

visualized through previous analysis. Per the analysis presented in Table 8.9, all the

sub machines introduced in Listing 8.21 are complete. Consequently, the equivalent

"flattened" machine for Listing 8.21 will yield a machine where the guards between

the mapped rules will also be complete since completeness is preserved through hi-

erarchical composition per the proof of Theorem 5.1. The extra rules introduced

by the use of sub machines are included in the rule expansion refinement since the

equivalent "flattened" machine would yield the one-to-many mapping that includes

the extra rules.

The traceability relationship for this refinement level can be expressed as:

T = T -+ T2 = Tid U Tsexp U T'rexp

Where:

* Tid = identity mappings for all rules of all machines except for rule R 4 of ma-

chine SCHEDULER, and rules R11, R12 , R2, and R3 of machine TASKS

* T,p, = (( {SCHEDULER.R4}, {SCHEDULER.R4, SCHEDULER.Ro} ))

* Trexp = (({TASKS.R 11}, {TASKS.R11}), ({TASKS.R 12}, {TASKS.R 12 ),
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Listing 8.21 Modified TASKS main machine of model T2
R11: Execute manager
{

t := [0, 3];

if manager_s = executing and manager_sstep = major_mode then
SET_MAJOR_MODE();
managers_step := minor_mode;

R12: Execute manager
{

t := [0, 2];

if managers = executing and managersstep = minor_mode then
SET_MINORMODE();
manager_sstep := majormode;
managers := finished;

I

R2: Execute monitor

t := [100, 200];

if monitor_s = executing then
MONITOR_HEALTH();
monitor_s := finished;

R3: Execute servo

t := [70, 100];

if servo_s = executing then
CALCULATE_OUTPUT();
servo_s := finished;

I

R4: Else, do nothing, wait for event
{

t := next;

else then
skip;

}
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({TASKS.R2), {TASKS.R 2 }) ,({TASKS.R 3), {TASKS.R 3) ))

Through this sequence of refinements of model To, the refinements have conformed

to the correctness criteria described in Section 6.2.2. Consequently, the analysis

results performed on model To are preserved for model T2.

Refined Functional Model Level 1: Fi

The refinement of model To from a tasking model to a combination of tasking and

functional model was performed in appropriately defined steps to show that the re-

finements were performed to preserve the analysis performed on model To. In this

section, an attempt is made to refine model Fo stepwise to preserve its semantics all

the while introducing scheduling. The first step of the refinement introduces time

annotations into the CONTROLLER main machine using the task execution times.

The modified rules of the CONTROLLER machine are shown in Listing 8.22. In

Listing 8.22, the only difference in the refinement is the addition of time annotations

for rules R2, R3, R4, and R5 , using the task execution times. This refinement corre-

sponds to a rule expansion refinement between the CONTROLLER main machine of

model F0 and the CONTROLLER main machine of model Fl.

Because the guards and effect expressions are equivalent between model F 0 and

model F 1, the correctness criteria of the rule expansion refinement for the guards

and effect expressions are met. However, the correctness criteria regarding the time

annotations between model F• and modelF• are not met. Consequently, if timing

analysis was performed in model F 0, the analysis results would not necessarily hold

in Fl. However, while the addition of time annotations affects the timing of the

model, the sequence of execution of the rules remains unchanged between model Fo

and model Fl. Consequently, the functional analysis performed on model F 0, in

Section 8.2.2 still holds in model F1 . This can be established using the argument

that the CONTROLLER main machine executes a "full loop" using the cached state.

In the case of model F1 , the performance of the controller will be lower since the
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Listing 8.22 Rules
Ri: Controller loop

of the CONTROLLER main machine of model Y.F
when nominal

if control_mode = sample then
SAMPLESTATE();
control_mode := mode_set;

}

R2: Controller loop to set major mode

t := [0, 3];

if controlmode = mode_set_major then
SETMAJORMODE();
controlmode := mode_set_minor;

R3: Controller loop to set minor mode

t := [0, 2];

if control_mode = mode-set-minor then
SET_MINOR_MODE();
c6ntrol_mode := output;

R4: Controller loop to output current

I
t := [70, 100]

if controlmode = output then
CALCULATE_OUTPUT();
control_mode := health;

R5: Controller loop to find failure

t := [100, 200];

if controlmode = health then

MONITORHEALTH();
controlmode := sample;
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actions are not instantaneous, but the safety and liveness of the ETC are preserved

because the correctness criteria hold. The traceability relationship between model Fo

and model Fi can be expressed as:

T = 0 +--> T 1 = Tid U Trexp

Where:

* Tid = identity mappings for all rules of all machines except for rules R1, R2,

R3 , R4, and R5 of machine CONTROLLER

* Trexp = (({CONTROLLER.Ri}, {CONTROLLER.R1} ),

({CONTROLLER.R2}, {CONTROLLER.R2 }),

({CONTROLLER.R3 }, {CONTROLLER.R 3 } ),

({CONTROLLER.R4}, {CONTROLLER.R 4 }),

({CONTROLLER.R5 }, {CONTROLLER.Rs}))

Refined Functional Model Level 2: F2

The refinement of model F$ into model F 2 involves adding the scheduler and the

tasking structure of model To to model .F. The refined version of the CONTROLLER

main machine resembles the machine of Listing 8.21, with the variable controlmode

removed from the rules. Since model F 2 is drastically different from model FI, the

functional properties analyzed in model Fo no longer hold in model T2 . Nevertheless,

the rules can be traced syntactically using rule expansion refinements with an identical

mapping from model 9F1 to model F2 as in the mapping between model F0 and model

F.1.
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Final Refined Model: FT 1

The two refinement branches converge at a common model called FTo that is trace-

able to model F2 and, by associativity, to model F 0. Furthermore, model ET0 to

model T2. The final step in refining the ETC low level model, resulting in model TF 1,

adds resource annotations to model FTo. The model contains 2 resources - memory

and power consumption. The resources are modeled to estimate the maximum power

consumption of the throttle controller, and to ensure that the memory used by the

controller is adequately bounded. The power consumption resource utilization was

estimated using the characteristics of the Xilinx Virtex II Pro implementation plat-

form, which uses a PowerPC 405 processor operating at 10 MHz [251]. The memory

consumption was also estimated using the properties of the Xilinx Virtex II Pro, using

a combination of the operations listed in Table 8.14 and the Simulink model. Both

resources are consumed only by the functional aspects of the model, that is, mode set-

ting, desired current calculation, and health monitoring. The resource consumption

of the scheduler and the clock are assumed to be negligible.

In order to estimate the memory necessary to set the mode and to calculate the

desired current, the Simulink model is abstracted using the list of Simulink blocks,

variables, and parallel operations performed in each subsystem. For example, the

sliding mode controller used to calculate the throttle controller current commanded

by the driver input is shown in Figure 8-6. In Figure 8-6, there are 6 parallel lines of

computation and the computations are achieved through 26 variables of type float,

3 integrators, 9 gains, 7 additions, 1 saturation, 2 sign reversals, 1 discrete filter,

and a summation at the end of the computation. The memory usage is estimated

using the number of variables necessary to perform the calculation and the properties

of the execution platform. The power consumption is estimated using the parallel

branches of computation, the number of maximum number of clock cycles required to

perform on each branch, and the properties of the implementation platform. For most

current calculations in the Simulink model, there are multiple calculation paths that

can be followed to obtain the desired current. Consequently, it is possible to obtain
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Calculated Min Power Max Power Min Memory Max Memory
Current (mW) (mW) (bytes) (bytes)
Human 769 895 196 360
Cruise 800 800 128 128

Human + Cruise 864 1695 324 826
Traction 800 800 128 128
Rev 800 800 128 128

Traction + Rev 1425 1425 648 648
Fault 855 895 512 512

Table 8.21: Resource usage estimates for the ETC low level model

minimum and maximum values for both resource calculations. The results of the

resource usage estimation for the desired current calculations are shown in Table 8.21.

Similar estimates were made for the health monitoring logic and for the startup and

shutdown modes. The results of the estimates serve as resource annotations in the

TASM model. The modified machines containing resource annotations are provided

in Section E.3.

Complete Model

The complete ETC low level TASM model contains 5 main machines, 14 function

machines, and 20 sub machines. The complete low level ETC model is documented

in Appendix E where the list of all machines is shown in Table E.3 and in Table E.4.

8.4.2 Traceability

The sequence of refinements performed in Section 8.4.1 yields a tree of models that

can be navigated through the relation of rules of machines. The complete traceability

relationship can be visualized as illustrated in Figure 8-7. In Figure 8-7, model FO

corresponds to the model described and analyzed in Section 8.2, model Uo corresponds

to the model described and analyzed in Section 8.3, and model FT 1 corresponds to

the model described and analyzed in this section.
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This is a standard sliding mode controller design. The (known) nonlinear
dynamics are subtracted off the system and a signum or saturation

Trigger function is then used along with a tunable gain, K, to achieve the control
objective. In this case, the control objective is to bring the error between

Figure 8-6: Simulink sliding mode controller to calculate driver throttle current

C.
M"



To Fo

T1 F

T2 F2

TFo

I
TF1

Figure 8-7: Traceability between different versions of the ETC model
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8.4.3 Functional Analysis

Since the steps of the refinements performed to combine the functional model pre-

sented in Section 8.2 with the model presented in Section 8.3 do not preserve the

semantics of model Fo, the functional analysis performed in Section 8.2.2 must be

performed again on model TFI1. The safety properties verified in Fo utilized the

sequential nature of the controller execution to ensure that the mode was always set

correctly according to the requirements, based on the state cached by the controller

and based on the step of operation of the controller. However, in model T•F1, since

the functionality is implemented using a tasking model where the manager task ex-

ecutes at a slower rate (every 10 mis) than the controller resolution (1 ms), some

controller iterations do not meet the safety properties expressed in Section 8.2.2. The

properties verified in Section 8.2.2 assumed that the controller would set the mode at

every controller iteration, which is not true for model T. 1. Consequently, the queries

from Section 8.2.2 need to be modified. The queries can capitalize on the subtleties

of the execution, where the state is cached at the beginning of the controller iteration

and each task will be in the finished state in an iteration only if the task has executed

during the previous iteration. Furthermore, since it has been established through the

execution time analysis of model T0o that the execution of each task will complete

within a controller iteration, the safety property to verify that the limiting mode is

always set correctly, when the engine speed or the torque is above the predefined

threshold, can be formulated as:

* A G (systemhealth = nominal A c_enginespeed > MAX_ENGINESPEED A

scheduler_s = update_state A managers = finished) -- (controllermode = lim-

iting)

* A G (system_health = nominal A cvehicletorque > MAXTORQUE A sched-

uler_s = updatestate A manager_s = finished) --+ (controllermode = limiting)

328



The scheduler will be in the "update state" step after an iteration has completed

and before the cached state is updated. Consequently, at that step, if the manager

task has executed, the mode should be set correctly. The requirement that no fault

be present is necessary because if a fault is detected, it will override all other modes.

Similar queries can be formulated to verify that the mode is set correctly for the

driving mode and for the minor modes. To verify the calculation of the desired

current, the queries from Section 8.2.2 can be adapted in a similar fashion:

* A G (controllermode = driving A schedulers = updatestate A servo_s =

finished) --+ (desiredcurrent = humanc V desiredcurrent = cruisec V de-

siredcurrent = max-drivingc)

* A G (controller-mode = limiting A cruise_mode = active A revlimitingmode

- active A tractionmode = active A schedulers = update_state A servos =

finished) -- (desiredcurrent = minlimitingc)

The status of the servo task also needs to be queried because the servo task will

not execute at every controller iteration and will execute in an iteration only if it is

the only released task since it has the lowest priority of all the tasks. Other similar

queries could be written to verify that the minor modes are set properly and that

the current is calculated correctly for all the combination of major and minor modes.

Those queries would follow a pattern similar to the queries presented in this section

and are omitted for brevity. In order to verify the safety properties, the TASM model

is translated to UPPAAL 's timed automata.

UPPAAL Model

In order to model check the TASM model for safety assertions, the ETC TASM model

leverages the UPPAAL model checker, using the translation approach documented in

Appendix C. Because the timed automata used in UPPAAL do not have hierarchical
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Machine Rules Flattened Rules
CLOCK 2 16
DRIVER 11 11
SCHEDULER 5 29
TASKS 5 33
VEHICLE 9 9

Table 8.22: Number of rules for flattened main machines

composition facilities, the TASM main machines need to be "flattened" per the ap-

proach in the proof of Theorem 4.1 and in the proof of Theorem 4.2. In the low level

ETC model, model TF 1, 3 main machines use hierarchical composition and need to

be flattened - the CLOCK main machine, the SCHEDULER main machine, and the

TASKS main machine. The number of rules for each flattened main machine of the

TASM model is shown in Table 8.22.

The complete UPPAAL model contains 9 timed automata, including 5 automata

for each main machine of the TASM model and 4 automata to enforce the "Else

rules" of the DRIVER, SCHEDULER, TASKS, and VEHICLE main machines. The

safety properties given as temporal logic formulas can be easily translated to the

TCTL query language of UPPAAL. The UPPAAL queries corresponding to the safety

properties stated above are shown below, in the order in which they were introduced:

SA[]I (cengine_speed > MAX_ENGINE_SPEED && systemhealth == 1 &&

schedulers == 5 && managers == 4) imply

(controllermode == 5)

* A [] (c_vehicle_torque > MAX_TORQUE && systemhealth == 1 &&

scheduler_s == 5 && manager_s == 4) imply

(controllermode == 5)

* AB] (controller_mode == 4 && scheduler_s == 5 && servo_s == 4)

imply (desired_current == 2 11 desired_current == 3 11
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desired_current == 7)

* A[] (controllermode == 5 && cruise-mode == 1 &&

revlimiting-mode == 1 && traction-mode == 1 && schedulers == 5 &&

servos == 4) imply (desiredcurrent == 6)

These properties were successfully verified by running the queries through the

UPPAAL verifier. The model can also be queried to verify certain liveness properties,

to ensure that the model behaves correctly. For example, the property "eventually,

the car can be in cruise control" can be verified. This property can be formulated as

the liveness property "E<> cruisemode == 1". Other liveness and safety properties

can be formulated in a similar fashion, as needed.

Completeness and Consistency

The completeness and consistency of the low level ETC model was verified successfully

following the approach presented in 5.1. The results of the completeness analysis are

shown in Table 8.23. The consistency analysis results are shown in Table 8.24. The

completeness and consistency analysis was performed only for the machines whose

rules were changed from the model presented in Section 8.2 and the model presented

in Section 8.3. For the machines in the low level model, model FT 1, whose rules were

not modified, the completeness and consistency results are available in Table 8.9,

Table 8.16, Table 8.10, and Table 8.17.

Name Propositions Clauses Complete
SCHEDULER 5 32 Yes
TASKS N/A N/A Yes

Table 8.23: Completeness analysis results for the ETC low level model

For the low level ETC TASM model, the only machines whose completeness and

consistency need to be verified are the SCHEDULER main machine and the TASKS
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Name Propositions Clauses Consistent
SCHEDULER 5 32 Yes
TASKS 14 42 No

Table 8.24: Consistency analysis results for the ETC low level model

main machine. The other machines which were modified were altered to include

resource consumption annotations to the rules. Because the rule guards were not

changed, the completeness and consistency of the machines are not affected. Accord-

ing to the results presented in Table 8.24, the TASKS main machine is not consistent.

The counterexample generated by the SAT solver is the same state as the one de-

scribed in the analysis of the consistency results presented in Table 8.10. The coun-

terexample is the state where two tasks are executing simultaneously, a state which is

clearly not reachable since the functionality is implemented on a single processor ar-

chitecture. It can be easily verified that this state is not reachable, through the safety

invariant query "A[] ! ((monitors == 3 && manager_s == 3) II (monitor_s ==

3 && servo_s == 3) I1 (managers == 3 && servos == 3))" against the timed

automata UPPAAL model. Interestingly enough, this safety invariant was verified for

model To in Section 8.3.1 and given the nature of the refinements, this property is

guaranteed to hold in model TYF1.

8.4.4 Execution Time Analysis

Given that the refinements of the tasking model, model To, presented in Section 8.3,

meet the correctness criteria, the execution time analysis results from Section 8.3.3 are

preserved in model FT 1 . Consequently, the schedulability analysis and the absence

of missed deadlines analysis performed on model To are guaranteed to hold in model

TF 1. Using the approach presented in Section 5.3, other execution time properties of

model T.F can be verified. For example, execution time properties for a combination

of functional properties and scheduling properties can be verified.
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End-to-End Latency

End-to-end latency refers to the amount of time that it takes for the system to react

to a change in the environment. In terms of the ETC, end-to-end latency could refer

to the amount of time required for the controller to output the appropriate current

to remedy a given situation. For example, the end-to-end latency of mitigating the

torque rising over the critical threshold would be the BCET and WCET of the ETC

setting the desired current to "traction limiting", taking into account the effects of

scheduling to set the appropriate controller mode and to calculate the desired current

based on the mode. The DRIVER and VEHICLE main machines model the behavior

of the surroundings of the ETC and are modeled so that changes in the vehicle torque

and in the engine RPM can occur at any point. Consequently using the iterative

bounded liveness approach against the UPPAAL model derived in Section 8.4.3 can

yield the desired measures through an appropriately defined observer automaton.

For example, the observer automaton shown in Figure 8-8 is used to measure the

end-to-end latency of the ETC outputting current to mitigate a vehicle torque over

the critical threshold. In the observer, it is important to include the health of the

system in the path formula. Otherwise, the timing of the path could be unbounded

because a fault could occur after the torque rise and the ETC would enter the "faulty"

mode and would never handle the torque condition.

systemhealth == 1 &&
system_health == 1 && (desiredcurrent == 4 II
vehicle torque > MAX_TORQUE desired_current == 6)

OBSERVERgo? OBSERVER go?

qO b= 0 q1 q2

z 0, b 0

Figure 8-8: Observer automaton to measure the end-to-end. latency of the ETC for
the vehicle torque being over the critical threshold

After two iterations of verifying ,,ma against the UPPAAL model, the WCET of the

end-to-end latency corresponding to the behavior observed through the automaton
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shown in Figure 8-8 is determined to be 12100ps. This WCET corresponds to the rise

in torque occurring at the same time as the manager task beginning execution, after

the state has been cached. 10000ps elapse until the next execution of the manager

task (10 ms period), where the appropriate controller mode is set after the manager

task has completed its execution. However, the desired current will not be calculated

until the servo task completes its execution. Since the period of the servo task is (3

ms), the servo task will be released 2000ps after the beginning of the execution of

the manager task. Since the servo task has a WCET of 100tus, the desired current

to handle the torque limiting will occur 100ls after the beginning of the execution of

the servo task, resulting in anend-to-end latency WCET of 12100ps. It is interesting

to notice that the WCET occurs only if the torque rise occurs at the beginning of

the first execution of the manager task within the major cycle. Since the major cycle

is 30 ms, the manager task executes 3 times per major cycle, at the beginning, 10

ms into the cycle, and 20 ms into the cycle. The WCET occurs this way because

the second execution provides the largest gap between the end of the manager task

and the beginning of the servo task, when the mode is set and the desired current is

calculated.

The BCET of the same end-to-end latency is verified to be 2070/as, also after two

iterations, but through verifying ¢mij. This BCET corresponds to the rise in torque

occurring immediately before the beginning of the major cycle, when all tasks are

released. Given the task priority, the manager task executes first, followed by the

monitor task, 1000ps later, followed by the servo task, 10001Ls later. Given that the

BCET of the servo task is 70ps, the total BCET reaches 2070ps.

For the situation where the ETC remedies a rise in engine RPM, the BCET

and WCET of the end-to-end latency is exactly the same as for the torque case.

The similarity occurs because the reaction delay is purely a result of the scheduling

properties of the various tasks. The time required to set the controller mode and the

time required to calculate the desired current is independent of what mode is being

set and which desired current is being output.

Another interesting situation to consider, and which yields different timing results,

334



is the BCET and WCET of the end-to-end latency for the ETC to remedy a fault. The

WCET for this situation is 42100ps and the BCET is 12070ps. The BCET is achieved

when the fault occurs right before the beginning of the major cycle. However, since

the manager task has a higher priority than the monitor task, it runs first, without

the fault having been detected. The monitor task runs second and detects the fault.

However, the manager task does not set the appropriate fault handling mode until

10 ms after the beginning of the major cycle. Furthermore, the appropriate desired

current doest not get output until the next execution of the servo task, 2 ms after

the beginning of execution of the manager task. The WCET occurs when the fault

happens right after the beginning of the major cycle, once.the state has been cached.

The fault will not be detected until the beginning of the following major cycle, 30 ms

later, and, given the priority of the manager task and the same argument as in the

BCET case, the fault is not handled until 12100ps later, resulting in the WCET of

42100ps. The summary results for the end-to-end latency analysis of model FT 1 are

summarized in Table 8.25.

P0o P1 i WCET Iter BCET I Iter
system-health = nominal, (desiredcurrent = traction.c or 12100ps 2 2070As 2
vehicletorque > MAXTORQUE desired.current = minlimitingc),

systemohealth = nominal
system-health = nominal, (desiredcurrent = rev_c or 12100l s 2 2070js 2
engine.speed > MAX.ENGINE. desiredcurrent = min-limiting.c),
SPEED system-health = nominal
fault = True desiredcurrent = fault-c 42100, s 2 12070Ijs 2

Table 8.25: End-to-end latency analysis results for the ETC low level model

8.4.5 Resource Consumption Analysis

The resource consumption analysis provided by the proposed framework provides

calculations for the best-case and worst-case amounts of resources consumed, as ex-

plained in Section 5.4. The algorithm iterates through combinations of rules that can

be executed in parallel in order to find a combination of rules who are satisfiable and

which yield maximal and minimal resource usage. Per TASM semantics, resource

usage is additive through parallel rule execution. The parallelism can be achieved
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Resource Type Amount State
power min 769 servos = executing,

controller lode = driving,
cruise-mode = inactive,
c_pedalangle != 0

power max 1695 servo.s = executing,
controllermode = driving,
cruise-mode = active,
c_pedal_angle != 0

memory min 128 servo.s = executing,
cvehicle-speed = 0,
cbreak_pedal = active,
ccruise-switch = off

memory max 1024 monitor-s = executing,
fault = True

Table 8.26: Resource usage analysis results for the ETC low level model

either through main machines executing simultaneously, or through multiple units of

hierarchical composition. In the ETC model, the implementation of the functional-

ity is fairly simple, on a single processor architecture, and there are few interactions

between the tasks. Furthermore, the calculation logic for the desired current is also

of low complexity.

Because the ETC implementation does not contain any parallel consumption

of resources through the use of multiple main machines, the minimum and maxi-

mum amounts of resources consumed will correspond to the minimum and maximum

amounts contained in an individual rule. For the maximum amount of power con-

sumed, 1695 milliWatts, it occurs when rule R1 of the DrivingThrottleC function

machine is executed. The minimum amount of power consumed is trivially 0 milli-

Watts, before the ETC initializes or after shutdown. The minimum non-zero power

consumption is 769 milliWatts, which occurs when rule R1 of the Driver_ Throttle C

function machine is executed. Similar reasoning can be applied to the memory con-

sumption. The results of the analysis, alongside the complete state of the "flattened"

machine yielding the minimum and maximum values are shown in Table 8.26.
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8.4.6 Test Case Generation

Since the ETC low level model, model FT 1, combines features of the high level model,

model Fo, and features of the tasking model, To, through a series of refinements, the

test cases generated previously can be reused. More specifically, test suites have

already been generated for these two models, in Section 8.2.3 and in Section 8.3.4.

In this section, test cases are generated for the combined model using the set of

refinements and the regression test case strategy described in Section 7.6. The results

of the test case generation are shown in Table 8.27 and in Table 8.28. In the tables, the

first column provides the machine name, the second column lists the number of test

case templates in the test suite for the machine, and the third column lists the number

of test cases from the test suite required for unit testing of the machine. The fourth

column denotes how many test cases were regenerated and the fifth column describes

the number of test cases that need to be executed, under the assumption that the

test suites generated in Section 8.2.3 and in Section 8.3.4 were already executed on

the respective models. Per the approach described in Chapter 7, the test cases are

generated using the rule coverage criterion, explained in Section 7.1.1.

Table 8.27: Test case generation results for the ETC low level model (part 1)

For the SCHEDULER main machine, a test case template is added to the test

suite, using the approach for the step expansion refinement. The new test case tem-
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Machine Test Suite Unit Testing New Execute
CLOCK 4 2 0 0
SCHEDULER 21 5 1 2
TASKS 33 5 32 4 (32)
Cruise 2 2 0 0
CruiseMode 3 3 0 0
CruiseThrottleC 1 1 0 0
Driver-Throttle-C 1 1 0 0
DrivingThrottleC 3 3 0 0
Fault 2 2 0 0
LimitingThrottle-C 6 4 0 0
OverRev 2 2 0 0
OverRev.Mode 3 2 0 0
Over-RevThrottle_C 1 1 0 0
OverTorque 2 2 0 0



Machine I Test Suite Unit Testing New Execute
OverTorqueMode 3 2 0 0
OverTorqueThrottleC 1 1 0 0
finishedtowaiting 3 3 0 0
CALCULATEOUTPUT 15 6 0 0
DOSHUTDOWN 2 2 0 0
DO-STARTUP 2 2 0 0
HANDLE_FAULT 2 2 0 0
MANAGERTICK 2 2 0 0
MONITOR-HEALTH 3 2 0 0
MONITOR.TICK 2 2 0 0
SAMPLESTATE 1 1 0 0
SERVO.TICK 2 2 0 0
SETEXECUTING TASK 9 2 0 0
SETEXECUTION PRIORITY 8 8 0 0
SETMAJOR.MODE 11 3 0 0
SETMAJORMODE.WORK 9 7 0 0
SETvMINORMODE 3 2 0 0
SETMINORMODEWORK 3 1 0 0
UPDATE-TASK.STATUSES 4 2 0 0
WAKEUPMANAGER 2 2 0 0
WAKEUP.MONITOR 2 2 0 0
WAKEUPSERVO 2 2 0 0
WAKEUPTASKS 6 2 0 0

Table 8.28: Test case generation results for the ETC low level model (part 2)

plate which. is added covers the new rule to cache the step at the beginning of the

execution of the scheduler, rule Ro. Furthermore the test case which covers the last

rule in the execution sequence, rule R4, needs to be regenerated and executed to val-

idate the change. For TASKS main machine, the generation of test cases is slightly

more complex because it involves integrating functionality from model .o1 into model

To. Consequently, the integration test generation algorithm can be leveraged by com-

bining the test suites of the sub machines from model Fo with the coverage items of

the TASKS main machine. In Table 8.27, the test cases that need to be executed are

4 test cases to cover the changes in the TASKS machine and 32 test cases to cover all

of the rules of the TASKS machine and all other sub machines introduced during the

refinement. For example, a sample test case template from the TASKS main machine

test suite is shown in Table 8.29. This test case covers rule R 11 of machine TASKS

and 2 rules of some of the sub machines introduced in the refinement.
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Pre State ( Post State I Coverage Item
managers ( executing}, managersstep{minormode}, TASKS.R 11,
manager_sstep{majormode}, controllermode{driving} SET_ MAJOR-
system-health{nominal }, _MODE.R1,
controller'mode( startup}, SET.MAJOR-
startupdone{ True } MODEWORK.R2

Table 8.29: Sample test case template from the test suite for the TASKS main machine

8.4.7 Discussion

The Electronic Throttle Controller (ETC) proved to be an interesting cases study

because it combined different facets of real-time systems such as scheduling aspects

and functional aspects. Furthermore, the ETC lent itself nicely to the traceability

approach described in Chapter 6. The low level model of the ETC provided insightful

analysis results, especially with regards to end-to-end latency. As was uncovered in

Section 8.4.4, the latency for fault detection is unnecessarily high in both the worst

case and the best case. The reason for this situation is because the monitor task

has a lower priority than the manager task. It would be quite simple to modify the

TASM model and associated UPPAAL model such that the monitor task has higher

priority than the manager task. With this change, the impact on end-to-end latency

could be immediately analyzed. Measuring end-to-end latency is not possible with

Simulink and it would need to be obtained through an appropriate simulation scenario

or through separate analysis.

While the presented framework, the TASM language, and the associated toolset do

not have the rich library of mathematical components from control theory provided by

Simulink, the analysis capabilities of the framework proved to be a useful complement

to the Simulink model. Matlab and Simulink provide robust facilities for control-

theoric analysis of control systems, through simulation scenarios. However, the ETC

analysis, as performed on the high level model, tasking model, and low level model,
is not possible with Matlab and Simulink. Matlab also does not provide traceability

or refinement capabilities.

The ETC low level model was derived by combining the high level model of Sec-

tion 8.2 with the tasking model of Section 8.3, and through the addition of resource
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consumption. The traceability approach from the tasking model to the functional

model proved useful as properties from the tasking model, such as schedulability

analysis and execution time analysis, were preserved through the refinements. This

situation occurred because the various refinements from the tasking model complied

with the correctness criteria described in Section 6.2.2. While the set of correctness

criteria seemed a bit restrictive when they were defined, they proved useful in this

case study. However, for the traceability branch starting at the functional model and

ending a the low level model, the sequence of refinements did not comply with the

correctness criteria from Section 6.2.2. This situation occurred because the functional

model didn't have quite the same structure as the tasking model.

In terms of functional analysis, the majority of the completeness and consistency

results were preserved through the chain of models. This situation occurred because

most of the machines used in the low level model were taken verbatim from the tasking

model and from the functional model. The functional analysis performed on the low

level UPPAAL model started to stretch the performance of the UPPAAL engine. Some

of the verification queries took over 30 minutes to complete and consumed over 500

MB of memory on a Pentium 4 operating at 2.4GHz with 512 MB of memory. This

situation became slightly worse for execution time analysis with the addition of the

observer automaton and the iterative nature of the analysis algorithm. Nevertheless,

the analysis was completely automated, meaning that the UPPAAL verifier could be left

alone to explore the state space. Using a mature verification engine like UPPAAL proves

practical because the UPPAAL verifier contains various options for how the state space

is explored [156]. For example, there are different state space reduction techniques

which can be used to obtain better performance, at the cost of the exactness of

solutions. Depending on the property to be verified, an overapproximation or an

underapproximation of the solution might be acceptable if an exact solution is not

feasible given the problem size.

Because the ETC is an industrial application, the implementation of the func-

tionality and the tasking model is not overly complex. Consequently, the amount of

resources consumed is rather limited. The resource consumption analysis performed
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on the low level ETC model did not yield terribly insightful results, but was useful to

validate the resource analysis approach. Overall, the ETC case study was an interest-

ing application to study using the framework because it exercised the majority of the

components of the framework, while stretching the performance limits of the analysis

algorithms. The case study also demonstrated the versatility of the TASM modeling

language as the language was used to model a tasking structure, a functional model,

and a combination of the two.

8.5 The Timeliner Script Executor:

Plant Control System

The Timeliner system has been developed as a scripting environment to automate pro-

cedural tasks typically performed by human operators [61]. The system is composed

of a high-level input language, a compiler, a run-time system, and a user interface.

The Timeliner system is described in details in Section 2.8.3.

The plant control system is a Timeliner application that contains a script used to

regulate the cabin temperature and the cabin humidity level of a plant, as shown in

Figure 2-12. The Timeliner script uses three actuators to regulate the cabin environ-

ment - a heating system, a cooling system, and a humidifier system [238]. The control

script is composed of two sequences. The first sequence, called TEMPMONITOR, shown

in Listing 8.23, is used to maintain the temperature of the cabin between 20 and

25 Celsius degrees. The second sequence, called HUMIDITYMONITOR, shown in List-

ing 8.24, is used to maintain the humidity of the cabin between 40 and 60 percent.

When the temperature is greater than or equal to 26 Celsius degrees, the sequence

starts the cooling system. When the temperature is lower than or equal to 19 Celsius

degrees, the sequence starts the heating system. In both instances, the sequence will

wait for the temperature to reach an acceptable level before continuing. When the

cabin humidity is over 60 percent, the HUMIDITYMONITOR sequence starts the cooling

system. When the cabin humidity is lower than 40 percent, the HUMIDITYMONITOR
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sequence starts the humidifier system. The variable TRYINGTO_COOL_SYSTEM is used

to notify the HUMIDITYAMONITOR sequence not to turn off the cooling system if the

TEMPMONITOR sequence is cooling the cabin. The HUMIDITYMONITOR sequence uses

the cooling system to reduce the humidity of the cabin and shares usage of the cooling

system with the TEMPMONITOR sequence.

Listing 8.23 Timeliner TEMP_MONITOR sequence [238]
SEQUENCE TEMP_MONITOR

EVERY 1
IF TEMPERATURE >= 26 THEN

SET TRYING_TO_COOL_SYSTEM TO TRUE
COMMAND COOLING, NEW_STATE=>ON
WHEN TEMPERATURE <= 22

SET TRYING TO COOL SYSTEM TO FALSE

COMMAND COOLING, NEW_STATE=>OFF
END WHEN

END IF

IF TEMPERATURE <= 19 THEN

COMMAND HEATING, NEW_STATE=>ON
WHEN TEMPERATURE >= 22

COMMAND HEATING, NEW_STATE=>OFF
END WHEN

END IF
END EVERY

CLOSE SEQUENCE

Listing 8.24 Timeliner HUMID_MONITOR sequence [238]
SEQUENCE HUMID_MONITOR

EVERY 1
IF HUMIDITY >= 61 THEN

COMMAND COOLING, NEWSTATE=>ON
WHEN HUMIDITY <= 50

IF NOT TRYING_TO_COOL_SYSTEM
COMMAND COOLING, NEW_STATE=>OFF

END IF

END WHEN
END IF
IF HUMIDITY <= 39 THEN

COMMAND HUMIDIFIER, NEW_STATE=>ON
WHEN HUMIDITY >= 50

COMMAND HUMIDIFIER, NEWSTATE=>OFF
END WHEN

END IF
END EVERY

CLOSE SEQUENCE
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The plant control system case study is an interesting case study because it involves

the modeling of a software program with time annotations for the program. This

case study differs from the production cell case study where the software actions are

assumed to be instantaneous and also differs from the electronic throttle controller

case study where the timing of actions is contained in the tasking model.

8.5.1 Model

The execution times of various Timeliner statements have been heavily studied by

the Charles Stark Draper Laboratory, with timing results documented in [62]. The

measures were performed using the Timeliner Testbed, with version CI_024 of the

Timeliner Executor, using an embedded real-time 16MHz Intel 80836sx VME board

with an 80387 floating point coprocessor. The execution times contained in doc-

ument [62] are used to model the scripts in the TASM language. The scripts are

modeled in the TASM language for the sake of performing timing analysis and to

generate test cases. More specifically, the static timing analysis of Timeliner scripts

provides execution time guarantees. Traditionally, the Best-Case Execution Time

(BCET) and Worst-Case Execution Time (WCET) of one pass of a Timeliner script

were obtained through manual analysis and through systematic testing. By modeling

the script in TASM and using the iterative bounded liveness approach presented in

Section 5.3, exact values of the BCET and WCET can be obtained automatically.

To model the scripts in the TASM language, the scripts are augmented with labels

where the statements contained in the script either block or branch. For example,

the IF statement is a branching statement; the WHEN statement is a blocking state-

ment which will block until its condition becomes true. The structural view of both

augmented sequences is shown in Listing 8.25. The possible executions of the se-

quence can be illustrated using the labels. For example, under nominal conditions,

the TEMPMONITOR sequence will execute through the sequence of labels bo, bl, b3,

b0 in one pass. At the next pass, if the temperature is greater than or equal to 26

Celsius degrees, the sequence will execute through the sequence of labels bo, bl, b2 in

one pass. Eventually, the sequence will leave b2 when the temperature is below 22
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Celsius degrees. Until that condition is met, the sequence will stay at label b2 at each

pass.

Listing 8.25 Labeled TEMPMONITOR sequence
bO: EVERY 1

bl: IF TEMPERATURE >= 26 THEN

b2: WHEN TEMPERATURE <= 22

b3: IF TEMPERATURE <= 19 THEN

b4: WHEN TEMPERATURE >= 22

Listing 8.26 Labeled HUMID_MONITOR sequence
cO: EVERY 1

cl: IF HUMIDITY >= 61 THEN

c2: WHEN HUMIDITY <= 50

c3: IF NOT TRYINGTOCOOLSYSTEM

c4: IF HUMIDITY <= 39 THEN

c5: WHEN HUMIDITY >= 50

The duration of one step transitions from one label to another label have been

calculated using the execution times documented in [62]. The results are shown in

Table 8.25 for the TEMPMONITOR sequence and in Table 8.26 for the HUMIDITYMONITOR

sequence. Entries in the table marked with a "-" denote that the transition is not

possible in one step. It is important to remember that multiple transitions can be

taken in one pass, until a blocking statement is reached.

The time of the transitions are used to build the TASM model. The transitions

are naturally encoded into rules, and the durations from Table 8.30 and Table 8.31

become the durations of the rule executions.
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bo bl b2  b3  b4

bo 685 685 - - -
bl - - 2285 1730 -
b2 - - 1625 3725 -

b3  1950 - - - 2390
b4 1630 - - - 3195

Table 8.30: Duration of transitions (in ~s) between labels of Listing 8.25

CO Cl C2 C3 C4 C5

co 685 685 -.-

cl - - 2395 - 1730

c2 - - 1625 1625 - -

c - - - 2160
c4  1950 - - 2390
c5 3195 - 1630

Table 8.31: Duration of transitions (in ,s) between labels of Listing 8.26

345



The Environment

The labels introduced in Listing 8.25 and in Listing 8.26 are encoded in the TASM

model in the type TempSequenceBlock and in the type Humid_SequenceBlock. The

types are used as a program counter to keep track of the location of each sequence

through each pass of execution. The ProcessorStatus type is used to allocate

processor usage to Timeliner and to the control task. The TASM model contains

only 1 bundle, the plantsim bundle, which contains 2 sequences. Other bundles and

sequences can be easily added to the model by extending the Bundle and Sequence

types. The list of types is shown in Listing 8.27.

Listing 8.27 User-defined types of the model
Status := {active, inactive};
Device := {on, off};
TempSequenceBlock := {bO, bi, b2, b3, b4};
Humid_SequenceBlock := {cO, ci, c2, c3, c4, c5);
Processor_Status := {timeliner, controltask};
Execution_Status := {done, not_done};
Bundle := {plantsim};
Sequence := {tempmonitor, humidmonitor};

The variables that make up the environment contain status variables for the bun-

dles and sequences, the program counters for each sequence, which task has control

of the processor, and whether a given pass is done or not done. The environment

variables are shown in Appendix F, in Listing F.2.

Timeliner Bundles and Sequences

The execution semantics of the Timeliner language are such that only active bundles

are executed and only active sequences are executed, per the organization of Figure 2-

11. Given the hierarchical nature of the execution semantics, sub machines are a nat-

ural fit to describe this behavior. The sub machine EXECUTE_BUNDLES executes

all bundles in sequential order. The sub machine PLANTSIM_B UNDLE executes all

sequences in its bundle, in sequential order, through the EXECUTE_PLANTSIMSE-

QUENCES sub machine, if the bundle is active. The rules of the PLANTSIM_BUN-

DLE sub machine are shown in Listing 8.28, where the active status of the bundle
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dictates whether or not the sequences are executed.

Listing 8.28 Rules of the PLANTSIMBUNDLE sub machine
Ri: Bundle Active

if plantsimbundle-status = active then
EXECUTEPLANTSIMSEQUENCES ();

R2: Bundle Inactive

if plantsimbundle-status = inactive then
plantisms := done;

I

Each sequence is also wrapped into a sub machine so that the sequences are

executed only if they are active. The SEQUENCE_TEMPMONITOR sub machine

and the SEQUENCEHUMID_MONITOR sub machine are wrapper sub machines

that will execute the work of the sequences only if the given sequence is active. The

SEQUENCE_ TEMPMONITOR is shown in Listing 8.29.

Listing 8.29 Rules of the SEQUENCE.TEMPMONITOR sub machine
RI: Sequence Active

if temp_seqstatus = active then
SEQUENCETEMPMONITORWORK ();

R2: Sequence Inactive

if tempseqstatus = inactive then
tempseqs := done;

}

TEMPRMONITOR Sequence

The SEQ UENCE_ TEMPMONITOR_ WORK sub machine describes the logic of the

temperature monitor sequence. Listing 8.30 shows 2 of the 11 rules that make up the

machine. Each rule represents a durative transition between the sequence labels, as

shown in Table 8.30. The names of each rule are of the form "bi -> bj" to indicate

that the rule describes the transition between the label bi to the label bj. For example,
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rule R5 of Listing 8.30 describes the transition between label b2 and label b3. Referring

to Listing 8.23 and Listing 8.25, the rule is fired only if the temperature is less than

or equal to 22 Celsius degrees. If the temperature is above 22 Celsius degrees, the

sequence will stay on the WHEN statement until the temperature falls below 22 Celsius

degrees. This behavior is captured by rule R 4. The time annotations of each rule

are congruent to the calculations summarized in Table 8.30. The complete list of

rules of the SEQUENCETEMPMONITOR_ WORK are given in Listing F. 12 and in

Listing F.13.

Listing 8.30 Rules of the SEQUENCE_ TEMP_MONITOR_ WORK sub machine
(partial)
R4: b2 -> b2

{
t := 1625;

if temp_seq_b = b2 and temperature > 22 then
temp_seqb := b2;
temp_seq_s := done;

R5: b2 -> b3

t := 1730;

if temp_seq_b = b2 and temperature <= 22 then

temp_seq_b := b3;

tryingto_cool_system := False;
cooling := off;

The HUMIDITY_MONITOR sequence is built analogously to the TEMPMONITOR se-

quence through the SEQ UENCE_HUMIDITYMONITOR sub machine and the SE-

QUENCE_HUMIDITYMONITOR WORK sub machine. The structure of the two

sequences is identical with regards to the status of the sequence and the list of rules

is built based on Table 8.31.

Control Task

In order to model the dynamics of script execution, a separate "control task" is

modeled, which shares the processor with Timeliner. The control task is modeled in
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TASM as a main machine which acts as a "dummy" task which performs no function

other than consume time. The execution time of the control task is set between 3500

ps and 5000 pts. The rules of the Control Task main machine are shown in Listing 8.31.

Listing 8.31 Rules of the ControL Task main machine
Ri: Control Task

{
t := [3500, 5000];

if processor = controltask and execution = not_done then
execution := done;

R2: Else
{
t := next;

else then
skip;

Scheduler

The scheduler is the component responsible for switching processor control between

Timeliner and the control task. The processor is allocated to the two competing tasks

on a round-robin basis. The scheduler waits for the task that owns the processor to

signal that it has finished execution for the round. In terms of Timeliner, a round

of execution corresponds to a pass. The scheduler is modeled without preemption

in order to verify the maximum execution time of a single pass of Timeliner. The

scheduler uses the processor variable and the execution variable to determine which

task has control of the processor. The context switching time is assumed to be 1000

ps. The functionality is wrapped in a main machine, called Scheduler. The rules of

this main machine are shown in Listing 8.32.

The Plant Cabin - Temperature and Humidity

The behavior of the humidity and the temperature inside the plant cabin influences

the Timeliner sequence execution. For example, if the temperature is below 20 Celsius
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Listing 8.32 Rules of the Scheduler main machine
Ri: Controller

t := 1000;

if processor =
processor :=
execution :=

controltask and execution = done then
timeliner;
not_done;

R2: Timeliner

t := 1000;

if processor = timeliner and execution = done then
processor := controltask;
execution := notdone;

R3: Else

t := next;

else then
skip;
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degrees, the TEMPERATUREMONITOR sequence will turn on the heating system in order

to warm the cabin. In order to verify all the potential behaviors of the Timeliner

script, the behavior affecting the execution of the script must be modeled. The be-

havior of the environment is non-deterministic and it is assumed that the temperature

and humidity can vacillate unexpectedly. The restrictions on the vacillation of the

atmosphere are such that the temperature and humidity will not vary unexpectedly

if any of the actuating systems, namely heating, cooling, and humidifier are turned

on. The behavior of the atmosphere is encoded in two main machines to represent

the behavior of the two environment variables. The non-deterministic behavior of the

temperature variable is encoded in a main machine called Temperature. Three of

the rules of the machines are shown in Listing 8.33.In Listing 8.33, since the guards

of the first two rules are identical, when both guards are enabled, one of the rules

is selected non-deterministically and is executed. The first rule, rule R 1, describes

nominal behavior, where the temperature does not change. The second rule, rule R2,

switches the temperature from nominal to "too low" per the behavior of the Time-

liner script. The time annotations are selected to ensure that all the behaviors of the

script are exercised. The time annotation of 685 /.s represents the smallest step in

each sequence. The third rule shown in Listing 8.33, rule R5, describes the behavior

of the temperature variable when the heating system is turned on to remedy a drop

in temperature below the critical threshold. The duration of the interval to return

the temperature to nominal is between 0 and 1500 ps. This annotation was selected

to exercise the different behaviors of the script. For example, an instantaneous return

to nominal will cause the script to execute all the sequences in a pass. If the duration

to return the temperature to nominal is higher than 685 4 s, Timeliner will block on

the WHEN statement, while waiting for the temperature to return to the nominal value.

Furthermore, the upper bound on the duration, 1500 ps ensures that it is possible for

the script to execute on pass where the only statement in the pass is the execution of

the blocking WHEN statement. A value higher than 1500 ps would cause the script to

execute multiple passes where the script executes only the blocking WHEN statement.

This situation would be redundant from an analysis and simulation perspective since
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it would not exercise different script behavior. The behavior of the humidity variable

is encoded in an analogous main machine called Humidity.

The model of the temperature and humidity variables is simplistic and does not

adequately reflect the differential equation relationship between humidity, tempera-

ture, and the heating, cooling, and humidifier. However, the goal of the model is to

analyze the behavior of the Timieliner script and the model of the temperature and

humidity is sufficient to exercise the necessary behavior of the script.

Listing 8.33 Rules of the Temperature main machine (partial)
Ri:

t := 685;

if temperature > 19 and temperature < 26 and
cooling = off and heating = off and humidifier = off then

skip;

R2:

{
t := 685;

if temperature > 19 and temperature < 26 and
cooling = off and heating = off and humidifier = off then

temperature := 18;

R5: Heating on
{
t := [0, 1500];

if temperature < 20 and heating = on and cooling = off then
temperature := 24;

Complete Model

The complete TASM model contains 5 main machines, no function machines, and 7

sub machines. The complete Timeliner plant control system model is documented in

Appendix F where the list of all machines is provided in Table F.1.
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UPPAAL Model

The TASM model is translated to UPPAAL to perform model checking of safety and

liveness properties and to perform execution time analysis. The first step of the trans-

lation to the timed automata of UPPAAL removes hierarchical composition from the

main machines. In the TASM model, only the Timeliner main machine uses hierar-

chical composition, as it uses 7 sub machines. The flattened version of the Timeliner

main machine contains 27 rules. The complete UPPAAL model yields 10 timed au-

tomata - 1 automaton for the Timeliner script and execution, 1 automaton for the

scheduler, 1 automaton for the control task, 3 automata to enforce the urgent channel

transitions of the 3 aforementioned machines, 2 automata to describe the evolution of

the temperature and humidity variables (the environment). The timed automaton

for the scheduler machine is shown in Figure 8-9. In the scheduler automaton, the

processor variable is used to denote whether the control task (processor == 2) or

Timeliner (processor == 1) has control of the processor. The variable execution is

used to denote whether the component currently using the processor has completed

(execution == 1) or not (execution == 2). The variable Schedulerelse is an

urgent channel that is used to keep the scheduler waiting in the SchedulerELSE lo-

cation until it needs to switch the processor context. The pivot location is used to

either perform an action, if applicable, or to move to the SchedulerELSE location if

no action is enabled. The SchedulerELSE location is the only location where time

can elapse because of actions of other automata.

The most complex automaton of the translated model is the automaton describing

the behavior of the Timeliner main machine. The complete automaton contains 27

locations and 54 transitions, and retains the general form of the Scheduler automaton

shown in Figure 8-9. As for the automaton in Figure 8-9, all locations have invariants,
except for the SchedulerELSE location, which is guarded by an urgent channel called

Scheduler- else.
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processor == 2 &&
execution == 1

c = 1000

processor == 1 &&
execution == 1

c= 0

c >= 1000

processor = 1,
execution = 2

!((processor == 2 &&
execution == 1)II
(processor == 1 &&
execution == 1)

&&

&&

Scheduler_ELSE

Figure 8-9: Automaton for the Scheduler main machine
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8.5.2 Functional Analysis

The UPPAAL model can be used to verify safety and liveness properties of the Timeliner

script. Safety properties that can be verified include the mutual exclusion of the

different actuators:

* The cooling system and the humidifier should not be on simultaneously

* The heating system and the cooling system should not be on simultaneously

If any of these properties hold, they signal a conflict between the logic in the

two scripts. The reason why these situations are undesirable is because these two

systems contradict each other and hence would cancel the desired effect. If such a

situation occurs, both sequences will end up waiting forever for the environment to

change, a situation that can't happen under these circumstances, which would result

in the system being deadlocked. These two safety properties can be translated into

the temporal logic query language of UPPAAL :

* A[] !(cooling == 1 && humidifier == 1)

* A[] !(heating == 1 && cooling == 1)

Executing the first query in the UPPAAL verifier shows that the safety property

holds. However, executing the second property in the UPPAAL verifier unveils that the

property does not hold in the model. In the model, it is possible for the humidity

to be over 60% and for the temperature to be under 20 Celsius degrees. In this

situation, the TEMPERATUREMONITOR sequence would turn on the heating system to

raise the temperature. In turn, the HUMIDITYMONITOR sequence would turn on the

cooling system to reduce the ambient humidity. In the model, this case does not

result in the heating and cooling system canceling their effects because the humidity

variable is unaffected by the heating system. When the heating system and the cooling

system are on simultaneously, the humidity would decrease while the temperature

stays constant. Once the humidity reaches the nominal level, the HUMIDITYMONITOR

sequence will turn off the cooling system, at which point the cabin temperature will
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start to rise and eventually reach a nominal level. Since this safety property does not

hold in the model, it raises an interesting question about whether this situation is a

reachable state in the environment. Perhaps there are unstated assumptions about

the behavior of the temperature and the humidity variables.

The liveness properties of the Timeliner script which can be verified include the

behavior of the script in the face on off-nominal values of the cabin variables:

* If the temperature falls below 20 Celsius degrees, the heating system will even-

tually be turned on

* If the temperature rises over 25 Celsius degrees, the cooling system will even-

tually be turned on

* If the humidity falls below 40%, the humidifier system will eventually be turned

on

* If the humidity rises over 60%, the cooling system will eventually be turned on

All of these properties are expected to hold because they describe the basic require-

ments of the monitor sequences. These properties can be stated using the temporal

logic query language of UPPAAL :

* (temperature < 19) -- > (heating == 1)

* (temperature > 26) -- > (cooling == 1)

* (humidity < 39) -- > (humidifier == 1)

* (humidity > 61) -- > (cooling == 1)

These properties can be run through the UPPAAL verifier and can be shown to

hold for the given model. Other liveness properties can also be verified, to ensure

that the model behaves as expected, as needed. For example, it can be verified that

if the temperature is below 20 Celsius degrees and the heating system is on, the

temperature will eventually return to the nominal level.
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Completeness and Consistency

The analysis of completeness and consistency was performed using the approach de-

scribed in Section 5.1. The results of verifying completeness are shown in Table 8.32.

The table shows, for each machine, the number of propositions, the number of clauses,

and whether or not the machine is complete. For machines that are trivially com-

plete, the number of propositions and clauses is listed as "N/A". A similar table,

Table 8.33, presents the results of verifying the consistency of each machine.

Name Propositions Clauses Complete
ControlTask N/A N/A Yes
Scheduler N/A N/A Yes
Timeliner N/A N/A Yes
Temperature N/A N/A Yes
Humidity N/A N/A Yes
EXECUTEBUNDLES 3 5 Yes
PLANTSIMBUNDLE 2 4 Yes
EXECUTEPLANTSIMSEQUENCES 6 10 Yes
SEQUENCETEMPMONITOR 2 4 Yes
SEQUENCEJTEMP MONITORWORK 10 34 Yes
SEQUENCEHUMID-MONITOR 2 4 Yes
SEQUENCEHUMIDMONITORWORK 11 46 Yes

Table 8.32: Completeness analysis results for the Timeliner plant control system

Name Propositions Clauses Consistent
Control-Task N/A N/A Yes
Scheduler 4 8 Yes
Timeliner N/A N/A Yes
Temperature 9 25 No
Humidity 9 25 No
EXECUTEBUNDLES 3 7 Yes
PLANTSIM.BUNDLE 2 4 Yes
EXECUTEYPLANTSIMSEQUENCES 6 10 Yes
SEQUENCETEMPMONITOR 2 4 Yes
SEQUENCE.TEMP MONITORWORK 10 34 Yes
SEQUENCEHUMID.MONITOR 2 4 Yes
SEQUENCEHUMID MONITORWORK 11 46 Yes

Table 8.33: Consistency analysis results for the Timeliner plant control system
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8.5.3 Execution Time Analysis

The execution time of the model is analyzed using the approach described in Sec-

tion 5.3. The first goal is to verify the WCET and BCET for one pass of the Timeliner

script executor. In the model, the beginning of one pass of the script executor begins

with the state "processor = timeliner, execution = not_done". Consequently,

the state predicate for the beginning of the path, po, is the UPPAAL state (processor

== 1 && execution == 2). Conversely, the state predicate for the final state of the

path, pl, is the UPPAAL state (processor == 1 && execution == 1), which states

that Timeliner still has control of the processor, but that its execution is done for

the current pass. Consequently, the goal is to analyze the execution time of the

path (processor == 1 && execution == 2) F-+ (processor == 1 && execution

== 2). The observer automaton to measure the execution time of one pass of Time-

liner is shown in Figure 8-10. Using Oinit, the trace stored in the simulator for the

observer automaton yields tinit = 11030ps. In terms of the Timeliner script, this

trace corresponds to execution of labels bo, bl, b2 in one pass for the TEMPMONITOR

sequence, followed by execution of labels co, c1 , c4 for the HUMIDMIONITOR sequence.

tinit is used to iteratively establish the satisfiability of .max.

processor == 1 && processor == 1 &&
execution == 2. execution == 1
OBSERVER_go? OBSERVER_go?

z= 0, b=1
qO b= 0 gqi q2

z=0, b=0

Figure 8-10: Observer automaton to measure the execution time of one pass of Time-
liner, for the scripts of Listing 8.23 and of Listing 8.24

Using the approach explained in Section 5.3, the WCET, tmaxpo pl, was estab-

lished to be 16815ups after 4 iterations. The iterations are shown in Table 8.34. The

behavior corresponding to the WCET of one pass is the sequence of execution of la-

bels bo, bl, b3, b4, bo in one pass for the TEMP_MONITOR sequence, followed by execution

of labels co, cl, c2 , C3 , C4 , CO for the HUMID_MONITOR sequence.
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Iteration Time

0 110301is
1 12870ps
2 14435As
3 15250lis
4 16815ps

Table 8.34: Execution time analysis results for the WCET of one pass of Timeliner

To establish the BCET, tminpo~,l, a similar iterative strategy is used using 0,min.

tminpoi- is established to be 3255ps after 2 iterations. The iterations are shown

in Table 8.35. The trace which yields the BCET of one pass of Timeliner is the

simple case of executing a single statement in each sequence. This trace corresponds

to the execution of one blocking WHEN statement for the TEMPMONITOR sequence,

and the execution of one blocking WHEN statement for the HUMIDMONITOR sequence.

One example displaying the BCET of one pass is the execution of label b2 in the

TEMPMONITOR sequence followed by the execution of label c2 in the HUMIDIONITOR

sequence.

Iteration I Time

0 . 11030As
1 89601is
2 3255ps

Table 8.35: Execution time analysis results for the BCET of one pass of Timeliner

End-to-End Latency

End-to-end latency refers to the amount of time that it takes for the system to react

to a change in the environment. In the context of the plant control system, one exam-

ple of end-to-end latency involves the amount of time required for the plant control

system to turn on the heating system when the temperature falls under 20 Celsius

degrees. In terms of a predicate over state variables, this behavior corresponds to the

path between a state where "temperature <= 19, heating = off" to a state where

"heating = on". The observer automaton to verify this property is shown in Fig-

ure 8-11. The WCET of the end-to-end latency corresponding to this automaton is
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22570ps, reached after 2 iterations. The BCET of the end-to-end latency correspond-

ing to this automaton is 2390,/s. Since this property is a system property, the time

used in the calculation of the WCET and the BCET involves delays in the scheduler

and the execution time of the control task. The behavior corresponding to the WCET

is the behavior where the temperature drop occurs after rule R6 has just started ex-

ecuting in the TEMPMONITOR_SEQUENCE_ WORK sub machine. The WCET is

calculated using rule R6 (1950ps) of the TEMPMONITORSEQ UENCE_ WORK sub

machine, folloWed by rules R1 (685pis), R2 (2395ps), R5 (1625/ts), R6 (2160ts), R9

(1950ps) of the HUMIDMONITORSEQUENCE_ WORK sub machine, followed by a

context-switch by the scheduler (1000ps), the maximum execution time of the control

task (50001ps), a context switch by the scheduler (1000ps), and rules R 1 (685pIs), R3

(1730ps), R7 (2390ps) of the TEMP_ MONITOR_SEQUENCE_ WORK sub machine.

In terms of Listing 8.23 and Listing 8.24, the maximum end-to-end latency will occur

when the temperature drop occurs when the TEMPMO4NITOR sequence has started ex-

ecuting label b3, the HUMIDMONITOR sequence is at label co, and the humidity is over

60%. For the minimum end-to-end latency, the value 2390ps corresponds to execution

of rule R7 of the TEMPMONITOR_SEQ UENCE_ WORK sub machine. This means

that the temperature drop happens just before the rule begins executing. In terms

of Listing 8.23, this corresponds to the temperature drop occurring just before the

sequence is at label b3.

temperature <= 19 &&
heating == 2 heating == 1
OBSERVER_go? OBSERVER_go?

z = 0, b = 1
qO b = q1 q2

z=0, b=O0

Figure 8-11: Observer automaton to measure the end-to-end latency of Timeliner for
a temperature drop, for the scripts of Listing 8.23 and of Listing 8.24

Similar observers were formulated for the other conditions leading to the heating,
cooling, and humidifier systems being turned on. The end-to-end latency results,
alongside the number of iterations needed to converge on the values are reported in
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Table 8.36.

Po pi WCET Iterations BCET Iterations
heating = off, heating = on 11030Ls 3 2390us 10
temperature < 20
cooling = off, cooling = on 21650ps 4 2285ps 8
temperature > 25,
humidity >= 40,
humidity <= 60
cooling = off, cooling = on 21760pus 6 2285its 7
humidity > 60,
temperature >= 20,
temperature <= 25
humidifier = off, humidifier = on 2 17 5 5bts 6 23 9 0[Ls 18
humidity < 40

Table 8.36: End-to-end latency analysis results for the plant control system

Since both sequences share the usage of the cooling system, extra conditions need

to be added to po. Otherwise, the BCET would be trivially 0. For example, if the

end-to-end latency of the Timeliner script turning on the cooling system, to remedy

a rise in temperature, is to be measured, the condition that the humidity be nominal

at the beginning of the path is necessary. Otherwise, the BCET would result when

the rise in temperature occurs right after the HUMIDMONITOR sequence has turned on

the cooling system to remedy a rise in humidity.

8.5.4 Test Case Generation

In the Timeliner case study, the Temperature and the Humidity main machines are

used to simulate environmental behavior and are not included in the generation of

test cases. Consequently, test cases are generated for all other machines , using

the algorithm described in Listing 7.8. The results of the test case generation are

shown in Table 8.37. In Table 8.37, the first column provides the machine name, the

second column lists the number of test case templates in the test suite template for

the machine, and the third column lists the number of test cases from the test suite

required for unit testing of the machine. Per the approach described in Chapter 7, the

test cases are generated using the rule coverage criterion, explained in Section 7.1.1.
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Machine Test Suite Unit Testing

ControlTask 2 2
Scheduler 3 3
Timeliner 27 2
EXECUTE_BUNDLES 26 2
PLANTSIMBUNDLE 25 2
EXECUTE_PLANTSIM_SEQUENCES 24 4
SEQUENCETEMPMONITOR 10 2
SEQUENCETEMP_MONITORWORK 9 9
SEQUENCEHUMIDITY_MONITOR 12 2
SEQUENCEHUMIDITYMONITORWORK 11 11

Table 8.37: Test case generation results for the plant control system

Pre State Post State Coverage Item
processor{timeliner}, humidseqb{c2}, Timeliner.R1 ,
execution{not_done}, cooling{on} EXECUTEBUNDLES.R1,
execbundle{plantsim}, PLANTSIMBUNDLE.R1,
plantsim_bundlestatus{active}, EXECUTEPLANTSIM-
execseq{humidmonitor }, _SEQUENCES.R3 ,
humidseqs{ not done}, SEQUENCE_HUMIDITY-
hunid_seq_b{cl }, _MONITOR.R2
humidity{ [61, 1001}

Table 8.38: Sample test case template from the test suite for the Timeliner main
machine

A sample test case template from the Timeliner main machine test suite is shown

in Table 8.38.

8.5.5 Discussion

The Timeliner plant control system case study focused on execution time analysis for

various properties of the Timeliner script. More specifically, the analysis performed

enabled the calculation of the minimum and maximum execution times for a single

pass of the Timeliner script. Furthermore, end-to-end latency analysis uncovered the

worst case and best case response time that the system can provide for a change in

the environment. The analysis was performed for four different conditions that affect

the execution of the script. The interesting point to note is that the execution time

analysis was performed automatically and without modifying the generated UPPAAL

model. The use of observer automata, as described in Section 5.3, provides a generic
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and unintrusive means of analyzing the system model. This case study modeled an

example at the detailed software level, using lab measurements for various statements

of the language. The modeling and analysis of Timeliner scripts could certainly be

generalized to support the entire Timeliner language.

The functional analysis performed on the plant control system involved verifying

safety properties and a different type of liveness property than in other case studies.

The "01 -- > 02" UPPAAL path quantifier states that, in all paths, if 01 holds at some

point for a state in the path, then 02 will eventually hold for a later state in the

path. This type of property is important to determine that the script achieves its

basic functionality, such as turning on the heating system after a temperature drop.

This property is different than a simple reachability property which can state that a

particular state is reachable is some path, or in all paths. By using the "-->" operator

of UPPAAL , the properties of sequences of states in all paths can be formulated. As in

other case studies, the analysis of consistency and completeness proved useful during

model development and model debugging, but the end results of the analysis are not

terribly insightful. Nevertheless, the plant control system case study proved to be a

case study of manageable size to illustrate in details the capabilities of the framework

in terms of execution time analysis and test case generation.

8.6 Segue into Chapter 9

This chapter presented three case studies used to evaluate the capabilities of the

proposed framework and the TASM language. The case studies were used to illustrate

the modeling facilities of the language, the analysis capabilities of the framework, the

traceability approach, and the test case generation strategy. In the following chapter,

Chapter 9, the contributions of the presented research are reviewed in light of the

presented framework and the results of the case studies. Chapter 9 also provides

guidance for future work related to the presented research.
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Chapter 9

Conclusion

This chapter reexamines the objectives of the research, described in Chapter 1, in

light of the presented framework and the experimental results obtained through the

case studies. The research contributions of the thesis are also revisited in light of the

information presented in the previous chapters. This chapter also provides a synthe-

sized critique of the various components of the presented framework and describes

additional developments that could be achieved as part of future research.

9.1 Research Objectives and Contributions

The research objectives of the presented thesis were first described in Chapter 1. The

objectives sought to address key challenges in the engineering of embedded real-time

systems. These challenges, alongside proposed solutions, are repeated below:

* The high complexity of modern software systems by providing a model-based

approach to software-intensive system engineering.

* The high cost of Verification and Validation (V & V) activities by leveraging

the use of models to automate engineering activities.

* The challenges in using formal methods in an engineering context by providing

a novel literate specification language and hiding verification details in a push-

button approach.
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* The lack of integration between models by providing bi-directional traceability

across levels of abstraction.

* The lack of integration of the state-of-the art in individual disciplines by pro-

viding an overarching engineering framework.

Certainly, the framework presented in this thesis was flexible enough to model

and analyze archetypical case studies from the embedded real-time system domain.

The case studies concerned applications from the manufacturing industry, the au-

tomotive industry, and the aerospace industry. Furthermore, the framework proved

versatile enough to model and study the three key aspects of the systems of interest

- function, time, and resources. The framework succeeded in tackling some of the

complexity issues of these systems by providing a building block approach to sys-

tem construction and analysis. The high cost of V & V activities was addressed by

reusing well-established analysis engines that provided automated analysis, namely

the UPPAAL tool suite and the SAT4J SAT solver, and by performing verification and

test case generation activities automatically. The challenges of using formal methods

in an engineering context was addressed in two ways. The first approach built on the

success of Abstract State Machines (ASM), which have been used successfully in an

engineering context [41]. Furthermore, the TASM toolset provides an integrated tool

suite that hides many of the details involved in the translation and the verification

using the analysis engines. The experience in the Embedded System Laboratory, at

conferences, and through outside evaluation has been positive among the engineering

community. The integration of models has been addressed through the bi-directional

traceability strategy, which has proved to be versatile enough to handle the incorpo-

ration of seemingly disparate models, such as a tasking model and a functional model.

The presented framework incorporates ideas from a number of communities, including

the formal methods community, the test case generation community, and the schedul-

ing community. Incorporating these different disciplines into the framework provides

an integrated approach for end-to-end embedded real-time system engineering.
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The research contributions of the presented thesis were first described in Chap-

ter 1. These contributions are reiterated below:

* A new specification language for embedded real-time systems, the Timed Ab-

stract State Machine (TASM) language, which extends the theory of Abstract

State Machines (ASM). The TASM language integrates the specification of func-

tional and non-functional properties - function, time, and resources.

* A set of verification procedures for automated analysis of models using generally

available analysis engines. The analysis procedures include completeness and

consistency, execution time, and resource consumption.

* An approach to traceability of system models that incorporates syntactic change

and semantic integrity.

* A generic and extensible approach to automatically generate test cases for unit

testing, integration testing, and regression testing.

* An integrated framework for modeling, simulation, verification, and test-case

generation for embedded real-time systems.

* An integrated toolset implementing the capabilities of the framework

The Timed Abstract State Machine (TASM) language proved a versatile lan-

guage to express different aspects of embedded real-time systems. Furthermore, the

language proved to be a formal yet literate specification language, based on the ex-

perience using the language. The verification procedures for consistency and com-

pleteness improved on previous approaches by formulating the problem in a generic

way and providing verification using an existing analysis engine, instead of requir-

ing language-specific algorithms. For execution time analysis, the use of observer

automata to formulate the timing properties to be verified proved flexible enough

to analyze interesting facets of models such as end-to-end latency, without requiring

changes to the model. The provided traceability approach supplies a unique com-

bination of syntactic traceability and semantic equivalence, two concepts typically
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treated separately. The test case generation strategy introduced the concepts of test

case templates to define generic test cases and to provide a scalable and reusable ap-

proach to test case generation. The traceability approach was utilized successfully to

identify invalidated test cases based on model changes and to generate the necessary

test cases to test the changes according to the rule coverage criterion. All of the func-

tionality of the framework is provided in the context of the TASM language, thereby

integrating various facets of model building and various engineering functionality,

all under the TASM umbrella. Furthermore, the capabilities of the framework were

successfully implemented into an integrated toolset, the TASM toolset, to provide

end-to-end system engineering tool support, hiding numerous implementation details

and removing the need to gain a deep understanding of different languages and tools,

such as the UPPAAL tool suite.

9.2 Framework Evaluation

The presented framework was exercised using 3 case studies, as described in Chap-

ter 8. This section provides a "post-mortem" analysis of each feature of the presented

research, in light of the experience gained during the case studies. This section sum-

marizes and expands on the discussions following each case study in Chapter 8.

9.2.1 The TASM Language

Based on the case studies, the TASM language proved versatile in modeling a wide

variety of system behavior. For example, the language was used successfully to model

software and hardware components in the production cell case study. Furthermore,

at the software level, the software proved adequate to model software code, as ev-

idenced in the Timeliner case study, control-theoric behavior, and a task/scheduler

abstraction, as evidenced in the electronic throttle controller case study. All three

facets of the TASM language, namely function, time, and resources, were used suc-

cessfully to model system behavior in the case studies. The hierarchical composition

facilities of the language proved useful to structure and reuse specifications. Further-
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more, the composition facilities were instrumental in performing analysis in isolation,

as was shown in the electronic throttle controller case study. The use of sub ma-

chines in parallel within a step made model construction easier in the case of the

production cell case study, but led to exponential growth during the translation to

UPPAAL . In terms of usability of the syntax and understanding of the semantics, the

language proved relatively easy to learn for someone with a standard programming

background. Experience with undergraduate researchers, experience with visiting

scientists in the embedded systems laboratory, experience presenting the language

at various conferences and workshops, and experience working with engineers from

the Charles Stark Draper laboratory all provided evidence that the TASM language

is understandable and usable by a user with a standard programming background.

These anecdotal results surrounding the use of the TASM language are in line with

similar past experiences with ASM [41].

Some aspects of the TASM language were not as easily grasped and were slightly

clumsier to use than initially anticipated. The first facet which led to confusion is

the parallel nature of update sets within a step. Since the updates happen atomically

after the step has finished executing, users were slightly confused that the results

of updates which happen sequentially in a rule definition are not available to sub

machines or other expressions within the same step. This was especially true for

users who were expecting the same semantics as that of a programming language.

In certain cases, this situation lead to clumsy specifications, as is the case in the

production cell case study, where the arm position is set based on the robot angle.

However, situations such as this one were the exception more than the rule and users

grasped the importance and subtleties of the step concept with a simple explana-

tion. Another area that led to confusion was the synchronization of parallel main

machines with respect to one another. Since the communication between machines

happen through shared variables only, wait states had to be devised in the production

cell case study and in the electronic throttle controller case study in order to let the

environment (other machines) make progress. However, after creating a few models,
communication through shared variables became more natural and proved to be ad-
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equate. Possible extensions to the TASM language, to enable other synchronization

and communication mechanisms, are discussed in Section 9.3.1. Overall, the TASM

language proved simple and easy to use and learn, both from a personal experience

perspective and from the perspective of peers and colleagues.

9.2.2 Static Analysis

The static analysis capabilities of the framework include functional analysis, execution

time analysis, and resource consumption analysis. The functional analysis provided

by the framework includes the automated verification of completeness and consis-

tency, and the automated analysis of safety and liveness properties. While the end

results of the completeness and consistency analysis did not yield terribly insightful

results, the analysis proved indispensable during the model building stage. The verifi-

cation of functional properties achieved through the UPPAAL verifier was instrumental,

both to debug the TASM model and to gain insight into the subtleties of the case

studies. The execution time analysis also proved insightful, especially the analysis

of end-to-end latency. In the electronic throttle controller case study, the end-to-end

latency analysis uncovered an interesting inefficiency in the fault detection strategy.

The resource consumption analysis provided an interesting window into the possible

parallel behavior of the modeled system.

The bridge between the TASM model and the SAT4J SAT solver is quite clear and

the counterexample translation is straightforward since it simply maps a Boolean

state to a state in the TASM model. However, the bridge between the TASM model

and the UPPAAL model is less clear. If a property does not hold in the UPPAAL model,

the tool suite returns a path leading to the state which contradicts the property. Since

the UPPAAL model is derived using the "flattened" version of the TASM model, the se-

quence of rule executions wasn't always clear from the generated trace. Furthermore,

when a property did not hold in the UPPAAL model, three possibilities were encoun-

tered - the TASM model was incorrect, the translation to UPPAAL was incorrect, or

the design logic was incorrect. When errors were present in the TASM model, the

verification proved insightful to ensure the correctness of the model, especially after
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simulation scenarios were designed to validate the model. Design logic errors were

uncovered using the analysis through UPPAAL although the design errors were often

related to the stated property making invalid assumptions about the semantics of

the model. For example, in the electronic throttle controller, it is possible to reach a

state where the engine revolution is over the critical RPM but the controller is not in

the limiting mode. This reachability property is not so much a design error as much

as it is a byproduct of the physical reality that there is a delay between an event of

interest in the environment and a corrective action by the controller.

9.2.3 Bi-Directional Traceability

The traceability approach presented in Chapter 6 was used on the electronic throttle

controller case study in Chapter 8. The benefits of traceability have been established

in the software engineering community [217] and the presented approach should pro-

vide a usable and flexible means to achieved traceability between models. The theory

of refinement has always been intriguing to engineers and mathematicians alike since

the seminal paper by Niklaus Wirth [250]. The idea of performing program and sys-

tem development in a provably correct fashion is an attractive proposition. However,

it remains unclear whether such a proposition is realizable in practice since theories

of refinement require a fairly strict correspondence between model semantics. In do-

ing so, it is always easier to build models that comply with the refinement theory

after the fact instead of building models independently and later try to relate their

semantics. Perhaps theories of refinement are best applied in a verification context

where the system has been designed and implemented, such as the verification of the

Java virtual machine in [237]. Nevertheless, the set of refinement types presented

in Section 6.2.1 provide a basis for a disciplined approach to model development.

While the correctness criteria presented in Section 6.2.2 seem to apply only to a set

of restricted special cases, they proved useful in the electronic throttle controller case

study to avoid repeating verification activities unnecessarily, resulting in reduced V

& V cost.
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9.2.4 Test Case Generation

The test case generation strategy proved fairly straightforward for the case studies.

The algorithms presented in Chapter 7 were applied directly without too much trou-

ble. The regression testing strategy was applied to the Electronic Throttle Controller

(ETC) case study successfully using the traceability strategy. Unlike the semantic

guarantees provided by the correctness criteria, the regression testing approach does

not make assumptions about the restrictions of the changes made through the refine-

ment. Consequently, the approach used to regenerate, create, identify, and execute

the necessary test cases is applicable at large, where the worst-case corresponds to

applying the test case generation algorithm anew.

Since the test case generation is performed in the context of the model, the gener-

ated test cases need to be related to a system under test in some way. The ability to

apply test cases generated based on the model to the system under test is discussed

as possible enhancements to the framework in Section 9.3. Furthermore, when gener-

ating test cases, it was assumed that the model could be started in any state and that

the effect of executing a single step could be observed at the end of the step. While

these assumptions might be valid for a TASM model, they might not be valid for the

system under test, which might need to be started in a specific initial state and whose

output would not be observable until after a number of steps have been performed.

Nevertheless, the test case generation approach provided by the framework provides

a strong basis for developing a theory relating the test cases generated by the model

to the system under test. As is discussed in Section 7.5.1, the proposed approach can

be extended to create test sequences that could be applied to a specific system being

tested.

Finally, the coverage criterion used for test case generation is the rule coverage

criterion [103]. Rule coverage in the TASM model is analogous to structural coverage

for implemented code but weaker than transition coverage or state coverage in finite

state automata [102]. More fine grained analysis of the rule guards might be needed to

comply with more complex coverage criteria such as the Modified Condition/Decision
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Coverage (MD/DC) criterion or with specification-based coverage criteria [143]. Nev-

ertheless, the test case generation strategy provided by the framework presents an

intuitive and flexible approach to automatically generate test cases based on TASM

models, with acceptable scalability.

9.2.5 Scalability

The topic of scalability is an important one in formal methods and in model-based

software engineering [124]. For specification and simulation, scalability does not pose

problems since the TASM language provides ample mechanisms for structuring spec-

ifications into reusable units using sub machine and function machines. However,

if a large number of environment variables are used, the lack of namespaces could

present inconvenience to avoid name clashes. In the presented framework, scalability

issues arise in the translation of TASM models to the input language of the third

party analysis engines. The complexity of the translation algorithm for the mapping

to SAT is analyzed in Section B.3.1 and the complexity of the mapping to UPPAAL

is analyzed in Section C.2.3. For the translation to SAT, the use of multiple inte-

ger variables in the specification can lead to exponential growth in the size of the

Boolean formula. For the translation to the timed automata of UPPAAL, the number

of generated automata grows linearly with the number of main machines. However,

as evidenced in the production cell case study, the use of multiple sub machine calls

within a given rule can lead to exponential growth in the number of locations in the

generated timed automata. This occurs because the timed automata of UPPAAL do

not contain facilities for hierarchical composition and hence the TASM model needs

to be "flattened" by removing the hierarchical composition, essentially taking the

cross product of the hierarchical units of composition.

Aside from the scalability of the translation, the static analysis features of the

presented framework also lead to scalability issues. SAT solving is a well known

NP-Complete problem [232], meaning that the performance of the analysis grows ex-

ponentially with linear growth of the Boolean formula. For the case of consistency,
this problem is exacerbated by the need to verify all pairs of rules against one another.
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For the case studies presented in Chapter 8, the analysis of completeness and con-

sistency did not present scalability issues. Nevertheless, the nature of SAT solving,

combined with the need to iteratively solve a number of SAT problems presents an

important limitation of the proposed approach to perform completeness and consis-

tency analysis. The use of the UPPAAL tool suite for safety and liveness analysis also

creates scalability hurdles. However, these scalability issues are directly related to the

use of a model checker and not to the TASM language. While model checkers have

improved their scalability through heuristics and through the constant increase in

computing power [69], model checking as a technology will always face challenges in

terms of scalability. The advent of bounded model checking [126] can aid to remedy

this situation and will be considered in future work. The analysis of execution time

also suffers from scalability issues on two counts. First, by using an observer automa-

ton in addition to the system model, the addition of a parallel automaton creates

multiplicative growth in the resulting system model in terms of locations. Since the

observer automaton used in the iterative bounded liveness approach contains only

3 locations, this growth is manageable. Second, the approach to measure execution

time of the system model uses a combination of the UPPAAL verifier and the UPPAAL

simulator, in an iterative fashion to converge on a WCET and on a BCET. Clearly, for

a problem of challenging size where verifying a single iteration would prove expensive,

doing so iteratively would prove even more intractable. As mentioned in the discus-

sion in Section 8.4.7, when scalability issues arise, the sophistication of UPPAAL can

be leveraged to use the heuristics for state space approximation instead of obtaining

exact solutions. Whether an approximate solution is feasible or desirable depends on

the nature of the problem and the goal of the analysis.

For the analysis of resource consumption behavior, the algorithm provided in Sec-

tion 5.4 uses brute-force search to iterate through all combinations of rule guards to

converge on the minimum and maximum resource consumptions. Clearly, the per-

formance of this algorithm grows exponentially with the number of main machines

in the TASM model. Furthermore, the algorithm also relies on the main machines

to be "flattened", which could lead to the exponential growth observed in the pro-
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duction cell case study. However, given the case studies analyzed in Chapter 8 and

other related experience with modeling resources, the number of resource annotations

throughout the entire model is typically limited. As was the case in the production

cell case study, if a machine does not contain annotations, it can be removed from

the iteration algorithm, leading to improved performance.

The last facet of the presented framework where scalability could influence the

feasibility of the approach is in the generation of test cases. The test case generation

approach is afflicted by the same scalability issues related to the translation to SAT

and the use of SAT solvers. However, since the rule coverage criterion is used, the

number of necessary test cases in a unit test suite for a given machine will always be

equal to the number of rules of the machine. Furthermore, for integration testing and

the use of sub machines, the number of required test cases to satisfy the rule coverage

criterion should be equal to the largest number of rules of an individual machine in

the sub machines used in the hierarchical composition. For the case of regression

testing, the worst-case behavior would require that every test case of all test suites be

generated anew. In this situation, the number of generated test cases will be linear

in the total number of rules in the model. However, each test cases will be generated

using the translation to SAT and running the instance through the solver.

9.2.6 Overall Limitations

The scalability of the proposed framework, especially in terms of static analysis ca-

pabilities, presents limitations to the applicability of the framework to large case

studies. Furthermore, the translation to the timed automata of UPPAAL and to the

Boolean formulas for SAT solvers require that a finite version of the TASM model be

computable. This is most easily achieved by removing the use of decimal datatypes in

the TASM specification. In Section 9.3.3, other analysis engines are surveyed as can-

didates for use in the framework. More specifically, the use of Satisfiability Modulo

Theory (SMT) solvers [21] could provide a viable solution to remedy the limitations

regarding the use of decimal datatypes.

Another limitation of the framework is the lack of a generic translation mechanism
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to easily incorporate novel analysis engines in the framework, as provided through

model transformation [179]. In the current version of the framework, the addition of a

new input language for another analysis engine would require that the TASM syntax

be parsed into the syntax of the new input language, inside of the toolset. Integrating

model transformation concepts into the framework could remedy the need to manually

hardcode syntax parsing inside of the toolset. Finally, as explained in the evaluation of

the TASM language, the language does not currently include features for specifying

continuous behavior. Consequently, the proposed framework cannot model hybrid

systems. This limitation could be remedied by integrating an environment for hybrid

system modeling and analysis, such as the ones presented in [3] andf in [147].

9.2.7 Lessons Learned

Creating formal models of system behavior requires discipline and intellectual invest-

ment. Throughout the model development process in the case studies, different levels

of model "correctness" were required. For example, having a model written on paper

is fairly straightforward to achieve and one can be easily convinced that the model

is correct, using simple arguments. However, when the model is captured through

a tool and the model is simulated, various flaws in the model were encountered, in-

cluding syntax errors, deadlocks, and errors in the control logic. Once these errors

were ironed out through simulation scenarios and rational arguments, the model was

analyzed for completeness and consistency and through the UPPAAL tool suite. Dur-

ing the static analysis process, even more errors were encountered, requiring a deeper

understanding of the model. The layers of required discipline was interesting to expe-

rience because it validates two basic principles of the presented research - the benefits

of modeling and the necessity of tool support. Making the necessary effort to create a

model will undoubtedly lead to a deeper understanding of the system being designed.

This understanding is independent of the language or the specific design approach

and is purely a byproduct of the intellectual investment required for modeling. But,

as was experienced throughout the case studies, creating a model is only the first

step in gaining understanding of the system behavior. The automated analysis tools
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certainly provided sanity checks to ensure that assumptions about the system can be

easily verified. The automated tool support certainly keeps the modeler honest.

9.3 Opportunities for Future Research

This- section provides an overview of extensions that can be made to the presented

research. Since the research presents a framework, it is extensible by definition. The

extensions are grouped into features of the TASM language, features of the framework,

and other types of analysis engines that can be integrated into the framework.

9.3.1 Language Extensions

The TASM language provides a minimal syntax to describe system behavior in the

form of an abstract machine. Simple extensions to ease the writing of specifications

could include the definition of arrays and data structures, common facilities which

have proved useful in programming language [239]. Furthermore, in terms of ASM

theory, the TASM language is expressed in "block form" [110]. The TASM language

could equivalently be expressed in "free form", introducing the step construct to delin-

eate the content of a step, as used in [42]. It would be interesting to investigate usabil-

ity issues in terms of "block form" versus "free form" even though the two forms are

semantically equivalent [110]. Furthermore, in the TASM language, communication

between different main machines is achieved via shared variables only. In certain con-

texts, making the interactions explicit can help understand the dependencies between

parallel entities, all the while enabling stronger refinement theories through interac-

tion subsetting and notions of trace equivalence [133, 147]. Common explicit com-

munication mechanisms include synchronization channels, as used in UPPAAL 'S timed

automata, which are borrowed from Communicating Sequential Processes (CSP) [131]

and from the Calculus of Communicating Systems (CCS) [170]. Other languages, such

as Timed Input/Ouput Automata (TIOA), make interactions explicit by partitioning

externally visible transitions into input and output actions [147]. Regardless of the

mechanism selected to express cross-machine communication, it would be interesting
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to investigate the effect on semantics and on usability.

Finally, the TASM language describes system behavior through discrete step tran-

sitions. While this behavior is adequate to describe the behavior of hardware and soft-

ware components, embedded controllers often act on continuous dynamics described

through differential equations. Future investigations could focus on how continu-

ous dynamics could be integrated into the language and/or the framework, for the

sake of hybrid system modeling, simulation, and verification. The ability to include

continuous dynamics in the TASM language would most likely be better introduced

through an appropriate modeling, simulation, and verification environment for hybrid

systems, integrated in the framework, such as those provided by CHARON [3] and

by TIOA [147].

9.3.2 Framework Features

The presented framework provides an integrated environment for modeling, valida-

tion, and verification of embedded real-time systems. The crux of the approach

focuses on the design phase of the engineering lifecycle. Other features of the frame-

work could include code generation and traceability of model features down to the

implementation level. Ongoing research is currently performed in the Embedded Sys-

tems Laboratory (ESL) concerning code generation and extending the traceability

approach to support the RavenSpark implementation language. The RavenSpark

language is a combination of Spark Ada [20], a safe subset of Ada, and the Ada

Ravenscar tasking profile, a safe set of tasking features [233]. The ability to trace

model features down to the implementation level could help validate assumptions

made in the model by comparing the assumptions embedded in the model, such as

time annotations, to the running time of implemented code. The comparison could be

achieved via measurements obtained through state-of-the-art WCET analysis tools

for implementation code [90]. If a relation between the TASM language and an im-

plementation such as RavenSpark exists, the test case generation approach can also

be bridged between the language of the model and the language of the system being

tested. The approach to test case generation presented in Chapter 8 could be tai-
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lored to a specific system by piecing together the templates that cover specific rules

to create test sequences. Such test sequences would take the form of executing a set

of rules in sequence. The appropriate sequences of rules would depend on the system

being tested, including the properties of initial states and the properties of observable

states.

The exploration of alternate designs is an important part of the design activ-

ity [56]. The assumption in the presented research is that the functional decom-

position and design alternatives have already been evaluated separately and that

a design has been agreed upon. Facilities to provide design tradeoffs and to ex-

plore the design trade space would certainly complement the design features of the

framework. Finally, most system engineering practice begins through requirements

engineering [141]. The ability to integrate the presented framework with established

requirement elicitation and classification methods could provide end-to-end traceabil-

ity of requirements from high-level down to implementation [217]. Furthermore, using

the traceability approach with the presented test case generation approach, require-

ment coverage could potentially be achieved [216]. By integrating with requirement

engineering practice and an implementation platform, the presented framework could

provide a true end-to-end system engineering framework from requirements to code.

9.3.3 Analysis Engines

The UPPAAL tool suite and the SAT4J SAT solver were selected as the analysis engines

integrated into the presented framework because they represent two mature engines

from two popular branches of analysis - model checking and SAT solving. While both

types of solvers proved appropriate for the type of analysis provided by the frame-

work, the solvers also have important limitations. The first limitation involves the

lack of support for decimal numerical values from the Reals domain. The TASM lan-

guage provides the facilities for modeling and simulating models containing variables

of type float, but the translation algorithms do not support the analysis of such

TASM models because the relevant engines do not support the datatype. While some

workarounds are possible, as suggested in Section B.3.1, the selected engines simply
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do not provide native support. The second limitation involves the scalability of the

selected analysis engines. The "state explosion problem" is a well-known limitation of

the model checking approach [67] and also applies to SAT solving, which relies on sys-

tematically exploring a finite state space. However, with increasing computer power

and improved state exploration heuristics, model checking can handle problems of

increasing complexity [69]. Furthermore, Bounded Model Checking (BMC) provides

a an approach to model checking where scalability can be mitigated by controlling the

length of paths to be verified [126]. Nevertheless, the need to generate and explore the

state space of the model remains the cornerstone of model checking and SAT solving

and will continue to present scalability challenges [68]. In the following subsections,

different classes of analysis engines are explored as potential options to remedy the

limitations of the engines currently used in the presented framework.

Linear Programming Solvers

Linear Programming (LP) solvers are a class of constraint solvers with support for

solving linear constraints involving a mix of integer and decimal variables [215]. The

use of LP solvers in the presented framework has been investigated in [206]. LP solvers

provide an advantage over SAT solvers because they can handle symbolic constraints

and provide native support for decimal variables. However, the constraints need

to be linear and the solvers do not provide native support for the disjunction of

constraints. Simulating disjunction of constraints is possible through the so-called

"big-M" method [218]. While the "big-M" approach can simulate disjunction, the

approach scales extremely poorly when multiple disjunctions are present, as is the case

for the analysis of completeness and consistency. Furthermore, when the research was

conducted, tool support for LP solving was relatively scarce, with the GNU Linear

Programming Toolkit (GLPK) being one of the few mature offerings [96].

Satisfiability Modulo Theory Solvers

Satisfiability Modulo Theory (SMT) is a theory for solving constraints that involve

Boolean formulas and arithmetic constraints [229]. The solvers that support the
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automated analysis of constraints, called SMT solvers, extend SAT solvers with the

ability to reason about arbitrary constraints over the integer domain and the Reals

domain. In a sense, SMT solvers combine the benefits of SAT solvers and LP solvers.

While non-linear constraints are supported by certain solvers, scalability issues arise in

the presence of non-linear constraints. SMT solvers have been used as an alternative

to traditional model checkers, especially for bounded model checking [14, 97].

At the time when the presented research was conducted, SMT was a relatively new

theory and tool support was rather primitive. Nowadays, SMT solvers are gaining

popularity and implementations are increasingly more reliable and more scalable [21].

Mature implementations include the MathSAT solver [53] and the Yices solver [142].

Nevertheless, most constraint solving problems are known to be NP-Complete and

hence scalability issues will always be present in model checkers, SAT solvers, and

SMT solvers [232).

Theorem Provers

During the early days of tool-supported formal verification, approaches to verification

were polarized into theorem proving and model checking. Theorem proving differs

from model checking in that in does not rely on generating a finite state space for the

semantics of the model in order to prove properties [137]. Theorem provers use a set of

axioms and rules of inference to prove properties of system models [191] syntactically,

through symbolic manipulation. Because they do not rely on exhaustive exploration of

the state space, theorem provers do not suffer from the same scalability issues as model

checkers do. However, theorem provers present different challenges since the analysis

typically needs to be guided by the user and is not completely automated [243].

Furthermore, encoding state transition system semantics into a logical theory is not

readily achieved [11]. On the usability front, some progress has been made to use

the PVS proof system to verify properties of automata models [13, 12]. Popular and

mature theorem prover implementations include Coq [83], HOL [106], Isabelle [209],
and PVS [207].
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9.4 Closing Thoughts

Engineering complex systems is, by definition, a complex endeavor. While the grow-

ing sophistication of algorithms and tools, the constant increase in computing power,

and the rigor of mathematical theories all provide attractive trends leaning toward au-

tomated engineering, the problem of system engineering remains very much a human

problem about complexity management. Consequently, the design and development

of solutions to address the challenges of engineering complex systems should target

the augmentation of the capabilities of the human engineer, not the replacement of

the engineer. The anecdotal experience surrounding ASM, combined with the ex-

perience with the TASM language and the presented framework has demonstrated

that the modeling paradigm of ASM can be readily grasped by someone with min-

imal programming experience and synchronizes well with established programming

practice.

Moreover, there exists a vast body of research in different, seemingly unrelated

disciplines such as software engineering, formal methods, and control theory. Many of

the research efforts in disparate disciplines cannot be readily aggregated and synthe-

sized to achieve engineering goals. Hopefully, the research presented in this thesis will

lead to increased integration of multi-disciplinary approaches to embedded real-time

system engineering.

9.5 Segue into the Appendices

The conclusion presented in this chapter marks the end of the narrative of the thesis.

The appendices following this chapter can be read in any order and do not follow a

linear sequence. Summary descriptions of the content of each appendix is available

in Section 1.4.
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Appendix A

TASM Language Reference

This appendix explains the concrete constructs of the TASM language as implemented

in the TASM toolset. This appendix can be consulted as a supplement to Chapter 4.

More specifically, this appendix describes the logical objects that make up the TASM

language in the toolset, the rules for constructing names, the list of reserved keywords,

the list of operators, and the general typing rules. Furthermore, the context-free

grammar of the TASM language, presented in Section A.2, has been used to implement

the compiler for the TASM toolset. Semantic implementation topics, such as operator

precedence and calling convention, are explained in Section A.3.

A.1 TASM Objects

The concepts described in Chapter 4 are implemented in a suite of logical objects in

the TASM language. This section gives the list of logical objects and their properties,

as implemented in the TASM toolset. The concrete syntax of how these objects are

expressed is described in Section A.2.

A.1.1 Specification

In the logical objects, a specification is the overarching concept or object that includes

all other logical objects. A specification is the complete document that results from
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capturing a system design in a model expressed in the TASM language.

A.1.2 Project

The project is the top level object that contains the high level metadata of the system

specification. The project has three attributes, the project name, the project descrip-

tion, and the version of the syntax. The name and description are self-explanatory.

The version of the syntax is used to identify older versions of the syntax to preserve

backwards compatibility. Other attributes of the project that might be added in

the future might include modification times, authors, etc. There is only one project

object per specification.

A.1.3 Environment

The environment is the object that is used to represent the "outside world". The

environment object contains the list of user-defined types, which are finite enumera-

tions, the list of resources, which are finite quantities, and the list of variables, which

are the values that affect and are affected by the execution of the various machines in

the specification. The environment is a global object that is accessible by all machine

instances.

A.1.4 Main Machine Template

In the TASM language, a main machine definition is a template. A machine template

is a parameterized version of a machine that needs to be instantiated through a

constructor given as part of the template definition. The use of templates enables

reuse of specifications and the ability to have multiple versions of a machine definition

for a given system design. The concept of a machine template is analogous to the

concept of a class in object-oriented programming languages [239]. Main machine

templates are instantiated in a Configuration object.

A main machine template contains three attributes - a set of internal variables,

a constructor, and a set of rules. The internal variables are typed variables that are
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visible only inside the machine. The constructor is used to initialize the machine

through instantiation and to assign default values to internal variables. The set of

rules is a set of guarded commands that govern the machine execution and its effects

on the environment. Each rule also specifies the duration of the rule application

and the resources consumed during execution of the rule, according to the principles

explained in Chapter 4. Additional attributes of a main machine template include

a set of monitored variables and a set of controlled variables. The set of monitored

variables is the list of environment variables that are used in the guarding conditions

of the rules. The set of controlled variables is the list of environment variables that

are used in the effect conditions of the rules.

The main machines are the top-level abstract machines that represent a thread

of execution. If more than one main machine is present in a system configuration,

the resultant specification contains parallelism, also called a multi-agent ASM in the

Abstract State Machine community [47]. Instantiating multiple main machines is the

way to obtain parallel composition of specifications with interleaving semantics.

A.1.5 Function Machine

The idea behind a function machine is a machine with no side-effects that can be

used to define abstractions and macros. A function machine is a machine that takes

a set of typed inputs and returns a single typed output. A function machine contains

a set of input variables and a single output variable. The set of input variables are

typed variables that are used to invoke the machine. The output variable is a typed

variable that is used to return a value from the machine when it is invoked. A function

machine is not allowed to modify the environment and must compute its output solely

based on the input values and the values of its monitored variables.

A.1.6 Sub Machine

A sub machine is similar to a main machine except that the sub machine does not

execute in its own thread of execution. Instead, a sub machine executes inside of a
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main machine and shares the thread of execution of the main machine. Sub machines

are used to achieve hierarchical composition. A main machine can use more than one

sub machine as part of its definition. A sub machine definition contains the same

attributes as a main machine except that it does not contain internal variables nor

does it contain a constructor.

A.1.7 Configuration

A configuration corresponds to a simulation scenario. A configuration contains a name

and a description so that it can be referenced during simulation. A configuration also

contains a list of main machine instantiations, defined by invoking the constructors of

the main machine templates. Furthermore, the configuration can contain initial values

for the environment variables. The initial values specified in a configuration override

the initial values of environment variables specified in the environment. Multiple

configurations can exist for a given project and a configuration must be selected to

perform simulation.

A.2 Syntax

This section describes the concrete syntax of the TASM language, expressed in plain-

text format. The plain-text syntax is the format used to read and write specifications

using the TASM toolset and it is the input format for the parser and compiler. In

the TASM toolset, a system design can be shown across different windows and other

user interface components and does not need to be gathered into a single location.

A.2.1 Notational Conventions

The following notational conventions are used in this section and subsequent sections.

* Each abstract type uses the prefix TASM

* Constants are enclosed in single quotes (e.g. 'a', '1', etc.), except where set-

theoric notation is used
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* The formal grammar uses the basic symbols of Backus-Naur Form (BNF) [18]

(e.g., {}, [], <>, etc.)

A.2.2 Names

The use of names is crucial in the TASM language; every type of object (variable,

type, resource, machine, etc.) is uniquely identified by its name. We define the

generic abstract type TASMName to express the restrictions on individual names.

The type TASMName is used in the rest of this document when a name has the listed

restrictions. The TASM language has a set of reserved keywords that cannot be used

as names. The complete list of reserved keywords is shown in table A.1.

* TASMName is a string of characters

* Each character of TASMName can be either 'a'-'z' or 'A'-'Z' or '_' or '1'-'9' or

* TASMName must start with 'a'-'z' or 'A'-'Z'

* TASMName has a length: 1-64

* TASMName is not a reserved keyword

* TASMName is case-sensitive

* Each TASMName is unique in a given TASM specification

The restrictions on the uniqueness of TASMName's might seem restrictive, espe-

cially in the absence of namespaces, but imposing this restriction removes potential

ambiguities.

A.2.3 Types

The TASM language contains only simple types. There are no data structures, sub-

types, or polymorphic types. The TASM language is also strongly typed; there are

no dynamic types or type inference. All typing rules are enforced at compilation time
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Table A. 1: Reserved keywords

Keyword Meaning

t Used for time annotations
next Used in time annotations to denote a special value of time
now Used to obtain the value of the global clock
new Used to instantiate a machine template
Integer Denotes the integer datatype
Float Denotes the float datatype
Boolean Denotes the Boolean datatype
False Denotes a constant in the Boolean datatype
True Denotes a constant in the Boolean datatype
and Denotes a logical connective
or Denotes a logical connective
not Denotes a unary operator
skip Denotes the production of an empty update set
else Denotes the special "else rule"
// Used to comment out a given line
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and type safety is assured if a TASM specification compiles correctly. The TASM

language supplies three default types:

* Integers = {...,-1,0,1,...}

* Floats = Rational Numbers (e.g., -1.11, -0.5, 0.0, 10.45, etc.)

* Booleans = {True, False}

TASM also allows the definition of user-defined types, which are analogous to

enumerations in most programming languages. However, user-defined types are not

assigned integer values and are unordered. A user-defined type is a named type that

can be used to provide readable options and type safety. More specifically, a user-

defined type is a named type that contains one ore more named values. For example,

user-defined types can be defined to denote the status of a light status or the mode

of an airplane:

* light-status = {ON, OFF}

* airplanemode = {Idle, Taxi, Takeoff, Cruise, Landing}

User-defined types are unordered sets of one or more elements where elements

must be unique. Each member element is a TASMName. Furthermore, the name of

the type is a TASMName.

The TASM language is a strongly typed language, meaning that all variables are

typed and that type-safety is enforced at compilation time. No type casting is allowed,

even from Float to Integer. Future versions of the language might allow type casting

through functions supplied by the TASM language.

A.2.4 Arithmetic Operators

For Integer and Float types, the TASM language provides the four basic arithmetic

operators, applicable only to operands of the same type:

* addition: +
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* subtraction: -

* multiplication: *

* division: /

Operations between operands of disparate types is undefined and results in a

compilation error. For example, addition between an operand of type Float or an

operand of type Integer results in a compilation error. The arithmetic operators are

undefined for Boolean types and for user-defined types.

The assignment operator is the only operator which is defined for all types. Like for

the other arithmetic operators, the assignment operator is defined only for operands

of the same type:

* assignment:

The assignment operator does not return a value (denoted by the special character

,,').

A.2.5 Logical Operators

The following two logical operators are defined for all types. The signature of the

operators is Typel x Type2 -- Boolean where Typel = Type2. Operators applied

to operands of different types are undefined and result in a compilation error.

* equal: =

* not equal: ! =

For Integer and Float types, the TASM language supplies an additional four

logical operators:

* greater than: >

" greater than or equal to: >=
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o less than: <

* less than or equal to: <=

The signature of these operators is also Typel x Type2 --+ Boolean where Typel

= Type2. The logical operators are undefined when the operators are of different

types or for Boolean and user-defined types. For Boolean types, the TASM language

provides two logical connectives:

* conjunction: and

* disjunction: or

The signature of these operators is Boolean x Boolean -+ Boolean and is unde-

fined for non Boolean types. For Boolean types, the TASM language supplies one

unary operator:

* negation: not

The signature of this operator is Boolean -- Boolean and is undefined for non

Boolean types.

All operators are summarized in Table A.2.

A.2.6 Context-Free Grammar

The following section explains the formal grammar that is used to express the basic

concepts from the previous section, such as types, constants, variables, expressions,

etc. The formal grammar is given in Backus-Naur Form (BNF) [181 where the syntac-

tic symbol '1' means "or", '[]' means "optional", and '{}' means 0 or more instances

(Kleene closure). The special form of the closure operator, denoted 'f{}+' means 1 or

more instances. Any constant is given inside of single quotation marks. For example,

the keyword denoting the type integer is given as 'Integer'. It is important to dis-

tinguish between the syntactical "optional symbol" ']' and the constant denoting the

right bracket "]".
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Table A.2: Operators

Operator Signature Types

+ Typel x Type2 - Type3, Typel = Type2 = Type3 Integer, Float
- Typel x Type2 Type3, Typel Type2 = Type3 Integer, Float

STypel x Type2 - Type3, Typel = Type2 = Type3 Integer, Float
/ Typel x Type2 -+ Type3, Typel = Type2 = Type3 Integer, Float
= Typel x Type2 -T I, Typel = Type2 All
= Typel x Type2 t Boolean, Typel = Type2 All
!= Typel x Type2 - Boolean, Typel = Type2 All
> Type x Type2 - Boolean, Typel = Type2 Integer, Float
>= Typel x Type2 -- Boolean, Typel = Type2 Integer, Float
< Typel x Type2 -- Boolean, Typel = Type2 Integer, Float
<= Typel x Type2 -> Boolean, Typel = Type2 Integer, Float
and Boolean x Boolean - T Boolean Boolean
or Boolean x Boolean -- Boolean Boolean

not Boolean -- Boolean Boolean
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The BNF grammars describing the concepts of the TASM language is given below.

The first part of the grammar supplies the rules for constructing names, constants,

and types. The second part of the grammar supplies the rules for constructing ex-

pressions, variables, and formulas. The TASM language ignores whitespace unless

whitespace is required. When whitespace is required, it is denoted by the token

< TASMWhitespace >, which represents a single whitespace character. Tab char-

acters, space characters, new line characters, carriage return characters, and form

feed characters all represent a single whitespace character.
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Basic Concepts

< TASMUCaseLetter >

< TASMLCaseLetter >

< TASMLetter >

< TASMDigit >

< TASMCharacter >

< TASMASCIIChar >

< TASMWhiteSpaceChar >

< TASMWhiteSpace >

< TASMIntLit >

< TASMFloatLit >

< TASMBooleanLit >

< TASMStringLit >

< TASMName >

< TASMDescription >

< TASMVariable >

::= 'A' 'B' I... I'Z'

::= 'a 'b' I ... I 'z'

< TASMUCaseLetter > I < TASMLCaseLetter >

::= '0' / '1' 1 '2' I '3' / '4' I '5' 1 '6' '7' | '8' 1 '9'

< TASMLetter > I < TASMDigit > I '

All standard ASCII characters

::= ' ' I '\t' I '\n' I '\r' | '\f'

{< TASMWhiteSpaceChar >}+

['-'] < TASMDigit > {< TASMDigit >}

::= -'] < TASMDigit > {< TASMDigit >}

'.' < TASMDigit > {< TASMDigit >}

::= 'True' I 'False'

{< TASMASCIIChar >}

< TASMLetter > {< TASMCharacter >}

< TASMStringLit >

< TASMName >

394



< TASMUDTypeName >

< TASMTypeName >

< TASMUDTypeMember >

< TASMUDTypeDef >

< TASMConstant >

< TASMValue >

< TASMMachineName >

< TASMFMachineCall >

< TASMValueExpr >

< TASMArithOp >

< TASMArithExpr >

< TASMBinLogicOp >

< TASMLogicExpr >

< TASMLogicBinConn >

< TASMLogicUnConn >

::= < TASMName >

'Integer' I 'Float' I 'Boolean' I < TASMUDTypeName >

< TASMName >

::= < TASMUDTypeName >':=,

'{'< TASMUDTypeMember > {','< TASMUDTypeMember >}'}";'

< TASMIntLit > I < TASMFloatLit >

< TASMBooleanLit > I < TASMUDTypeMember >

< TASMVariable > I < TASMConstant >

< TASMName >

< TASMMachineName >' ('[< TASMArithExpr > {',' < TASMArithExpr >}]')'

< TASMValue > I< TASMFMachineCall > I 'now'

< TASMValueExpr >

< TASMArithExpr >< TASMArithOp >< TASMArithExpr >

'('< TASMArithExpr >< TASMArithOp >< TASMArithExpr >')'

::= '>=' ' >' I <=' 1 '<' I' =i I!=

< TASMBooleanLit >

< TASMArithExpr >< TASMBinLogicOp >< TASMArithExpr >

'('< TASMArithExpr >< TASMBinLogicOp >< TASMArithExpr >')'

'and' I 'or'

: not'
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< TASMLogicFormula > ::= < TASMLogicExpr > I

< TASMLogicFormula >< TASMLogicBinConn >< TASMLogicFormula >

< TASMLogicUnConn >< TASMLogicFormula >

'('< TASMLogicExpr >')' I

'('< TASMLogicFormula >< TASMLogicBinConn >< TASMLogicFormula >')' I

'('< TASMLogicUnConn >< TASMLogicFormula >')'

< TASMExpr > ::= < TASMArithExpr > I < TASMLogicExpr > I < TASMLogicFormula >

< TASMVarDecl > ::= < TASMTypeName >< TASMWhitespace >< TASMVariable >';'

< TASMVarDeclInit > ::= < TASMTypeName >< TASMWhitespace >< TASMVariable >

' :='< TASMConstant >';'

< TASMNameDescPair > ::= 'NAME :'< TASMName >< TASMWhitespace >

'DESC:'< TASMDescription >

< TASMVarInit > ::= < TASMVariable >':='< TASMConstant >';'

Environment

< TASMResourceName >

< TASMResourceDef >

< TASMChannelName >

< TASMChannelDef >

< TASMEnvironDef >

< TASMName >

< TASMResourceName >':=" ['< TASMIntLit >',' < TASMIntLit >']";'

< TASMName >

'Channel' < TASMWhiteSpace >< TASMChannelName >';'

'ENVIRONMENT:'< TASMEnvTypeDef >

< TASMEnvVarDef >< TASMEnvChannelDef >

< TASMEnvResourceDef >
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< TASMEnvTypeDef >

< TASMEnvVarDef >

< TASMEnvChannelDef >

< TASMEnvResourceDef >

< TASMProjectDef >

'TYPES:' {< TASMUDTypeDef >}

'VARIABLES:' {< TASMVarDeclInit >}

'CHANNELS:' {< TASMChannelDef >}

'RESOURCES:' {< TASMResourceDef >}

'PROJECT:'< TASMNameDescPair >

Machine Templates

< TASMTemplateDef >

< TASMMTemplatesDef >

< TASMSTemplatesDef >

< TASMFTemplatesDef >

'TEMPLATES:'< TASMMTemplatesDef >

< TASMSTemplatesDef >

< TASMFTemplatesDef >

'MAIN MACHINES:' {< TASMMTemplateDef >}

'SUB MACHINES:' {< TASMSTemplateDef >}

'FUNCTION MACHINES:' {< TASMFTemplateDef >}

397

Project



Syntax Common to all Machines

< TASMVariableList >

< TASMRuleName >

< TASMRule >

< TASMTimeSpec >

< TASMResourceSpec >

< TASMRuleDef >

< TASMRuleGuard >

< TASMRuleEffect >

< TASMEffectExpression >

< TASMAssignment >

< TASMSubMachineCall >

< TASMChannelExpr >

< TASMChannelOpChar >

{< TASMVariable >';' }

< TASMName >

< TASMRuleName >' {'

[< TASMTimeSpec >]{< TASMResourceSpec >} < TASMRuleDef >'}'

't" :=" ['< TASMIntLit >',' < TASMIntLit >']";'

't" :='< TASMIntLit >';' I

't " :=" next";' I

't" :=" dt";'

< TASMResourceName >':=" ['< TASMIntLit >',' < TASMIntLit >']";' I

< TASMResourceName >':='< TASMIntLit >';'

< TASMRuleGuard >< TASMWhiteSpace >< TASMRuleEf fect >

'if' < TASMLogicFormula >' then'

'else' < TASMWhiteSpace >' then'

{< TASMEffectExpression >}+

< TASMAssignment > I < TASMSubMachineCall >

< TASMChannelExpr > I 'skip;'

< TASMVariable >':='< TASMArithExpr >';'

< TASMMachineName >' (")";'

< TASMChannelName >< TASMChannelOpChar >';'
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Main Machine

< TASMMTemplatesDef >

< TASMMVars >

< TASMContVars >

< TASMMonVars >

< TASMIntVars >

< TASMConstr >

< TASMParamList >

< TASMParam >

< TASMRules >

'MAIN MACHINE :'< TASMNameDescPair >

< TASMMVars >< TASMConstr >< TASMRules >

< TASMContVars >< TASMMonVars >< TASMIntVars >

'CONTROLLED VARIABLES :'< TASMVariableList >

'MONITORED VARIABLES :'< TASMVariableList >

'INTERNAL VARIABLES :' {< TASMVarDeclInit >}

'CONSTRUCTOR :'< TASMMachineName >' ('[< TASMParamList >]')"{'

{< TASMVarInit >}'}'

< TASMParam > {',' < TASMParamList >}

< TASMTypeName >< TASMWhiteSpace >< TASMVariable >

'RULES:'< TASMRule > {< TASMWhiteSpace >< TASMRule >}

Sub Machine

< TASMSTemplateDef >

< TASMSVars >

'SUB MACHINE :'< TASMNameDescPair >

< TASMSVars >< TASMRules >

< TASMMonVars >< TASMContVars >
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Function Machine

< TASMFTemplateDef >

< TASMFVars >

< TASMInVars >

< TASMOutVars >

'FUNCTION MACHINE :'< TASMNameDescPair >

< TASMFVars >< TASMRules >

< TASMInVars >< TASMOutVars >< TASMIntVars >

'INPUT VARIABLES :' {< TASMVarDecl >}

'OUTPUT VARIABLE :'< TASMVarDecl >

Configurations

< TASMConfigurations >

< TASMConfiguration >

< TASMConfMInit >

< TASMMachineInstance >

< TASMConfVarInit >

'CONFIGURATIONS:' (< TASMConfiguration >}

'CONFIGURATION :'< TASMNameDescPair >

< TASMConfMInit >< TASMConfVarInit >

'MACHINE INITIALIZATIONS :' ({< TASMMachinelnstance >}

< TASMName >':=" new' < TASMMachineName >

'('[< TASMConstant > {',' < TASMConstant >}]')";'

'VARIABLE INITIALIZATIONS :'

{< TASMVarInit >}

A.3 Semantics

Three dominant approaches stand out when expressing programming language se-

mantics - operational semantics, denotational semantics, and axiomatic semantics.

Denotational semantics has been used successfully for sequential programs, but the
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paradigm becomes difficult to work with when concurrency is introduced. Axiomatic

semantics has been used on smaller programs, but it is not clear that it works well

for larger programs or for languages with numerous concepts. Operational seman-

tics could be used to express the TASM semantics because it has concepts analogous

to the TASM language, namely, that of an abstract machine progressing through

configurations. Operational semantics has been used extensively to specify language

semantics, for both sequential and concurrent programs. However, because the ASM

paradigm is close to the operational semantics paradigm, an attempt is made to ex-

press the semantics of the TASM language using Abstract State Machines (ASM).

The motivation is twofold. First, ASMs have been used to specify the semantics of

executable languages, including VHDL, Prolog, and SDL. Second, because the TASM

language is built on top of the ASM language, it makes sense to use ASM to express

the semantics. In a sense, if the semantics are expressed properly, the TASM language

could be viewed as "syntactic sugar" on top of the ASM language.

A.3.1 Operator Precedence

The use of parentheses is strongly encouraged to disambiguate operator precedence for

language users. However, the TASM language defines rules for operator precedence

when parentheses are not used. The precedence rules are listed in Table A.3.

A.3.2 Calling Convention

In the TASM language, all function ASM calls machine instantiations, and variable

references use "call-by-value" semantics. There are no pointers or no references in the

TASM language, only distinct variables. Machine instances are all different from one

another. When variables are assigned to each other, the value gets copied over to the

assigned variable. No variable can be "linked" to the same value, using "pointer-like"

semantics.
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Table A.3: Operator precedence

Operator Meaning
• Multiplication
/ Division
+ Addition
- Subtraction
>= Greater than or equal to
> Greater than
<= Less than or equal to
< Less than
= Equal to
1 = Not equal to
and Logical connective 'AND'
or Logical connective 'OR'
not Logical negation 'NOT'
:= Assignment
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A.3.3 Types

All variables are strongly typed in the TASM language. There is no type-casting and

operators are defined only for operators of the same type. The type checking ensures

that all operations are type safe at compile-time. Syntactically, decimal values are

interpreted with a required "decimal part", which is a period (".") followed by a digit.

This is required even from decimal numbers without a decimal part (e.g., 9.0). "9.0"

and "9" are constants of different types, namely the first one is of type "Integer"

while the second one is of type "Float". There is no type inference or dynamic typing

of any sort as all variables are statically typed and cannot be type casted.

A.3.4 Relation to Abstract State Machines

In this section, the execution semantics of the TASM language are formally expressed

using ASM. This is accomplished by using Abstract State Machines (ASM), using the

syntax from the Lipari guide [113]. The aim of this section is to express the semantics

of the extended language using a "desugaring" into the syntax of the Lipari guide. For

the syntax, we follow the notational conventions used in both the Lipari guide and the

definition of the formal semantics of SDL [92]. For a detailed list of the ASM syntax

used to express formal semantics, the reader is referred to the SDL guide [92], pages

25-27. In Chapter 4, Section 4.4, a translation from TASM to timed ASM is given.

The translation given in this section is similar except that the ASM version used in

this section uses the Lipari guide syntax, which is closer to the classical definition of

ASM.

The key extensions to the TASM language have to do with the addition of time

passage and resource consumption. To illustrate time passage, the same conventions

as in [72, 92] are adopted and a global dynamic and monotonic increasing function is

introduced, called current Time:

* external currentTime: -- REAL

This function is used inside of machines to query the value of the current time. The
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function is modified by the environment only and returns a monotonically increasing

value greater than 0.0.

A.3.5 Sugaring/Desugaring

The extensions to the TASM language have been introduced as "syntactic sugar" on

top of the syntax and semantics of the ASM language as expressed in the Lipari guide

[113]. In order to map a TASM specification into an ASM specification, two domains

are introduced, namely DTASM and DASM to denote the domains of specifications

expressed in the TASM language and the ASM language respectively. A function

called Desug is also introduced. This function maps a TASM specification into an

ASM specification. The "desugaring" function is defined for all individual elements of

the TASM language (specifications, variables, types, rules, etc.) and maps the TASM

elements into elements of the ASM language.

* Desug: DTASM -- DASM

A.3.6 Resource definitions

A resource definition, Rdef, in the environment is desugared into a global shared

dynamic function:

* Desug{[Rdef]] = shared Rdef

The desugaring of the resource definition is a bit more complex with respect to

usage, but the execution semantics of resource usage are detailed in sectionA.3. 10.

A.3.7 Type definitions

Type definitions, Tdef get desugared into static finite domains:

* Desug[/Tdefl] = static domain Tdef
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A.3.8 Variables

Controlled and monitored variables inside of machines get desugared into nullary

controlled and dynamic functions, respectively.

A.3.9 Rules

The desugaring of the rules is the most complex desugaring in the TASM language,

because this is where time and resource utilization play a role. To illustrate the

desugaring of rules, an abstract syntax for a rule definition is defined:

* Rules = (R+)

* Ri = (ti rý if condi then effecti)

In the TASM, the set of rules for a given machine is implicitly mutually exclusive.

In the ASM language, the mutual exclusion is explicit. The first desugaring of as set

of rules is to generate the explicit mutual exclusion:

* Desug[[Rules]] = Desug[[((to r* if condo then e ffecto) ... (t*r if condn then

eff ectn))]] =

if condo then effecto

else if condl then effect,

else if cond, then cond,

The else rule guard from the TASM language would get desugared into a simple

else rule guard of the ASM language. The time annotations get desugared into

an environment variable that affects each machine's execution to simulate "durative"

actions. Conceptually, once a rule is triggered, a machine sets a specific variable to the

duration of the rule application and will not do anything until the rule duration has

elapsed. Once the rule duration has elapsed, the machine will generate the appropriate

update set atomically and will be free to execute another rule. Desugaring a time
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annotation for a rule introduces a new branch if the "if' conditions to denote the time.

The concept of a "fresh" variable is introduced to denote a newly generated variable

whose name is not previously used. The desugaring introduces two variables, one to

keep the time when the rule application will finish executing and one to denote that

the machine is "busy" doing work. These two variables are denoted by tcompletefresh

and mbusyfresh. The fresh underscore is used to indicate that the variable name is

introduced by the desugaring and enforces that it does not clash with existing names.

Both of these variables also desugar into controlled dynamic functions:

* Desug[[tcompletefresh]] = controlled tcomplete initially -1

* Desug[[mbusyfresh]j = controlled mbusy initially False

* Desug[[Rule]] = Desug[[((ti rF if condi then effect)]] =

if/else if condi A mbusyfresh = False then

mbusyfresh := True, tcomplete fe,,,h := currentTime + getDuration(ti)

else if currentTime = tcompletefresh A mbusyfreh = True then

effects, mbusyfresh := False, timcompletefresh := -1

The function getDuration is a macro that is created using the condition and the

time annotation of the rule. It returns the duration of the rule. If the time annotation

is a single value, it returns that value. Otherwise, if the rule annotation is an interval,

it returns a value non-deterministically selected from the interval. Using a macro will

enable the desugaring to take into account possible concurrency semantics like WCET

and BCET as defined in section 5.3. The introduction of the two auxiliary variables

and the time conditions will guarantee that the machine will not produce any update

sets and that no other rules will be enabled while the machine is executing a rule.

This behavior is exactly the desired behavior to simulate "durative" actions.

Resource annotations get desugared as well, but their usage is a bit different than

for the time annotations. Resources are modeled as shared dynamic functions. Their
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values are set during at the beginning of a rule execution and at the end of a rule

execution. Fresh variables are also introduced, for each machine, to denote resource

usage:

Desug[[Rule]] = Desug[[((ti r* if condi then effecti)]] =

if/else if condi A mbusyfresh = False then

mbusyfresh := True,

tcompletefresh := currentTime + getDuration(ti),

rifresh := getResourceConsumption(ri)

else if currentTime = tcompletefresh A mbusyfresh = True then

e f fecti,

mbusyfresh := False,

tcompletefresh := -1,

rifresh := 0

Function machines are desugared as macros and sub machines are desugared just

like main machines and they are "inlined" inside the rule where they are invoked.

A.3.10 Execution Semantics

The desugaring of the TASM language into the ASM language is an easy way to

express the formal semantics of the TASM language. In the ASM world, every main

machine represents an "Agent", member of the shared domain A GENT. The TASM

language also introduces concurrency semantics that are slightly different than for

the ASM language. In the TASM language, time is used to synchronize the order

of execution between different agents. It is the currentTime dynamic function that

keeps all of the agents executing in a synchronized order. The time annotations create

a partial order between the moves of agents. The currentTime function increases

monotonically, at a rate that is congruent with the smallest step of a given main

machine. For example, if the shortest duration of a rule is 3 time units, for all agents
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in AGENT, then the currentTime function will increment each time by 3 time units;

this is denoted by this smallest value dt, which corresponds to a static function.

The one area that remains to be formally specified is the execution semantics of

resources. For each resource that is defined in the environment, an agent is created

that is used to sum up all of the resources used by existing agents. These new agents

are used to ensure that resource usage falls within the specified bounds.

Agent RESOURCEi
controlled last fresh initially 0
controlled totalresourceifre, h initially 0

if currentTime = lastfresh + dt then
totalresourceifresh := sum(r)

else
if totalresourceif ... h > resourceimo, then
RESOURCEEXHAUSTED

The role of the sum macro is to sum up all of the resource annotations from

executing agents. The RESOURCE_EXHAUSTED macro simply halts execution

to note that a given resource has been exhausted.

408



Appendix B

Translating TASM Models to SAT

This appendix describes how the constraints in TASM models are translated to a

Boolean formula in propositional logic, also called an instance of the Boolean satis-

fiability problem, or SAT for short [232]. The purpose of the mapping is to verify

certain properties of TASM models using a SAT solver, including completeness and

consistency, as explained in Section 5.1. This appendix provides all the details of how

different facets of the TASM language map to a Boolean formula.

B.1 Preliminaries

In this appendix, the canonical form of TASM models [110] is used to express the map-

ping algorithm. As a reminder, a TASM machine is canonical form can be expressed

as a set of rules Ri, which are composed of rule guards Gi and effect expressions Ei.

For a TASM machine with n rules, the canonical form is expressed as:

R1 - if

R2 -if

then El

then E2

R•=- if G, then En
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B.2 Translation Algorithm

The goal of the translation algorithm is to map TASM guards to Boolean formulas. A

Boolean formula is a set of Boolean variables, denoted bj, connected with the logical

connectives (A, V, I). More information about SAT and Boolean formulas is provided

in Section 2.7. The translation from TASM to SAT involves mapping the rule guards,

Gi, to Boolean propositions, bj, in Conjunctive Normal Form (CNF). The following

sections explain how this translation is performed for the various components of the

TASM language.

B.2.1 Function Machines

For a rule guard which contains a function machine call, the function machine call is

replaced by the function machine definition, much like "inlining" in programming lan-

guages [239]. This substitution will create new rules, in accordance to the procedure

used in the proof of Theorem 4.1. The original rule with the function machine call

will give rise to n new rules, where n is the number of rules of the function machine.

The canonical form of a function machine is given below, where the F prefix denotes

a function machine:

FR 1 -if FG 1 then outvar := outvall;

FR 2 - if FG2 then outvar := outval2; (1)

FR, if FG, then outvar := outval,;

If the rule where the function machine call is invoked is of the form "if Gi then

Ei", the following n rules will be generated in the machine where the function machine

is invoked:
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Ril -if Gi A FG1 then Ei

Ri2 - if Gi A FG2 then Ei

Ri, - if Gi A FG, then Ei

Where, in each FGi, the values of input variables are replaced by the parameters

passed to the function call and, in each original guard Gi, the invocation of the

function machine is replaced by the out_vali corresponding to the FGi guard. Once

this translation has been performed, the translations to SAT described in the following

sections can be applied without special handling for function machine calls.

B.2.2 Boolean and User-Defined Datatypes

In the TASM language, user-defined datatypes and Boolean datatypes are simple

types that can take values for a finite set. Boolean variables can take one of two

values ( True or False). User-defined types can take one of multiple values, as defined

by the user. In typical specifications, user-defined types rarely exceed five or six

members.

The only operations defined for Boolean and user-defined datatypes are the com-

parison operators, = and ! =. No other operator is allowed for Boolean and user-

defined datatypes. In the translation to SAT, the equality operator (=) is assumed

to mean a non-negated proposition (e.g., bl). The operator ! = is translated to mean

a negated proposition (e.g., --bl). The translation to SAT for these datatypes involves

2 steps. The first step is generating the at least one clause and the at most one clause

for each variable of type Boolean or of type user-defined type. The second step in-

volves formulating the property to be verified as a clause in CNF, S, according to

the definitions in Section 5.1. The at least one clause ensures that the variable must

take at least one value from its finite set. This clause is simply the disjunction of
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equality propositions for each possible value that the variable can take. The at most

one clause is a clause that ensures that each variable can take at most one value from

its finite set.

To illustrate the generation of the at least one and at most one clauses, the follow-

ing type is introduced: typel := {vall, val2 , ... , val,}. A variable of type Boolean

can be viewed as a variable of type typel where n = 2. First, the set of propositions

is generated. In SAT , a proposition is a single letter with a subscript (e.g., bi).

For a variable named var of type typel, the following propositions would be gener-

ated, where the bi's represent the SAT atomic propositions and the right hand side

represents the meaning of the proposition in the TASM context:

b,: var = vall

b2: var = val2

b : var = val,

The at least one clause, denoted C, for this variable would be:

C1 - b1 V b2 ... V bn

The at least one clause ensures that at least one of the bi's must be true for the

clause to be true. The at most one clause ensures that no two bi's can be true at the

same time. The at most one clause, denoted C2 is the conjunction of multiple clauses:
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C2 = (-bl V -b 2 ... V -b,) A

(b V -b 2 ... V --bn) A

(-,b V b2 ... V -b,) A

A

(-,bl V -b 2 ... V bn)

The at most one clause generates n + 1 clauses, one for the full negations of the

propositions and one for each n - 1 negations of propositions. This combination

ensures that at most one of the clauses can be true. The conjunction C1 A C2, which

is already in conjunctive normal form, serves to enforce the "exactly one value per

variable" constraint, also called type enforcement. The rule guards are made up of

propositions that already exist in the proposition catalog. For each rule guard in

the problem formulation S, for each constraint in the guards, if the constraint is of

the form var = vali, its corresponding proposition bi is looked up in the catalog and

substituted in the problem formulation S. If, on the other hand, the constraint is of

the form var ! = vali, the bi corresponding to var = vali is looked up in the proposition

table and the constraint in the guard is substituted by its negation, -lbi. Once the

substitution is done in the rule guards, the formulated problem S is then converted

to Conjunctive Normal Form (CNF) using the well-known algorithm in [232]. The

result of this substitution and conversion to CNF yields S with only atomic Boolean

propositions. The full SAT problem can then be formed by the conjunction of S, C1,
and C2:

Full SAT problem E S A C1 A C2

413



B.2.3 Integer Datatypes

Similarly to Boolean datatypes and user-defined datatypes, integer datatypes take

values from a finite set. However, the number of values that integers can take is much

larger than for Boolean datatypes and much larger than for typical user-defined types.

For example, in the TASM language, integers range from -32,768 to 32,767. While

the approach suggested above for Boolean and user-defined types might also work

for integer types, the enumeration of all 65,536 possible values would be intractable

for a single integer variable. The adopted mapping for integer variables relies on the

fact that even though integers are used in TASM specifications, they are used in such

a way that they could be replaced by user-defined types. In other words, in TASM

specifications, the full range of integers is typically not used.

Nevertheless, integer datatypes are more complex than Boolean and user-defined

types because more operations are defined for integer datatypes. These operations

are comparison operators and arithmetic operators. The comparison operators are

=, ! =, <, <=, >, and >=. The arithmetic operators are +, -, ., and /. For the

suggested translation, constraints on integer variables must be of the form < var >

< comrpop > < expr >, where < var > is an integer variable < compop > is

a comparison operator and < expr > is an arbitrary arithmetic expression that can

contain constants, variable references, function machine calls, and operators. The

restriction is that the left hand side of constraints can contain only a variable, with

no arithmetic expressions allowed. The translation proposed in this section, deals

only with linear constraints whose right hand sides are constants. Arbitrary symbolic

right hand sides can be addressed in future research, as explained in section 9.3.

The key idea behind the translation is to convert each integer variable to a user-

defined type. This is achieved by collecting all of the constraints on a given integer

variable and extracting the intervals that are of interest. These intervals become

the members of the user-defined types. Once the integer type has been converted to

a user-defined type in this fashion, it can then be converted to a Boolean formula

using the approach from Section B.2.2. The algorithm to reduce integer variable to
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user-defined types consists of 4 steps. For each monitored variable of type integer:

1. Collect all constraints on the variable from S

2. Sort all constraints in ascending order of right-hand sides

3. Create unique intervals for constraints that overlap

4. In S, replace original constraints by disjunction of constraints for modified con-

straints in overlapping intervals

The translation can be illustrated using an example. Steps 1 and 2 of the algorithm

are self-explanatory. Steps 3 and 4 are illustrated using an example which contains

the following set of constraints:

a >= 2

a<3

a!= 5

a>5

a= 9

The non-overlapping intervals for this set of constraints become the possible values

for the integer variable. These intervals are shown below, with the associated Boolean

propositions in the SAT problem.
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a <= 1

a=2

3 <= a <= 4

a=5

6 <= a <= 8

a=9

a >= 10

: bl

: b2

b3

: b4

b5

b6

: b7

Once an integer variable has been reduced to a user-defined type, the original

clauses can be replaced by the Boolean propositions or disjunction of Boolean propo-

sitions, depending on the nature of the original constraint.

a >= 2

a<3

a!= 5

a=> 5

a = 9

:(b2 V bS

:(bl V b2 )

: (-b4 )

:(b5 V b6

: (b6)

V b4 V b5 V b6 V b7)

v b7)

Once the integer variables have been reduced to user-defined types and the con-

straints in the problem formulation S have been replaced with the appropriate combi-

nation of propositions, the full SAT instance can be created using the at most one and

the at least one clauses, in the same fashion as explained in Section B.2.2. For a spec-

ifications where there is significant use of integer constraints, the use of Mixed Integer

Programming (MIP) solvers could be better suited for completeness and consistency

analysis. This option is investigated in [206] and is addressed in Section 9.3.
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B.2.4 Constraints with Symbolic Right-Hand Sides

The translation strategy for integer variables relies on the ability to reduce integer

variables to user-defined types. This strategy is straightforward for constraints of

the type < var > < comp_op > < constant > because intervals of interest can

be easily identified, as explained in Section B.2.3. However, if the right-hand side

of constraints contains arbitrary arithmetic expressions containing a mix of variable

references, function machine calls, operations, and constants, the reduction to a user-

defined type is not trivial. This case is currently handled by reducing symbolic right-

hand sides to a constant by using initial conditions combined with a configuration.

In the TASM language, a configuration is a set of initial conditions which "overrides"

the initial values defined in the environment. This restriction might seem potentially

restrictive, but it is probable that there are more restrictions on the variables than

the specification expresses. Furthermore, the reduction of symbolic right-hand sides

performs constant propagation where applicable and assigns values to free variables.

The ability to handle symbolic right-hand sides is considered as part of future work

in Section 9.3.

B.2.5 Complete Translation Algorithm

The basic translation principles have been explained in the previous sections. The

complete translation algorithm can now be given, for a single machine:

1. Create problem instance S depending on the property to be checked (e.g., con-

sistency or completeness), as explained in Section 5.1

2. Replace function machine calls with extra rules, as explained in Section B.2.1

3. Replace symbolic right-hand sides with values from the chosen configuration

4. Reduce integer variables to user-defined type variables, as explained in Sec-

tion B.2.3
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5. Iterate through all monitored variables and create at least one clauses and at

most one clauses, as explained in section B.2.2

6. Convert problem formulation S to conjunctive normal form and create the full

SAT instance, as explained in Section B.2.2

B.3 Analysis

In this section, the limitations of the translation algorithm, as well as the complex-

ity of the translation algorithm are analyzed. While SAT solvers have been heavily

optimized and have been able to address problems of industrial size [175], it is impor-

tant to understand the scalability of the translation algorithm. The scalability of the

translation is crucial to ensure that relevant case studies can be analyzed using the

translation to SAT. The preliminary results from the translation algorithm indicate

that the performance of the translation algorithm might overshadow the performance

of the SAT solver.

B.3.1 Limitations

The translation of TASM constraints to SAT rely on the TASM model being finite

or on creating a finite version of the model. When a TASM model contains symbolic

right-hand sides, the translation algorithm removes the symbolic values using a se-

lected configuration. Clearly, this feature yields an underapproximation of the model,

analogous to the approach explained in [110]. For many cases, as the cases studied

in Chapter 8, this approximation is adequate.

If a TASM model contains variables of type float, the translation algorithm is not

applied in the TASM toolset and the user is notified that the TASM specification does

not meet the requirements to be analyzed using SAT. The reason for this limitation

is that float variables are, by definition, infinite. Using other types of solvers such

as an LP solver [96] or an SMT solver [97] could address these limitations. However,

these types of solvers yield other limitations, as explained in Section 9.3.
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B.3.2 Complexity Analysis

While the translation algorithm is fairly straightforward, there are a lot of parameters

that will affect the space complexity of the translation. The evident parameters

being the number of rules (r), the number of monitored variables (v), the number

of function machine calls (fc) (with its internal properties like the number of rules

inside the function machine), the number of constraints in the guards (c), and the

number of members in user defined types (u). For the translation to SAT , the

space complexity is characterized by the number of atomic propositions (pr) and the

number of clauses (cl) which are generated by the translation. The same definitions

are used from Section 2.7.2 - a proposition is an atomic Boolean variable. A clause is

one disjunction block in CNF form.

Space Complexity

For the case of completeness, the number of rules, r, for a given machine is not the

dominant factor. The number of rules will increase the number of clauses linearly

(O(r)). For the case of consistency, since all pairs of rules are considered, the increase

in the number of clauses will be quadratic (O(r 2)).

For function machine calls, the growth in complexity will be the generation of

extra rules in the procedure to eliminate the function machine call. Every function

machine call will give rise to a cross-product in the composition of rules, giving rise to

exponential growth in the number of rules for each function machine call (O(r(fc+l))).

The resultant effect on the number of clauses can be inferred by the previous discussion

about the clause growth in terms of number of rules for completeness and consistency.

The effect of the number of variables depends heavily on the type of the variables.

For Boolean and user-defined types, the number of variables greatly affects the gener-

ation of propositions for the at least one and at most one clauses. Each variable gives

rise to linear growth in the number of clauses for the type enforcement clauses (O(v)).

Each type enforcement clause will contain a proposition for every user-defined type

member, u, giving rise to multiplicative growth for the total number of propositions

419



(O(v * u)).

For integer datatypes, the nature of the constraints on the integer variables deter-

mines the growth of the reduction to a user-defined type. The number of constraints

will give rise to linear growth in the number of new propositions, that is, the number

of members of the user-defined type. The dominant growth in the number of total

number of propositions comes from the type enforcement clauses and from the replace-

ment of constraints by the user-defined type propositions. The worst-case scenario

occurs when a constraint is replaced by approximately the entire disjunction of user-

defined type propositions, as is the case for a >= 2 in Section B.2.3. However, this

case will occur only if there are numerous constraints and this case will be balanced

out by other constraints not needing extra propositions. This is clearly illustrated in

Section B.2.3 for the example given. In summary, for integer datatypes, the number

of new propositions will vary linearly with the number of constraints (O(c)). Extra

clauses will vary in the same fashion as for Boolean and user-defined types.

B.3.3 Intractability

It is well-known that the satisfiability problem is NP-Complete [232]. By formulating

the completeness and consistency problem as a satisfiability problem, the performance

of the verification procedure grows exponentially in the worst-case. For the case

where there exists a counterexample, that is, a specification is not complete or not

consistent, the average case performance can be acceptable. However, establishing

completeness and consistency where there is no counterexample involves establishing

that the formula is unsatisfiable. The performance of establishing this property will

be highly dependent of the actual problem definition and cannot be analyzed a priori,

but will require searching the complete state space.

Given the exponential growth that can result from specific problems, the transla-

tion to SAT is inadequate for large sets of rules, large sets of variables and complex

rule guards. However, because the relationships between the guards are analyzed for

a given machine, the number of rules is expected to be manageable from the specifier's

perspective, on the order of less than 10 rules. Furthermore, the complexity of the
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guards should also be tractable from the specifier's standpoint, so it is realistic to ex-

pect moderate complexity of the individual guards. The number of function machine

calls could greatly affect the feasibility of the analysis since hierarchical structuring

of specifications is a natural mechanism in the TASM language.
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Appendix C

Translating TASM Models to

UPPAAL'S Timed Automata

This appendix describes how TASM models are translated to UPPAAL 's timed au-

tomata. The purpose of the mapping is to verify certain properties of TASM models

using the UPPAAL tool suite, such as execution time analysis, as explained in Sec-

tion 5.3. Furthermore, timed automata models can be analyzed for functional cor-

rectness using temporal logic formulas [212] and model checking principles [67] using

UPPAAL 's tool suite [157], as explained in Section 5.2. The version of UPPAAL used in

this thesis is version 4.0.6, released on March 5th, 2007, and available on the UPPAAL

web site (http://www.uppaal.com). This appendix provides all the details of how

different facets of the TASM language are mapped to the timed automata formalism

of UPPAAL .

C.1 Preliminaries

The timed automaton formalism, also called Alur-Dill automata [5], extends finite

state automata with a set of real-valued clocks to denote the passage of time. In a

timed automaton, all transitions are instantaneous, but time elapses between transi-

tions. Transition guards can contain predicates over clocks to enforce time passage

before a transition is taken. State invariants can be used to enforce an upper bound
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on the time passage in a state. The timed automata used in UPPAAL extend Alur-Dill

automata with Integer variables, Boolean variables, committed and urgent locations,

and communication channels [24]. In UPPAAL 's timed automata, locations correspond

to the states of Alur-Dill automata. The states of UPPAAL 'S automata are a comrn-

bination of variable values, clock values, and automata locations. Urgent locations

are used to denote that time should not elapse in a location. Committed locations

are used to denote an atomic chain of urgent locations. In this thesis, Section 5.3.3

gives detailed description of the timed automaton formalism. For a more extensive

description of the timed automaton formalism, the reader is referred to [5, 7]. For

a detailed description of UPPAAL and its associated tool suite, the reader is referred

to [24, 157, 211].

In the TASM language, described in Chapter 4, the general form of a timed

abstract state machine is a set of rules where each rule, Ri, is of the form:

R =- (Ti, RRi, Gi, Ej) (2)

Where:

* Ti is the duration of the rule, which is a closed interval [a , b] where a > 0,

b > 0, and a < b

* RRi is a set of resources consumed by the rule execution

* Gi is the rule guard, which is a Boolean predicate

* Ei is the rule effect, which is a series of updates to environment variables

This parameterized version of TASM rules is used to describe the translation to

UPPAAL 'S timed automata.
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C.2 Translation Algorithm

The translation algorithm performs the translation of the environment by translating

each datatype and variable in the TASM model to an equivalent datatype and variable

in UPPAAL 's language, as explained in Section C.2.1. The algorithm then translates

each main machine in the model to a timed automaton of UPPAAL , as explained

in Section C.2.2. Before the translation of each main machine is performed, the

translation algorithm uses the results of Theorem 4.1 and of Theorem 4.2 and removes

the hierarchical composition from each main machine. The complete translation

algorithm is provided in Section C.2.3 and a sample translation is given in Section C.3.

C.2.1 Variables and Datatypes

The TASM language contains more datatypes than the timed automata language of

UPPAAL . For variable datatypes, UPPAAL contains only a bounded integer datatype,

a channel datatype, and a clock datatype. Of these datatypes, only the bounded

integer datatype can be used to express TASM types and variables. Nevertheless,

the bounded integer datatype is generic enough to be able to express the Boolean

datatype, the integer datatype, and the user-defined datatype of the TASM language.

The integer datatype of the TASM language is mapped directly to the bounded integer

datatype of UPPAAL . The Boolean datatype of TASM is mapped to a bounded integer

with range "[0, 1]", where "0" means "False" and "1" means "True". The user-

defined datatype of the TASM language maps to an appropriately bounded integer

type. For a user-defined type that contains mn members, the type is translated to an

integer datatype with range "[1, m]", where "1" corresponds to the first member of

the type and "m" corresponds to the mth member of the type. If a TASM model

contains variables of type float, the translation to UPPAAL 'S timed automata cannot

be performed, and the user is notified that the given model cannot be analyzed using

UPPAAL. In its current version, UPPAAL does not support datatypes from the Real

domain. The summary of the datatype translations is given in Table C.2.1.
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TASM Type UPPAAL Type TASM Example UPPAAL Example

Integer[a, b] int[a, b] Integer[-5, 5] p; int[-5, 5] p;
Boolean int[0, 1] Boolean b; int [0O, 11 b;
Switch := {ON, OFF} int[1, 2] Switch s; int 1, 21 s;

Table C.1: Datatype translations

C.2.2 Machines and Rules

The translation to UPPAAL 's timed automata is achieved by mapping each main

machine of a TASM specification to a timed automaton. -In the TASM language, a

main machine is a unit of concurrency. TASM models and UPPAAL models differ in

the paradigm used to model time. In UPPAAL 'S timed automata, time is naturally

used to express time passage between transitions. In the TASM language, time is

used to denote the duration of actions, equivalent to the duration of a transition.

This difference in paradigm is important conceptually, but from an expressiveness

perspective, it is irrelevant since both paradigms are equally expressive [30]. For

example, durative transitions can be expressed in timed automata using an extra

intermediate location which is used solely to elapse time. In the intermediate location,

the automaton waits for time to elapse until it can resume making transitions.

To express the paradigm of durative transitions from TASM models, for each

generated timed automaton during the translation, a clock c is created as a local

variable for the automaton. The clock is used to enforce the durative actions of the

TASM language. The semantics of durative transitions are such that a rule execution

lasts a finite amount of time before the effect of the rule execution is reflected in

the environment. For the rule of Equation 2, the corresponding timed automaton is

depicted in Figure C-1. The set of consumed resources is omitted from the UPPAAL

model, because the resource model used in the TASM language does not affect timing

behavior and the semantics of transitions. The behavior to be studied using the

UPPAAL tool suite, namely timing behavior and functional properties, does not require

the inclusion of resource consumption in the timed automata model.

In Figure C-1, the location pivot is the initial location and depicts that the cor-

responding machine is idle, that is, waiting to execute a rule. In UPPAAL, the pivot

426



Ri
c <= b

Gi
c = 0

c >= a
Ei

pivot

Figure C-1: Timed automaton for rule R4 of Equation 2

location is marked as an urgent location, meaning that no time can elapse in this

location [157]. Each TASM machine rule R, will be attached as a transition from the

pivot location. Because the initial location is urgent, an attached transition will be

taken as soon as it is enabled. A transition will be enabled when the rule guard Gi

of a rule R, evaluates to true. When this happens, the automaton will transition to

a new location called R,. The name of the location is used to identify the executing

rule in order to map the automaton's transitions back to the rule execution of the

TASM model. During the transition, the clock c is reset. The location Ri is used to

model the durative transitions of the TASM language. The automaton will stay in

this location between a and b time units, by using the c <= b location invariant and

the c >= a transition guard. Once the duration of the rule has elapsed, the automa-

ton will transition to location pivot and the effect of the rule, Ei, will be applied to

the environment.

To illustrate the translation of a timed rule, an example is provided. Listing C.1

gives a sample TASM rule. The rule has an execution time ranging between 1 time

unit and 4 time units. The corresponding timed automaton is shown in Figure C-2

and contains two locations, one for the pivot location, and one for the rule execution.

In the TASM language, a machine can contain a special "Else rule "rule, which is

a rule that is enabled if no other rule is enabled. The TASM language also contains

a special time construct, the " t := next" construct. The special combination of

both constructs is used to denote that a machine will wait for time to progress until

one of its rules becomes enabled. For a machine with n rules, the translation for the
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Listing C.1 Sample TASM rule
R1: Sample Rule
{

t := [1, 41;

if x = y and y = z then
x := 3;
y := 5;

}

x == y && y == z

c=O

c <= 4

S>= 1

x =3, y= 5

Figure C-2: Timed automaton for Listing C.1
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"Else rule "with the "t := next" annotation is depicted in Figure C-3. The channel

melse? is an urgent channel and is used to enforce that the corresponding edge is

urgent [24]. The urgent edge pattern is used to force the automaton to transition out

of location else as soon as one its rules becomes enabled. When no rule is enabled, the

automaton will stay in location else and time will elapse until a rule becomes enabled.

When an TASM machine contains the "t := next" annotation, another automaton

is added to the translation. This automaton contains only one transition and emits a

synchronization call along the urgent channel, melse!. This extra automaton is part

of the urgent edge pattern [24].

pivot

!(G1 I G2 I1 ... II Gn) (G1 11 G2 11. II Gn)
m else?
Ee

else

Figure C-3: Timed automaton for the "Else rule "and the "t := next" annotation

The "t := next" annotation and the "Else rule "can be used separately from

each other. For the rule depicted in Figure C-3, if the "Else rule "did not contain

the "t := next" annotation, the urgent channel would be replaced by a clock c, a

location invariant, and a clock guard along the edge out of the else location, in a

fashion identical to the transition depicted in Figure C-1. If, on the other hand, a

rule other than the "Else rule "contains the "t := next" annotation, the translation

depicted in Figure C-1 would not have a clock c, a location invariant, and an clock

predicate in the edge guard. Instead, the transition would contain an urgent channel

in the edge guard and the disjunction of all the other guards except for the guard of

the rule being executed, similarly to the edge guard out of the else transition depicted

in Figure C-3.

The translations expressed in Figure C-1 and in Figure C-3 can be generalized to

a machine with n rules and an "Else rule ". The i subscripts for the clock conditions

(e.g., a,, bl) denote the durations of the time annotation for the ith rule (e.g., Ri).
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For such a machine, the resulting timed automaton would contain n + 1 branches, as
shown in Figure C-4. In Figure C-4, the "Else rule "of the automaton contains the

t := next" time annotation.

R2
c <= b2

R1
c <= bi c >= a2

\ E2

G1

!(G1 11 G2 II ... I1 Gn)

Rn
C <= bn

C >= an
En

)(G1 11 G2 ... Gn)
melse?

Figure C-4: Timed automaton for a TASM machine with n rules

C.2.3 Complete Translation Algorithm

Given the principles explained in previous sections, the complete translation algorithm
can be summarized as follows, for a given TASM model:

1. For each main machine in the TASM model, remove hierarchical composition
according to the rules of Theorem 4.1 and of Theorem 4.2

2. Translate the environment:

(a) Discard resource definitions

(b) Translate each user-defined type to a corresponding bounded integer type
of UPPAAL , as explained in Table C.2,1
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(c) Translate each variable and corresponding datatype to the bounded integer

type of UPPAAL , as explained in Table C.2.1

3. For each "flattened" main machine

(a) Create a timed automaton to represent the machine

(b) Create an initial urgent location called "pivot"

(c) For each rule PR of the machine, add a branch from the "pivot" state

according to the approach explained in Section C.2.2

(d) If the machine contains an "else" rule, add an extra branch according to

the approach depicted in Section C.2.2

(e) For rule that contains the "t := next" annotation, build an urgent edge

using an extra automaton and an urgent channel

C.3 Example

The light switch example from Chapter 4 is used to illustrate the translation from

TASM to UPPAAL 'S timed automata. In this example, version 4 of the light switch

example is used, as depicted in Listing 4.6, in Listing 4.7, and in Listing 4.8. The

example does not utilize hierarchical composition so the main machines can be trans-

lated directly. The first step of the translation algorithm concerns the translation of

the environment. The environment, shown in Listing 4.6, contains two datatypes and

four variables. The translation to UPPAAL 's variables is straightforward and is shown

below:

int [0, 1] light = 1;

int[0, 1] light_switch = 1;

int[O, 1] fan = 1;

int[O, 1] fan_switch = 1;

In the translation of the component_status datatype, the value ON is mapped to

the integer "0" and the value OFF is mapped to the integer "1". A similar translation
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is performed for the switchstatus datatype. The main machine LIGHT_CONTROL
contains 3 rules and the corresponding timed automaton, shown in Figure C-5, con-
tains 3 branches. Since the machine contains an "Else rule "with a "t := next"

time annotation, the translation also creates an urgent edge, using an urgent channel
and an extra timed automaton, shown in Figure C-6. A similar translation is per-
formed for the FANCONTROL main machine, and the resulting automata are shown in
Figure C-7 and in Figure C-8.

LIGHT_CONTROLR1
c<= 10

LIGHT_CONTROLR2
c<=6

c >=4 light
- light = 0 light

pivot

LIGHTCONTROLELSE

Figure C-5: Timed automaton for the LIGHT-CONTROL machine

LIGHT CONTROL else!

Figure C-6: Timed automaton to enforce the urgent channel for the else rule ofmachine LIGHTCONTROL

The complete "Declarations" section of the resulting UPPAAL model is shown in
Listing C.2. The complete "Systems declarations" section of the UPPAAL model is
shown in Listing C.3. The local "Declarations" sections of the timed automata corre-

432

c=O

!((0
II
(I

~== 1)



FANCONTROLR1
c <= 8

FAN CONTROLR2
c<=2

fan ==
fan s)

C >= 1

fan =
fan_s

!((fan =
II
(fan =

switch == 0)

switch = 0))

else?

Figure C-7: Timed automaton for the FANCONTROL machine

FANCONTROLelse!

Figure C-8: Timed automaton to enforce the urgent channel for the else rule of
machine FANCONTROL
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sponding to each main machine contain only the declaration of the local clock, "clock

c;", used to enforce the duration of the transitions. The "Declarations" sections of

the channel automata do not contain any statements.

Listing C.2 Declarations section of the UPPAAL model
int[O, 1] light = 1;
int[O, 11] light_switch = 1;
int[O, 11 fan = 1;
int[O, 11 fan-switch = 1;

urgent chan LIGHTCONTROL_else;
urgent chan FAN_CONTROL.else;

Listing C.3
lightc
lightc.chan
fanc

fancchan

Systems declarations section of the UPPAAL model
= LIGHTCONTROL();
= LIGHT_CONTROL-chan();
= FANCONTROLO;
= FANCONTROLchan();

system lightc, light.c_chan, fan_c, fan_c_chan;
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Appendix D

Production Cell TASM Model

This appendix gives all of the listings for the production cell TASM model. The index

of the listings is given in Table D.1. The production cell case study is described in

details in [163]. In the context of the TASM language, the case study is described in

Section 2.8.1. The TASM model is explained and is analyzed in details in Section 8.1.

As a reminder, the logical view of the production cell model is provided in Figure D-

1. The complete TASM model contains 8 main machines, one for each component in

Figure D-1 and one for the controller. The model also contains 3 function machines,
and 16 sub machines.

Deposit Bell

Loader Feed Belt

Figure D-1: Top view of the production cell
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Name Type Purpose Listing
Types N/A List of types Listing D.1
Variables N/A List of variables Listing D.2, D.3
Loader Main Loads blocks onto the feed belt Listing D.4
Feed Main Carries blocks from the loader to the robot Listing D.5
Deposit Main Carries blocks out of the system Listing D.6
Press Main Stamps blocks Listing D.7
Robot Main Simulates the rotation of the robot Listing D.8
ArmA Main Simulates arm a Listing D.9
ArmB Main Simulates arm b Listing D.10
Controller Main Commands the actuators Listing D.11
armPosition Function Returns the position of an arm Listing D.12
rotateClockwise Function Changes the robot angle by +300 Listing D.13
rotateCounterClockwise Function Changes the robot angle by -30' Listing D.14
OPERATEFEED Sub Operates the feed belt Listing D.15
OPERATE.DEPOSIT Sub Operates the deposit belt Listing D.16
OPERATE-ROBOT Sub Rotates the robot Listing D.17
OPERATEARMA Sub Operates arm a Listing D.18
OPERATEARM2B Sub Operates arm b Listing D.19
OPERATEPRESS Sub Operates the press Listing D.20
PICKUPARMA Sub Picks up a block with arm a Listing D.21
PICKUP-ARMB Sub Picks up a block with arm b Listing D.22
DROPARMA Sub Drop a block from arm a Listing D.23
DROPARM_B Sub Drop a block from arm b Listing D.24
ARMAFEED Sub Operates arm a at the feed Listing D.25
ARMAPRESS Sub Operates arm a at the press Listing D.26
ARMBDEPOSIT Sub Operates arm b at the deposit Listing D.27
ARM-BPRESS Sub Operates arm b at the press Listing D.28
ROBOTMOTION Sub Simulates the robot rotation Listing D.29
ROTATEROBOT Sub Operates the rotation of the robot Listing D.30, D.31

Table D.1: List of machines used in the production cell model
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D.1 Environment

Listing D.1 User-defined types of the model
status := {empty, loaded};
armposition := {atfeed, atpress, atdeposit, intransit);
armextension := {retracted, extended};
Actuator := {on, off};
Polarity := {positive, negative};
Stamp := {notfinished, finished};
Error := {none, invaliddrop, invalidpickup};

Listing D.2 Variables of the model (part 1)
//sensors
Integer[O, 90] robot-angle
Stamp press-block
Boolean feed-begin
armextension armaext
armextension armbext
Boolean feed_end
Boolean deposit-begin
Boolean depositend

//redundant
armposition
armposition
status
status
status
status
status

info, derivable from
armapos
armbpos
arma
armb
feedbelt
depositbelt
press

:= 0;
:= notfinished;
:= False;

retracted;
:= retracted;
:= False;
:= False;
:= False;

sensors

:= atfeed;
:= atpress;
:= empty;
:= empty;
:= empty;
:= empty;
:= empty;

//other variable
Boolean
Boolean
Integer[O, 50]
Integer[O, 50]
Boolean
Error
armposition

wait
robot_wait

loadedblocks
processed_blocks
loader-done
error
robot_destination

False;
False;

0;

0;
False;
none;
atfeed;
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Listing D.3
//actuators
Actuator
Actuator
Actuator
Actuator

Actuator
Actuator
Actuator
Actuator

Polarity
Polarity
Polarity
Polarity
Polarity
Polarity

//constants
Const Integer
Const Integer
Const Integer
Const Integer
Const Integer
Const Integer
Const Integer
Const Integer

Variables of the model (part 2)

motor_press
motorarma
motorarmb
magnet_arma
magnet_armb
motor_robot

motor_feed
motor_deposit

motor_press_p
motor_arma_p
motor_armb_p
motor_robotp
motor_feedp
motor_deposit_p

ROTATION_ANGLE
ARM_B_FEED_ANGLE
ARMB DEPOSITANGLE
ARMBPRESSANGLE
ARM A FEEDANGLE

ARM_APRESS_ANGLE
ARM_ADEPOSITANGLE
ARMBDEPOSIT_ANGLE

off;
off;
off;
off;
off;
off;
off;
off;

positive;
positive;
positive;
positive;
positive;

negative;

30;
270;
90;
0;
0;

90;
180;
90;
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D.2 Main Machines

Listing D.4 Rules of the Loader main machine
Ri: The feed belt is empty, put a block on it {
t :=2;
power : 200;

if loadedblocks
feed belt

loaded-blocks
feed-begin

< number - 1 and feed-belt

:= loaded;
:= loaded_blocks + 1;
:= True;

R2: This is the last block... {
t := 2;
power := 200;

if loaded_blocks
feedbelt
loaded-blocks
feed-begin
loader-done

= number - I and feedbelt = empty then

:= loaded;
:= loadedblocks + 1;
:= True;
:= True;

R3: The feed belt is loaded, do nothing {
t := next;

if feed-belt = loaded and loaded-blocks
skip;

< number then

Listing D.5 Rules of the Feed main machine
Ri: Block goes to end of belt {
t := 5;
power := 500;

if feedbelt = loaded and feed-begin = True and
motorfeed = on and motorfeed_p = positive then
feedbegin := False;
feed_end := True;

R2: Else {
t := next;

else then
skip;
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Listing D.6 Rules of the Deposit main machine
Ri: Block goes to end of belt {
t := 7;
power := 500;

if deposit_belt = loaded and deposit_begin = True and
motor_deposit = on and motor_deposit_p = negative then
deposit_begin := False;
deposit_end := True;

}

R2: Magically take the block out of the system {
if deposit_end = True then

deposit_end := False;
deposit_belt := empty;
processedblocks := processed_blocks + 1;

}

R3: Else {
t := next;

else then
skip;

}

Listing D.7 Rules of the Press main machine
Ri: Press is loaded, motor is on {
t := 11;
power := 1500;

if motor_press = on and press = loaded and press_block = notfinished then
press_block := finished;

}

R2: Else {
t := next;

else then
skip;

}
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Listing D.8 Rules of the Robot main machine
R1: do {
if robotwait = False then
ROBOTMOTION();
robotwait := True;

}

R2: wait {
t := next;

if robotwait = True then
robotwait := False;

Listing D.9 Rules of the ArmA main machine
Ri: Extend arm {

t : 3;
power : 1200;

if motorarma = on and motor-arma-p = positive and armaext = retracted then
armaext := extended;

R2: Retract arm {
t 2;
power := 1100;

if motor-arma = on and motor arma-p
armaext := retracted;

= negative and armaext = extended then

}

R3: Pick up block {
if magnet_arma = on and arma = empty then
PICKUP_ARMA();

}

R4: Drop block {
if magnet_arma = off and arma =

DROPARM_A();
loaded then

R5: Else {
t := next;

else then
skip;
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Listing D.10 Rules of the ArmB main machine
Ri: Extend arm {
t := 3;
power := 1200;

if motorarmb = on and motor_armb_p = positive and armbext = retracted then
armbext := extended;

}

R2: Retract arm {
t := 2;
power := 1100;

if motor_armb = on and motor-armb.p = negative and armbext = extended then
armbext := retracted;

}

R3: Pick up block {
if magnet_armb = on and armb = empty then

PICKUP_ARM_B();
}

R4: Drop block {
if magnetarmb = off and armb = loaded then

DROPARM_B ();
}

R5: Else {
t := next;

else then

skip;
}
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Listing D.11 Rules of the Controller main machine
Ri: Issue Commands {
if wait = False then

OPERATEFEED();
OPERATEDEPOSIT();
OPERATEROBOT();
OPERATEARMA();
OPERATE_ARMB();
OPERATEPRESS();
wait := True;

R2: Wait for a step {
t := next;

else then
wait := False;

}
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D.3 Function Machines

Listing D.12 Rules of the armPosition function machine
Ri: CCW rotation will put arm at feed {
if value = feed_angle then

out := atfeed;

R2: CCW rotation will put arm at deposit {
if value = deposit_angle then

out := atdeposit;
}

R3: CCW rotation will put arm at press {
if value = press_angle then

out := atpress;

}

R4: Else, CCW rotation will put arm in transit {
else then

out := intransit;

}

Listing D.13 Rules of the rotateClockwise function machine
Ri: Don't go under 0... {

if robotangle = 0 then
out := 360 - ROTATION_ANGLE;

}

R2: Else {
else then

out := robot_angle - ROTATION_ANGLE;
}

Listing D.14 Rules of the rotateCounterClockwise function machine
Ri: Don't go over 360... {
if robot_angle = 360 then

out := ROTATION_ANGLE;
}

R2: Else {
else then

out := robot_angle + ROTATION_ANGLE;
}
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D.4 Sub Machines

Listing D.15 Rules of the OPERATEFEED sub machine
Ri: turn on motor {
if motor-feed = off and feed-begin = True then
motorfeedp := positive;
motorfeed := on;

}

R2: turn off motor {
if motorfeed = on and feed-end = True then
motorfeed := off;

R3: nothing to do {
else then

skip;

I

Listing D.16 Rules of the OPERATE-DEPOSIT sub machine
Ri: turn on motor {
if motordeposit = off and deposit-begin = True then
motor depositp := negative;
motor-deposit := on;

}

R2: turn off motor {
if motor-deposit = on and depositend = True then
motordeposit := off;

R3: nothing to do {
else then

skip;
}
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Listing D.17 Rules of the OPERATE_ROBOT sub machine
Ri: {
if armaext = retracted and armbext = retracted then

ROTATE_ROBOT();

}

R2: Else {
else then

skip;
}

Listing D.18 Rules of the OPERATEARM A sub machine
Ri: At feed {
if armapos = atfeed and motor_robot = off then

ARM_A_FEED();

}

R2: At press {
if armapos = atpress and motor_robot = off then
ARMA_PRESS();

}

R3: Else {
else then

skip;
}

Listing D.19 Rules of the OPERATEARM_B sub machine
Ri: At press {
if armbpos = atpress and motor_robot = off then
ARM_BPRESS();

}

R2: At deposit {
if armbpos = atdeposit and motor_robot = off then

ARM_B_DEPOSIT();

R3: Else {
else then

skip;
}

446



Listing D.20 Rules of the OPERATEPRESS sub machine
Ri: Turn on press {
if motor-press = off and press = loaded and press-block = notfinished then
motorpress := on;

}

R2: Turn off press {
if motor-press = on and press = loaded and pressblock = finished then
motorpress := off;

}

R3: Else {
else then

skip;

}

Listing D.21
Ri: Pick up at

t =3;
power := I00

Rules of the PICK_UPARMA sub machine
Feed {

if armapos = atfeed and armaext = extended and
arma = empty and feedend = True then

feed_end . := False;
feed-belt := empty;
arma := loaded;

R2: Invalid pick up {

if armapos != atfeed or arma = loaded or
armaext != extended or feed_end = False then
error := invalidpickup;
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Listing D.22 Rules of the PICKUPARMB sub machine
Ri: Pick up at Press {

t := 3;

power := 1000;

if armbpos = atpress and armbext = extended and
armb = empty and press_block = finished then

press_block := notfinished;
press := empty;
armb := loaded;
I

R2: Invalid pick up {

if armbpos != atpress or press_block != finished or
armb = loaded or armbext != extended then

error := invalidpickup;

Listing D.23 Rules of the DROPARMA sub machine
Ri: Drop at press {

t := 2;
power := 800;

if armapos
armaext

arma

press
press_blc

= atpress and arma = 1
= extended and press =

:= empty;
:= loaded;

)ck := notfinished;

oaded and

empty then

R2: Invalid drop {
if armapos != atpress or arma =

press = loaded or armaext !=
error := invaliddrop;

}

empty or
extended then
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Listing D.24 Rules of the DROP_ARM_B sub machine
Ri: Drop at deposit {
t := 2;
power := 800;

if armbpos = atdeposit and armb = loaded and
armbext = extended and deposit_belt = empty then
armb := empty;
depositbegin := True;
depositbelt := loaded;

}

R2: Invalid drop {
if armbpos = intransit or deposit_belt = loaded or armbext != extended then
error := invaliddrop;

}

Listing D.25 Rules of the ARMA_FEED sub machine
Ri: extend arm to feed {
if motorarma = off and arma = empty and

armaext = retracted and feed-end = True then
motorarma_p := positive;
motor_arma := on;

}

R2: stop motor {
if motor_arma = on and motor-armap = positive and armaext = extended then
motorarma := off;

}

R3: pick up block {
if motorarma = off and magnetarma = off and

arma = empty and armaext = extended then
magnetarma := on;

}

R4: retract arm {
if motorarma = off and arma = loaded and armaext = extended then
motor_armap := negative;
motorarma := on;

}

R5: stop motor {
if motor-arma = on and arma = loaded and armaext = retracted then

motor_arma := off;
}

R6: Else {
else then

skip;
}

449



Listing D.26 Rules of the ARM_APRESS sub machine
Ri: extend arm to press {
if motor_arma = off and arma = loaded and armaext = retracted then
motor_arma_p := positive;
motorarma := on;

}

R2: stop motor {
if motor-arma =
motorarma :=

}

on and arma = loaded and armaext = extended then
off;

R3: drop block in press {
if motorarma = off and magnet_arma = on and

arma = loaded and armaext = extended then
magnet_arma := off;

}

R4: retract arm {
if motor-arma =

motor-armap
motor-arma

}

R5: stop motor {
if motorarma =

motor-arma :=
}

off and arma = empty and armaext = extended then
:= negative;
:= on;

on and arma = empty and armaext = retracted then
off;

R6: Else {
else then

skip;
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Listing D.27 Rules of the ARM_BDEPOSIT sub machine
Ri: extend arm to deposit {
if motor_armb = off and armb = loaded and armbext = retracted then
motorarmbp := positive;
motorarmb := on;

R2: stop motor {
if motorarmb = on and motorarmb_p = positive and

armb = loaded and armbext = extended then
motorarmb := off;

}

R3: drop block {
if motorarmb = off and magnet-armb = on and

armb = loaded and armbext = extended then
magnet-armb := off;

}

R4: retract arm {
if motor-armb =
motorarmb_p
motor-armb

R5: stop motor {
if motor-armb =

motor_armbp
motorarmb :=

R6: Else {
else then
skip;

}

off and armb = empty and armbext = extended then
:= negative;
:= on;

on and armb = empty and
= negative and armbext = retracted then

off;
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Listing D.28 Rules of the ARMBPRESS sub machine
Ri: extend arm to press {

if motor_armb = off and armb = empty and
armbext = retracted and press = loaded then

motorarmb-p := positive;
motor_armb := on;

}

R2: stop motor {
if motorarmb =

armb = empty
motor_armb :=

}

on and motor_armb_p = positive and
and armbext = extended then
off;

R3: pick up block {
if motor-armb = off and magnetarmb = off and armb = empty and

armbext = extended and press_block = finished then
magnet_armb := on;

}

R4: retract arm {
if motor-armb =
motorarmb_p
motorarmb

}

off and armb = loaded and armbext = extended then
:= negative;
:= on;

R5: stop motor {
if motor_armb = on and motor_armb_p = negative and

armb = loaded and armbext = retracted then
motor_armb := off;

}

R6: Else {
else then

skip;

}
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Listing D.29 Rules of the ROBOTMOTION sub machine
Ri: rotate clockwise {

t : 2;
power := 1000;

if motorrobot = on and motor-robotp = negative then
robot-angle := rotateClockwise();
armapos := armPosition(ARMA_FEEDANGLE, ARMA_DEPOSITANGLE,

ARMAPRESS_ANGLE, rotateClockwise());
armbpos := armPosition(ARMBFEEDANGLE, ARMBDEPOSIT_ANGLE,

ARMBPRESSANGLE, rotateClockwise());

R2: rotate counterclockwise {
t := 2;

power := 1000;

if motor-robot = on and motorrobotp = positive then
robotangle := rotateCounterClockwise();
armapos := armPosition(ARMAFEED.ANGLE, ARMADEPOSITANGLE,

ARMAPRESSANGLE, rotateCounterClockwise());
armbpos := armPosition(ARMBFEEDANGLE, ARMB-DEPOSITANGLE,

ARMBPRESSANGLE, rotateCounterClockwise());

R3: Else {

else then
skip;
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Listing D.30 Rules of the ROTATE_ROBOT sub machine (part 1)
Ri: all empty, go to feed {
if motor_robot = off and arma = empty and

armb = empty and armapos != atfeed then
motorrobotp := negative;
motor_robot := on;
robot_destination := atfeed;

}

R2: all empty, at feed, stop {
if motor_robot = on and arma = empty and

armb = empty and armapos = atfeed then
motor_robot := off;

}

R3: both arms loaded, at feed, go to press {
if motor_robot = off and arma = loaded and

armb = loaded and armapos = atfeed then
motor_robot_p := positive;
motor robot := on;
robotdestination := atpress;

}

R4: both arms loaded, at press {
if motorrobot = on and arma = loaded and

armb = loaded and armapos = atpress then
motor_robot := off;

}
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Listing D.31 Rules of the ROTATE_ROBOT sub machine (part 2)
R5: at feed, arm a loaded, press empty, this is the first block {
if motorrobot = off and arma = loaded and armb = empty and

press = empty and armapos = atfeed then
motorrobotp := positive;
motorrobot := on;
robot_destination := atpress;

R6: at press, arm a loaded, press empty, this is the first block {
if motorjrobot = on and arma = loaded and armb = empty and

press = empty and armapos = atpress then
motorrobot := off;

}

R7: at feed, done loading blocks {
if motorrobot = off and armapos = atfeed and armb = loaded and

arma = empty and feed-belt = empty and loaderdone = True then
motorrobotp := positive;
motor-robot := on;
robot-destination := atpress;

R8: at press, done loading blocks {
if motorrobot = on and armapos = atpress and arma = empty and

feed-belt = empty and loader-done = True then
motorrobot := off;

}

R9: Else {
else then

skip;
}
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Appendix E

Electronic Throttle Controller

TASM Model

This appendix provides the listings for the three TASM models of the Electronic

Throttle Controller (ETC) case study. The ETC case study is described in details

in [111]. In the context of the TASM language, the case study is described in Sec-

tion 2.8.2. Section E.1.1 provides the listings for the high level model of the ETC,

as explained and analyzed in Section 8.2. Section E.2.1 provides the listings for the

tasking and scheduler model of the ETC, as explained and analyzed in Section 8.3.

Finally, Section E.3.1 provides the listings for the low level model of the ETC, as

explained and analyzed in Section 8.4. Each of the sections provides a brief summary

of the model before giving the list of machines used in the model, followed by the

actual listings.

E.1 High Level Model

The high level TASM model of the ETC describes the mode switching logic and the

logic used to decide on the law for the controller output. The controller output is

the desired current, which is calculated based on the controller logic. This version

describes a high level model because it does not have any tasks or any calculation

of the desired current. The desired current is abstracted using a user-defined type.
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The index of the listings is given in Table E.1. The complete TASM model contains

3 main machines, one for the controller, one for the driver behavior, and one for the

behavior of the vehicle. The model also contains 13 function machines, and 9 sub

machines.

Name Type Purpose Listing
Types N/A List of types Listing E.1
Variables N/A List of variables Listing E.2
CONTROLLER Main Performs the controller functions Listing E.3
DRIVER Main Simulates driver behavior Listing E.4, E.5
VEHICLE Main Simulates vehicle behavior Listing E.6, E.7
Cruise Function Determines the cruise control mode Listing E.8
CruiseMode Function Sets the cruise mode Listing E.9
CruiseThrottleC Function Calculates the cruise mode current Listing E.10
Driver.ThrottleC Function Calculates the human mode current Listing E.11
DrivingThrottleC Function Calculates the driving mode current Listing E.12
Fault Function Detects if a fault is present Listing E.13
LimitingThrottle_C Function Calculates the limiting mode current Listing E.14
Over-Rev Function Determines whether the engine Listing E.15

revolution is too high
OverRevMode Function Sets the revolution limiting mode Listing E.16
OverRev.Throttle_C Function Calculates the revolution Listing E.17

limiting mode current
OverTorque Function Determines whether the vehicle Listing E.18

torque is too high
Over-TorqueMode Function Sets the traction limiting mode Listing E.19
OverTorqueThrottle_C Function Calculates the traction Listing E.20

limiting mode current
CALCULATEOUTPUT Sub Wrapper machine to calculate Listing E.21

the desired current
DOSHUTDOWN Sub Performs the shut down functions Listing E.22
DO-STARTUP Sub Performs the start up functions Listing E.23
HANDLEFAULT Sub Performs the fault tolerance functions Listing E.24
MONITOR_HEALTH Sub Detects the presence of faults Listing E.25
SAMPLESTATE Sub Reads the state through sensors Listing E.26

for the controller
SETMAJORMODE Sub Wrapper machine to set the Listing E.27

major controller mode
SETMAJOR.MODEWORK Sub Sets the controller major mode Listing E.28
SETMINORMODE Sub Wrapper machine to set the Listing E.29

minor controller mode
SET.MINORMODE_WORK Sub Sets the controller minor mode Listing E.30

Table E.1: List of machines used in the high level ETC model
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E.1.1 Environment

Listing E.1 User-defined types of the model
Binary_Mode := {active, inactive};
Binary_Status := {on, off};
Health_Status := {nominal, fault_detected};
Mode := {off, startup, shutdown, driving, limiting, faulty};
Gear_Status := {park, drive};
Control_Mode := {sample, mode_set_major, mode_set_minor, output, health};
Desired_Current := {none_c, human_c, cruise_c, traction_c, rev_c, min_limiting_c,

max_driving_c, fault_c, error_c};
Simulation_Mode := {begin_s, drive_s, random_s, stops};
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Listing E.2 Variables of the model
//internal controller modes
Binary_Mode
Binary_Mode
Binary_Mode
Mode
Control_Mode
Health Status
Boolean
Boolean

rev_limiting_mode
tractionmode
cruise_mode
controllermode
control_mode

systemhealth
startup_done
shutdown done

inactive;
inactive;
inactive;
off;
sample;
nominal;
False;
False;

//powertrain sensors
Integer[O, 120]
Integer[O, 8000]
Integer[O, 250]
Boolean

//driver inputs
Binary_Status
Binary_Status
Integer[0O, 45]
Gear Status
Binary_Mode

//constants
Const Integer
Const Integer
Const Integer

//controller inputs
Integer[O, 120]
Integer[O, 8000]
Integer[0O, 250]
Boolean

BinaryStatus
BinaryStatus
Integer[0, 45]
GearStatus

BinaryMode

//controller output
Desired_Current

//simulation mode
SimulationMode
Boolean
Boolean

vehicle_speed
engine_speed
vehicle_torque
fault

ignition
cruise_switch
pedalangle
gear
break_pedal

MAXENGINESPEED
MAXTORQUE
MIN_CRUISESPEED

c_vehiclespeed
cengine_speed
cvehicletorque
cfault
cignition
ccruise_switch
cpedalangle
cgear
c_break_pedal

desiredcurrent

driver_s
vehicleover_rev_s
vehicle_overtors

0;

0;
0;
False;

//mph
//rpm
//kPa
//is there a fault?

off;
off;
0; //degrees
park;
inactive;

6000; //rpm
110; //kPA
30; //mph

0;
0; //rpm
0; //kPa
False;

off;
off;
0; //degrees
park;
inactive;

:= none_c;

:= starts;
:= False;
:= False;
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E.1.2 Main Machines

Listing E.3 CONTROLLER main machine
Ri: Controller loop when nominal

{
if control_mode = sample then
SAMPLE_STATE();
control_mode := mode_set;

I

R2: Controller loop to set major mode

if control_mode = mode setmajor then
SETMAJOR_MODE();
controlmode := mode setminor;

I

R3: Controller loop to set minor mode

if controlmode = mode setminor then

SET_MINOR.MODE();
controlmode := output;

R4: Controller loop to output current

if controlmode = output then
CALCULATEOUTPUT();
control mode := health;

R5: Controller loop to find failure

if controlmode = health then
MONITOR_HEALTH();
controlmode := sample;

I
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Listing E.4 DRIVER main machine (part 1)
R1: Turn on the car

{
if driver_s = begin_s and controller_mode = off and

ignition = off then
ignition := on;
driver_s := drive_s;

R2: Start driving
{
if driver_s = drives and controller_mode = driving and

vehicle_speed = 0 and gear = park then
gear := drive;
pedalangle := 22;
vehicle_speed := 30;
driver_s := random_s;

I

R3: Turn on cruise, slow speed
{
if drivers = random s and cruiseswitch = off then

cruise_switch := on;
vehiclespeed := 10;

}

R4: Turn on cruise, normal speed

{
if drivers = random_s and cruise_switch = off then

cruise_switch := on;
vehiclespeed := 30;

}

R5: Turn off cruise

{
if driver_s = random_s and cruise_switch = on then

cruise_switch := off;
}

R6: Press break pedal
{
if driver_s = random_s and break_pedal = inactive then

break_pedal := active;

}

R7: Depress break pedal
{

if drivers = random_s and break_pedal = active then

break_pedal := inactive;
}
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Listing E.5 DRIVER main machine (part 2)
R8: Stop
{
if driver_s = random_s then
gear := park;

vehicle_speed := 0;
ignition := off;
driver_s := stops;

R9: Do nothing

if drivers
skip;

RIO: Stopped

if drivers
skip;

= random_s then

= stop_s then

R11: Else

else then

skip;
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Listing E.6 VEHICLE main machine (part 1)
Ri: Randomly change, do nothing
I
if driver_s = random_s and vehicleover-rev_s = False and

vehicleover_tor_s = False then
skip;

R2: Randomly change RPM
I
if driver_s = random_s and vehicle_over-revs = False and

vehicleover tor_s = False then
engine speed := MAXENGINESPEED + 1;
vehicleover_revs := True;

R3: Randomly change Traction

if drivers = random_s and vehicle-over-rev-s = False and
vehicle-over_tors = False then

vehicle-torque := MAXTORQUE + 1;
vehicle-overtor-s := True;

R4: Randomly change Both

if driver-s = randoms and vehicleoverrev-s = False and
vehicleover_tor_s = False then

engine-speed := MAX_ENGINE_SPEED + 1;
vehicleoverrev-s := True;
vehicletorque := MAXTORQUE + 1;
vehicle_over_tors := True;

I

R5: Randomly change RPM, correct

if drivers = randoms and vehicle_overrev_s = True and
vehicleover-tors = False and desired_current = rev_c then
enginespeed := MAX_ENGINE_SPEED;
vehicle_overrevs := False;

}
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Listing E.7 VEHICLE main machine (part 2)
R6: Randomly change traction, correct
{
if driver_s = random_s and vehicle over_revs = False and

vehicle_over_tor s = True and desired_current = traction_c then

vehicle torque := MAX_TORQUE;

vehicleovertor_s := False;

R7: Randomly change both, correct

{
if driver_s = random_s and vehicleover_rev_s = True and

vehicle_over_tor_s = True and desiredcurrent = min limiting_c then
vehicle torque := MAXTORQUE;
vehicle_over_tor_s := False;
engine_speed := MAX_ENGINE_SPEED;
vehicle_over_rev_s := False;

I

R8: Randomly put in a fault

if drivers = randoms and fault = False then
fault := True;

I

R9: Else

else then
skip;

}
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E.1.3 Function Machines

Listing E.8 Cruise function machine
Ri: Cruise condition

{
if c-vehiclespeed >= MINCRUISESPEED

and c.gear = drive
and cbreakpedal = inactive
and c-cruiseswitch = on then

outb := True;

R2: Else

{
else then

outb := False;

Listing E.9 Cruise_Mode function machine
Ri: Cruise Active

{
if Cruise() then

out := active;
}

R2: Else

else then

out := inactive;
}

Listing E.10 Cruise_ThrottleC function machine
Ri: Always

{
if True then

out := cruisec;

}
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Listing E.11 DriverThrottle_C function machine
Rl: Always
{
if True then

out := humanc;

Listing E.12 DrivingThrottleC function machine
Ri: Cruise enabled, driver input

if cruise-mode = active and c-pedalangle != 0 then
out := max-drivingc;

R2: Cruise enabled, no driver input

if cruisemode = active and c-pedalangle = 0 then
out := CruiseThrottleC();

R3: Else

else then
out := Driver_ThrottleC();

Listing E.13 Fault function machine
Ri: Main loop
{
if fault then
outb := True;

R2: Else

else then
outb := False;

I

467

- -



Listing E.14 Limiting_ThrottleC function machine
Ri: Both //if both over rev and over torque are active

if rev_limiting_mode = active and traction_mode = active then
out := min_limiting_c;

R2: OverRev

{
//if only over rev is active

if rev_limiting_mode = active and traction_mode = inactive then
out := Over_Rev_Throttle_C();

R3: Over_Torque //if only over torque is active

if rev_limiting_mode = inactive and traction_mode = active then
out := Over_TorqueThrottle_C();

R4: Else
{

//both are inactive. This should never happen!

else then

out := error_c;

Listing E.15 OverRev function machine
Ri: Over Rev Condition

if c_engine_speed > MAX_ENGINE_SPEED then
outb := True;

}

R2: No Over Rev

{
else then

outb := False;
}

Listing E.16 OverRev_Mode function machine
Ri: Over Rev Mode

{
if Over_Rev() then

out := active;

}

R2: Else {
else then

out := inactive;

}
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Listing E.17 OverRevThrottleC function machine
Ri: Always
{
if True then

out := revc;

Listing E.18 OverTorque function machine
Ri: Over Torque Condition
{
if c-vehicletorque > MAXTORQUE then

outb := True;

R2: No Over Torque

else then
outb := False;

Listing E.19 Over_TorqueMode function machine
Ri: Over Torque Mode

{
if OverTorque() then

out := active;
I

R2: Else

{
else then
out := inactive;

I

Listing E.20 OverTorqueThrottle_C function machine
Ri: Always
{
if True then
out := traction_c;

I
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E.1.4 Sub Machines

Listing E.21 CALCULATEOUTPUT sub machine
Ri: Driving Mode

{
if controller_mode = driving then
desired_current := Driving_Throttle_C();

}

R2: Limiting Mode
{
if controller_mode = limiting then

desired_current := Limiting_Throttle_C();
}

R3: Fault Mode

{
if controller_mode = faulty then
HANDLE_FAULT();

}

R4: Startup Mode
{
if controller_mode = startup then

DO STARTUP();
}

R5: Shutdown Mode

{
if controllermode = shutdown then

DO_SHUTDOWN();
}

R6: Fault Mode

if controller_mode = off then
desired_current := nonec;

}
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Listing E.22 DOSHUTDOWN sub machine
Rl: Do shutdown only when vehicle is stationary

if c_vehiclespeed = 0
and c_gear = park
and ignition = off then

desired_current := none_c;
shutdown_done := True;

R2: No shutdown
{
else then

desired_current
shutdown_done

:= none_c;
:= False;

Listing E.23 DOSTARTUP sub machine
Ri: Do startup only when vehicle is stationary

if cvehiclespeed = 0 and cgear = park and
c_breakpedal = active and c_cruise_switch = off then

desired_current := none_c;
startup_done := True;

R2: No startup
{

else then

desiredcurrent := none c;
startup_done := False;

}

Listing E.24 HANDLEFAULT sub machine
Ri: Handle the fault
{
if c_vehicle_speed = 0 and cgear
desired_current := nonec;
controllermode := shutdown;
fault := False;
c_fault := False;

= park then

R2: Else

else then
desired_current := faultc;
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Listing E.25 MONITORHEALTH sub machine
Ri: Find Fault

{
if Fault() then

system_health := fault_detected;
}

R2: Else do nothing

else then
system_health := nominal;

}

Listing E.26 SAMPLE_STATE sub machine
Ri: Cache the state

{
if True then

c_vehicle_speed := vehicle_speed;
c engine_speed := engine_speed;
c_vehicle_torque := vehicle_torque;
c_ignition := ignition;
c_cruise_switch := cruiseswitch;
c_pedal_angle := pedal_angle;
c_gear := gear;
c_break_pedal := break_pedal;

Listing E.27 SETMAJORMODE sub machine
Ri: No fault
{
if systemhealth = nominal then

SET_MAJOR_MODE_WORK();
}

R2: Else there are faults

{
if system_health = fault_detected and controllermode != shutdown then
controllermode = faulty;

}

R3: Else
{

else then
skip;

}
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Listing E.28 SET_MAJORMODE_WORK sub machine
Ri: Off -> Startup

{
if controller_mode = off and ignition = on then

controller_mode := startup;
}

R2: Startup -> Driving

{
if controller_mode = startup and startupdone = True then
controller_mode := driving;

}

R3: Driving -> Limiting

{
if controller_mode = driving and (Over_Rev() or Over_Torque()) and

ignition = on then

controller_mode := limiting;
}

R4: Limiting -> Driving
{
if controller_mode = limiting and not (OverRev() or OverTorque()) and

ignition = on then
controller_mode := driving;

}

R5: Driving, Limiting, Faulty -> Shutdown

{
if (controller_mode = limiting or controller_mode = driving or

controller_mode = faulty) and ignition = off then

controller_mode := shutdown;
}

R6: Shutdown -> Off
{
if controller_mode = shutdown and shutdowndone = True then
controller_mode := off;

}

R7: Any other case, do nothing

else then
skip;

}
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Listing E.29 SET_MINORMODE sub machine
Ri: No fault
f
if systemhealth = nominal then
SETMINORMODEWORKo;

R2: Else

else then

skip;
I

Listing E.30 SETvMINORMODErWORK sub machine
Ri: Else

if True then
cruise_mode := Cruise _Mode();
rev_limitingmode := Over-RevMode();
tractionmode := OverTorqueMode();

I
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E.2 Tasking Model

The tasking model describes the tasking structure and scheduler used to imple-

ment the electronic throttle controller functionality. The implementation is achieved

through 3 tasks, a scheduler, and a 1 ms clock. The index of the listings is given in

Table E.2. The complete TASM model contains 3 main machines, 1 function machine,

and 10 sub machines.

Name Type Purpose Listing
Types N/A List of types Listing E.31
Variables N/A List of variables Listing E.32
CLOCK Main Ticks at 1 ms intervals Listing E.33
SCHEDULER Main Assigns tasks to the processor Listing E.34

based on fixed priority and period
TASKS Main Simulates the behavior of the 3 tasks Listing E.35
finishedto-waiting Function Resets completed tasks Listing E.36
MANAGER-TICK Sub Keeps track of manager task period Listing E.37
MONITOR.TICK Sub Keeps track of monitor task period Listing E.38
SERVO-TICK Sub Keeps track of servo task period Listing E.39
SETEXECUTING_ Sub Assigns execution of a task Listing E.40
TASK if the processor is free
SETEXECUTION. Sub Decides on the next task to execute Listing E.41,
PRIORITY based on priority ordering E.42
UPDATE_TASK- Sub Resets finished tasks to waiting Listing E.43
STATUSES
WAKE-UPMANAGER Sub Releases manager task on the period Listing E.44
WAKE.UP-MONITOR Sub Releases monitor task on the period Listing E.45
WAKEUPSERVO Sub Releases servo task on the period Listing E.46
WAKE_UPTASKS Sub Wrapper machine to release tasks Listing E.47

Table E.2: List of machines used in the tasking model of the ETC
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E.2.1 Environment

Listing E.31
TaskStatus :
Execution
Scheduler :=

User-defined types of the model
{waiting, released, executing, finished};
{done, not_done};
{wakeup, update, execute, wait};

Listing E.32 Variables of th
//Task properties
TaskStatus manager_s
Task-Status monitor_s
TaskStatus servo s

//Constants
Const Integer MANAGER_PERIOD
Const Integer MONITORPERIOD
Const Integer SERVO_PERIOD
Const Integer MAJOR_CYCLE

//Scheduler
Scheduler schedulers

Integer tick
Integer oldtick
Integer managertick
Integer monitortick
Integer servotick

e model

released;
released;
released;

10;
30;
3;
30;

//in
//in
//in
//in

wakeup;

0;
0;
0;
0;
0;
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E.2.2 Main Machines

Listing E.33 CLOCK main machine
R1: Tick, no reset

{
t := 1000;

if tick != MAJOR-CYCLE then

tick := tick + 1;
MANAGERTICK();
MONITORTICK();
SERVOTICK();

R2: Tick, with reset

t := 1000;

if tick = MAJORCYCLE then
tick := 1;

MANAGER_TICK();
MONITORTICK();
SERVOTICK();

}
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Listing E.34 SCHEDULER main machine
R1: Step 1, set status

if schedulers = update then
UPDATE_TASKSTATUSES();
schedulers := wakeup;

}

R2: Step 2, wake up tasks
{
if scheduler_s = wakeup then
WAKEUPTASKS();
scheduler_s := execute;

}

R3: Step 3, set executing
{
if schedulers = execute then

SET_EXECUTING_TASK();
scheduler_s := wait;

}

R4: Wait for a tick
{

t := 1000;

if schedulers = wait then
scheduler_s := update;

I
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Listing E.35 TASKS main machine
R1: Execute manager

{
t := [0, 5];

if managers = executing then
manager_s := finished;

R2: Execute monitor

{
t := [100, 200];

if monitor_s = executing then
monitors := finished;

R3: Execute servo

t := [70, 100];

if servos = executing then
servo_s := finished;

I

R4: Else, do nothing, wait for event

t := next;

else then

skip;
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E.2.3 Function Machines

Listing E.36 finishedtowaiting function machine
Ri:
{
if in = finished then
out := waiting;

}

R2:

{
else then

out := in;
}
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E.2.4 Sub Machines

Listing E.37 MANAGERTICK sub machine
Ri: tick
{
if managertick = MANAGER_PERIOD then
managertick := 1;

}

R2: reset

{
else then

managertick := managertick + 1;
}

Listing E.38 MONITORTICK sub machine
Ri: tick

{
if monitortick = MONITOR_PERIOD then
monitortick := 1;

}

R2: reset

{
else then
monitortick := monitortick + 1;

Listing E.39 SERVOTICK sub machine
R1: tick

{
if servotick = SERVO_PERIOD then
servotick := 1;

}

R2: reset

{
else then

servotick := servotick + 1;

}
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Listing E.40 SETEXECUTING_TASK sub machine
R1: Someone is still executing, do nothing
{
if manager s = executing or

servo_s = executing then
skip;

monitors = executing or

R2: Processor is free, assign a task
{
else then

SET_EXECUTION_PRIORITYO;

Listing E.41 SETEXECUTION_PRIORITY sub machine (part 1)
Ri: All released

if manager_s = released and
servo_s = released then

manager_s := executing;

R2: manager, monitor released

{
if manager_s = released and m

servos != released then
manager_s := executing;

R3: manager, servo released
{
if manager_s = released and s

monitor_s != released then
managers := executing;

monitors = released and

onitor_s = released and

ervos = released and

R4: monitor, servo released

if monitors = released and servos = released and
manager_s != released then

monitor_s := executing;
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Listing E.42 SET_EXECUTIONPRIORITY sub machine (part 2)
R5: only manager

if manager_s = released and monitors != released and
servo_s != released then

managers := executing;

R6: only monitor

if monitors = released and managers != released and

servos != released then
monitors := executing;

R7: only servo

if servo_s = released and managers != released and

monitor-s != released then
servos := executing;

R8: no one released

if manager s != released and monitor-s != released and
servo-s != released then

skip;

Listing E.43
Ri: We are at

UPDATETASKSTATUSES sub machine
a tick

if tick != oldtick then

manager-s := finished_to-waiting(manager_s);
monitor-s := finishedtowaiting(monitors);
servos := finished-to-waiting(servos);

R2: Not at a tick

else then
skip;
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Listing E.44 WAKE_UPMANAGER sub machine
R1: wakeup
{
if managers = waiting and managertick = MANAGER_PERIOD then
manager_s := released;

}

R2: otherwise

{
else then

skip;
}

Listing E.45 WAKEUP_MONITOR sub machine
Ri: wakeup
I
if monitor_s = waiting and monitortick = MONITOR_PERIOD then
monitor_s := released;

}

R2: otherwise

{
else then

skip;
}

Listing E.46 WAKEUPSERVO sub machine
Ri: wakeup

if servo_s = waiting and servotick = SERVO_PERIOD then

servo_s := released;
}

R2: otherwise

{
else then

skip;

}
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Listing E.47 WAKEUPTASKS sub machine
R1: wakeup

if oldtick != tick then

WAKE_UPMANAGER();
WAKEUPMONITOR();

WAKEUPSERVO();
oldtick := tick;

R2: Else

else then

skip;
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E.3 Low Level Model

The low level TASM model of the ETC describes the implementation of the mode

switching logic and the logic used to decide on the law for the controller output, as

implemented through a tasking model. This version combines the functional model

from Section E.1 with the tasking model from Section E.2. The index of the listings

is given in Table E.3 and in Table E.4. The complete TASM model contains 5 main

machines, 14 function machines, and 20 sub machines. In this section, only the

modified and new machines are listed. Unchanged machines from previous sections

are not repeated and the relevant table entries refer to the listings given in previous

sections. The new and changed machines are shown in bold font. The changed

machines where only resource consumptions are added are shown in bold and italic

font.

Name Type Purpose Listing
Types N/A List of types Listing E.48
Variables N/A List of variables Listing E.50, E.51
Resources N/A List of resources Listing E.49
CLOCK Main Ticks at 1 ms intervals Listing E.33
DRIVER Main Simulates the behavior of the driver Listing E.52, E.53
SCHEDULER Main Assigns tasks to the processor Listing E.54

based on fixed priority and period
TASKS Main Performs the controller functions Listing E.55
VEHICLE Main Simulates the environment Listing E.56, E.57
Cruise Function Determines the cruise control mode Listing E.8
CruiseMode Function Sets the cruise mode Listing E.9
Cruise_ Throttle_ C Function Calculates the cruise mode current Listing E.58
Driver Throttle C Function Calculates the human mode current Listing E.59
Driving_ Throttle_ C Function Calculates the driving mode current Listing E.60
Fault Function Detects if a fault is present Listing E.13
Limiting. Throttle_ C Function Calculates the limiting mode current Listing E.61
OverRev Function Determines whether the engine Listing E.15

revolution is too high
OverRevMode Function Sets the revolution limiting mode Listing E.16
OverRev_ Throttle_ C Function Calculates the revolution Listing E.62

limiting mode current
OverTorque Function Determines whether the vehicle Listing E.18

_ _torque is too high

Table E.3: List of machines used in the low level ETC model (part 1)
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Name Type Purpose Listing
OverTorqueMode Function Sets the traction limiting mode Listing E.19
OverTorque_ Throttle C Function Calculates the traction Listing E.63

limiting mode current
finishedto-waiting Function Resets completed tasks Listing E.36
CALCULATEOUTPUT Sub Wrapper machine to calculate Listing E.21

the desired current
DO-SHUTDOWN Sub Performs the shut down functions Listing E.64
DOSTARTUP Sub Performs the start up functions Listing E.65
HANDLE_FA ULT Sub Performs the fault tolerance functions Listing E.66
MANAGER-TICK Sub Keeps track of manager task period Listing E.37
MONITORHEALTH Sub Detects the presence of faults Listing E.67
MONITOR-TICK Sub Keeps track of monitor task period Listing E.38
SAMPLESTATE Sub Reads the state through sensors Listing E.26

for the controller
SERVOTICK Sub Keeps track of servo task period Listing E.39
SETEXECUTING_ Sub Assigns execution of a task Listing E.40
TASK if the processor is free
SETEXECUTION_ Sub Decides on the next task to execute Listing E.41,
PRIORITY based on priority ordering E.42
SETMAJORJMODE Sub Wrapper machine to set the Listing E.27

major controller mode
SETMAJORMODEWORK Sub Sets the controller major mode Listing E.28
SETMINORIMODE Sub Wrapper machine to set the Listing E.29

minor controller mode
SETLMINORMODEWORK Sub Sets the controller minor mode Listing E.30
UPDATETASK_ Sub Resets finished tasks to waiting Listing E.43
STATUSES
WAKEUPMANAGER Sub Releases manager task on the period Listing E.44
WAKEUPMONITOR Sub Releases monitor task on the period Listing E.45
WAKEUPSERVO Sub Releases servo task on the period Listing E.46
WAKEUPTASKS Sub Wrapper machine to release tasks Listing E.47

Table E.4: List of machines used in the low level ETC model (part 2)
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E.3.1 Environment

Listing E.48 User-defined types of the model
Binary_Mode := {active, inactive};
Binary_Status := {on, off};
Health_Status := {nominal, fault_detected);
Mode := {off, startup, shutdown, driving, limiting, faulty};
GearStatus := {park, drive};
DesiredCurrent := {nonec, human_c, cruisec, tractionc, rev-c, min_limitingc,

max_driving_c, faultc, errorc};
Simulation-Mode := {begins, drive_s, random_s, stop_s, dones};
TaskStatus := {waiting, released, executing, finished};
Scheduler := {wakeup, update, execute, wait, update_state};
Manager_Step := {major_mode, minor mode};

Listing E.49 Resources of the model
memory := [0, 2048000]; //in bytes
power := [0, 1000000]; //in milliWatts
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Listing E.50 Variables of the model (part 1)
//internal controller modes
Binary-Mode
Binary-Mode
Binary-Mode
Mode

ControlMode
HealthStatus
Boolean
Boolean

//powertrain sensorE
Integer[0, 120]
Integer[0, 8000]
Integer[0, 250]
Boolean

//driver inputs
Binary-Status
Binary-Status
Integer [0, 45]
Gear-Status
BinaryMode

//constants
Const Integer
Const Integer
Const Integer

revlimiting-mode
traction-mode
cruisemode
controller-mode
control-mode
systemhealth
startupdone
shutdowndone

vehiclespeed
engine-speed
vehicletorque
fault

ignition
cruiseswitch
pedalangle
gear
breakpedal

MAXENGINESPEED
MAXTORQUE
MINCRUISESPEED

:= inactive;
:= inactive;
:= inactive;
:= off;
:= sample;
:= nominal;
:= False;
= False;

0;
0;
0;
False;

//mph
//rpm
//kPa
//is there a fault?

off;
off;
0; //degrees
park;
inactive;

6000; //rpm
110; //kPA
30; //mph
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Listing E.51 Variables of the model (part 2)
//controller inputs
Integer[O, 1201
Integer[O, 8000]
Integer[O, 250]
Boolean

Binary Status
BinaryStatus
Integer[O, 45]
GearStatus

Binary_Mode

//controller output
Desired_Current

//simulation mode
Simulation_Mode
Boolean
Boolean

//Task properties
TaskStatus
Task-Status
Task_Status

//Constants
Const Integer
Const Integer

Const Integer
Const Integer

//Scheduler
Scheduler
Integer
Integer
Integer
Integer
Integer

c_vehiclespeed
c_engine_speed
c_vehicle_torque
c_fault

c_ignition
ccruiseswitch

c_pedal_angle
c_gear
c_break_pedal

desired_current

driver_s
vehicle_over_rev_s

vehicle_overtor_s

manager_s
monitor_s
servo_s

MANAGER_PERIOD
MONITOR_PERIOD
SERVO_PERIOD
MAJORCYCLE

schedulers

tick
oldtick

managertick
monitortick
servotick

//Extra variables for refinement
Manager_Step manager_s_step

0;
0; //rpm
0; //kPa
False;
off;
off;
0; //degrees
park;
inactive;

:= none_c;

:= starts;
:= False;
:= False;

:= released;
:= released;
:= released;

10;
30;

3;
30;

//in
//in
//in
//in

:= update_state;
:= 0;
:= 0;
:= 0;
:= 0;
:= 0;

:= majormode;
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E.3.2 Main Machines

Listing E.52 DRIVER main machine (part 1)
Ri: Turn on the car

I
if driver-s = begins and controller-mode = off and

ignition = off then

ignition := on;
drivers := drive-s;

I

R2: Start driving

if driver_s = drive.s and controller mode = driving and
vehicle_speed = 0 and gear = park then

gear := drive;
pedalangle := 22;
vehicle-speed := 30;
drivers := random_s;

R3: Turn on cruise, slow speed
{
if driver s = random-s and cruise_switch = off then
cruiseswitch := on;
vehicle-speed := 10;

}

R4: Turn on cruise, normal speed
{
if driver-s = randoms and cruise-switch = off then

cruise switch := on;
vehicle-speed := 30;

}

R5: Turn off cruise

{
if drivers = random_s and cruiseswitch = on then
cruise_switch := off;

}

R6: Press break pedal

if drivers = randoms and break_pedal = inactive then
break-pedal := active;

}
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Listing E.53 DRIVER main machine (part 2)
R7: Depress break pedal

if drivers = random_s and break_pedal = active then
break_pedal := inactive;

R8: Stop

if drivers = randoms then
gear := park;
vehicle_speed := 0;
ignition := off;
driver_s := stop_s;

R9:

C

Do nothing

if driver_s
skip;

R10: Stopped

if driver_s
skip;

= random_s then

= stop_s then

R11: Else

else then
skip;
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Listing E.54 SCHEDULER main machine
RO: Step 0, update state
{
if scheduler_s = update_state then
SAMPLESTATE();
schedulers := updatetasks;

I

R1: Step 1, set status
{
if scheduler_s = updatetasks then

UPDATETASKSTATUSES();
scheduler_s := wakeup;

I

R2: Step 2, wake up tasks
{
if scheduler_s = wakeup then
WAKE_UP_TASKS();
scheduler-s := execute;

I

R3: Step 3, set executing
{
if scheduler_s = execute then
SET_EXECUTING_TASK();
scheduler_s := wait;

I

R4: Wait for a tick

{
t := 1000;

else then

schedulers := updatestate;
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Listing E.55 TASKS main machine
R11: Execute manager
{

t := [0, 3];

if managers = executing and managersstep = majormode then
SET_MAJORMODE();
manager s step := minor_mode;

I

R12: Execute manager

{
t := [0, 2];

if managers = executing and managers_step = minor-mode then
SETMINORMODE();
manager_s-step := major_mode;
managers := finished;

R2: Execute monitor

t := [100, 200];

if monitor_s = executing then
MONITOR_HEALTH();
monitors := finished;

R3: Execute servo

{
t := [70, 100];

if servo_s = executing then
CALCULATEOUTPUT();
servos := finished;

I

R4: Else, do nothing, wait for event

t := next;

else then
skip;
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Listing E.56 VEHICLE main machine (part 1)
Ri: Randomly change, do nothing

if drivers = randoms and vehicle-over-rev-s = False and

vehicle-over-tors = False then
skip;

I

R2: Randomly change RPM

if drivers = random s and vehicle-over-rev-s = False and
vehicleover_tor_s = False then

engine-speed := MAX_ENGINESPEED + 1;
vehicleover-rev-s := True;

R3: Randomly change Traction

if driver-s = randoms and vehicleover-rev_s = False and
vehicle-over-tors = False then

vehicle torque := MAXTORQUE + 1;
vehicle_over_tor s := True;

I

R4: Randomly change Both

if drivers = randoms and vehicle overrevs = False and
vehicleover-tors = False then

engine_speed := MAXENGINESPEED + 1;

vehicle over revs := True;
vehicle-torque := MAX_TORQUE + 1;
vehicleover_tors := True;

I

R5: Randomly change RPM, correct

if driver-s = random-s and vehicleoverrevs = True and
vehicle_over-tor_s = False and desiredcurrent = revc then
enginespeed := MAXENGINESPEED;
vehicle_over_revs := False;
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Listing E.57 VEHICLE main machine (part 2)
R6: Randomly change traction, correct
{
if driver_s = random_s and vehicle_over_rev_s = False and

vehicle_over tors = True and desiredcurrent = tractionc then
vehicle_torque := MAX_TORQUE;
vehicle_over_tor_s := False;

R7: Randomly change both, correct
{

if driver_s = randoms and vehicleover_rev_s = True and

vehicle_over_tor_s = True and desired_current = min_limiting_c then
vehicle_torque := MAXTORQUE;
vehicle_over_tor_s := False;
engine_speed := MAX_ENGINE_SPEED;
vehicle_over_rev_s := False;

I

R8: Randomly put in a fault
{
if driver_s = random_s and fault = False then

fault := True;
}

R9: Else

{
else then

skip;

}
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E.3.3 Function Machines

Listing E.58 CruiseThrottleC function machine
Ri: Always
{
memory := 128;
power := 800;

if True then
out := cruise_c;

Listing E.59 DriverThrottleC function machine
R1: Always

memory := [196, 360];

power := [769, 895];

if True then
out := human-c;

Listing E.60 DrivingThrottleC function machine
Ri: Cruise enabled, driver input

memory := [324, 826];
power := [864, 1695];

if cruise_mode = active and c-pedal_angle != 0 then

out := max_drivingc;

R2: Cruise enabled, no driver input

if cruisemode = active and c_pedal-angle = 0 then
out := CruiseThrottleC();

R3: Else

else then
out := DriverThrottleC();
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Listing E.61 Limiting_ThrottleC function machine
Ri: Both //if both over rev and over torque are active

memory := 648;
power := 1425;

if rev-limiting_mode = active and traction_mode = active then
out := min limiting_c;

R2: Over-Rev //if only over rev is active

if revlimiting_mode = active and tractionmode =
out := Over_Rev_Throttle_C();

inactive then

R3: OverTorque //if only over torque is active

if rev_limiting_mode = inactive and traction-mode
out := OverTorqueThrottleC();

R4: Else
{

= active then

//both are inactive. This should never happen!

else then
out := errorc;

Listing E.62 OverRevThrottle_C function machine
Ri: Always

memory := 256;
power := 1200;

if True then
out := rev_c;

Listing E.63 Over_Torque_Throttle_C function machine
Ri: Always

memory := 256;
power := 1200;

if True then
out := traction_c;

}
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E.3.4 Sub Machines

Listing E.64 DOSHUTDOWN sub machine
Ri: Do shutdown only when vehicle is stationary

memory := 256;
power := 900;

if c-vehiclespeed = 0
and c-gear = park

and ignition = off then
desiredcurrent := none-c;
shutdowndone := True;

R2: No shutdown

{
else then
desired-current := nonec;
shutdown-done := False;

Listing E.65 DOSTARTUP sub machine
R1: Do startup only when vehicle is stationary

memory := 128;
power := 900;

if c_vehiclespeed = 0 and cgear = park and
c-break pedal = active and ccruiseswitch = off then

desired-current := none-c;
startupdone := True;

R2: No startup

else then

desiredcurrent := nonec;
startupdone := False;

}
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Listing E.66 HANDLEFAULT sub machine
R1: Handle the fault

memory := 512;
power := 895;

if c_vehicle_speed = 0 and c_gear = park then
desired_current := none_c;
controller_mode := shutdown;
fault := False;
c_fault := False;

R2: Else
{

memory := 512;
power := 895;

else then
desired_current := fault_c;

Listing E.67 MONITOR_HEALTH sub machine
Ri: Find Fault

memory := [512, 1024];
power := [1530, 1624];

if Fault() then
system_health := fault_detected;

R2: Else do nothing

memory := [512, 1024];
power := [1530, 1624];

else then
system_health := nominal;
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Appendix F

Timeliner Plant Control System

TASM Model

This appendix gives all of the listings for the Timeliner plant control system TASM

model. The plant control system case study is described in details in [238]. In the

context of the TASM language, the case study is described in Section 2.8.3. The

TASM models are explained and are analyzed in details in Section 8.5. The complete

TASM model contains 5 main machines, no function machines, and 7 sub machines.

The machines are listed in Table F.1.
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Name Type Purpose Listing
Types N/A List of types Listing F.1
Variables N/A List of variables Listing F.2
Control_Task Main Shares the processor with Timeliner Listing F.3
Scheduler Main Switches processor between Listing F.4

the control task and Timeliner
Timeliner Main Executes plant control sequences Listing F.5
Temperature Main Simulates the behavior of Listing F.6

the cabin temperature
Humidity Main Simulates the behavior of Listing F.7

the cabin humidity
EXECUTE_BUNDLES Sub Executes all active bundles Listing F.8
PLANTSIMBUNDLE Sub Execute the plantsim bundle Listing F.9
EXECUTEPLANTSIM Sub Execute the sequences in the Listing F.10
_SEQUENCES plantsim bundle
SEQUENCETEMP Sub Execute the temperature Listing F.11
_MONITOR monitor sequence
SEQUENCETEMP Sub Maintains the temperature between Listing F.12, F.13
_MONITORWORK 19 and 26 Celsius degrees
SEQUENCEHUMIDITY Sub Execute the humidity Listing F.14
_MONITOR monitor sequence
SEQUENCE_HUMIDITY Sub Maintains the humidity between Listing F.15, F.16
_MONITORWORK 40 and 60 percent

Table F.1: List of machines used in the Timeliner plant control system model
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F.1 Environment

Listing F.1 User-defined types of the model
Status := {active, inactive);
Device := {on, off);
TempSequenceBlock := {bO, bi, b2, b3, b4};
HumidSequenceBlock := {cO, ci, c2, c3, c4, c5);
Processor_Status := {timeliner, controltask};
Execution_Status := {done, not-done);
Bundle := {plantsim);
Sequence := {tempmonitor, humidmonitor};
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Listing F.2 Variables o
//Bundle Status
Status

//Sequence Statuses
Status
Status

//Sequence Blocks
TempSequence_Block
Humid_Sequence_Block

//Bundle Execution Statu
ExecutionStatus

f the model

plantsim_bundle_status

temp_seq_status
humid_seq_status

temp_seq_b
humid_seq_b

is
plantsim_s

//Sequence Execution
ExecutionStatus
Execution_Status

//Sequences
Bundle

Sequence

//Plant Variables
Boolean
Integer
Integer

//Devices
Device
Device
Device

//Control Variables
ProcessorStatus
Execution Status

Statuses

temp_seq_s
humid_seq_s

exec_bundle

exec_seq

trying_tocool_system
temperature
humidity

cooling
heating
humidifier

processor
execution

:= not_done;
:= not_done;

:= plantsim;
:= temp_monitor;

:= False;
:= 24;
:= 50;

:= off;
:= off;
:= off;

:= controltask;
:= not_done;

//Fault control
Boolean

:= active;

:= active;
:= active;

:= bO;
:= cO;

:= not_done;

fault := False;
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F.2 Main Machines

Listing F.3 Rules of the ControlTask main machine
RI: Control Task

f
t := [3500, 50001;

if processor = controltask and execution = notdone then
execution := done;

R2: Else

{
t := next;

else then

skip;

Listing F.4 Rules of the Scheduler main machine
Ri: Controller

{
t := 1000;

if processor =
processor :=
execution :=

controltask and execution = done then
timeliner;
notdone;

R2: Timeliner

{
t := 1000;

if processor =
processor :=
execution :=

timeliner and execution = done then
controltask;
notdone;

R3: Else

t := next;

else then
skip;
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Listing F.5 Rules of the Timeliner main machine
Ri: Execute bundles

if processor = timeliner and execution = not_done then
EXECUTE_BUNDLES();

I

R2: Else

t := next;

else then

skip;
}
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Listing F.6 Rules of the Temperature main machine
R1:

t := 685;

R2

if temperature > 19 and temperature < 26 and
cooling = off and heating = off and humidifier = off then

skip;

t := 685;

if temperature > 19 and temperature < 26 and
cooling = off and heating = off and humidifier = off then

temperature := 18;

R3:

t := 685;

if temperature >
cooling = off

temperature

19 and temperature < 26 and
and heating = off and humidifier = off then
:= 27;

R4: Cooling on

t := [0, 1500];

if temperature > 25 cooling = on and heating = off then
temperature := 24;

R5: Heating on

t := [0, 1500];

if temperature < 20 and heating = on and cooling = off then
temperature := 24;

R6: Else
{
t := next;

else then
skip;
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Listing F.7 Rules of the Humidity main machine
R1:

t := 685;

if humidity > 39 and humidity < 61 and
cooling = off and heating = off and humidifier = off then

skip;

R2:

t := 685;

if humidity > 39 and humidity < 61 and
cooling = off and heating = off and humidifier = off then

temperature := 35;

R3:
{

t := 685;

if humidity > 39
cooling = off

temperature

and humidity < 61 and
and heating = off and humidifier = off then
:= 65;

R4: Cooling on
{

t := [0, 1500];

if humidity > 60 and cooling = on and humidifier = off then
humidity := 50;

R5: Humidifier on
{

t := [0, 1500];

if humidity < 40 and humidifier = on and cooling = off then
humidity := 50;

R6: Else

t := next;

else then

skip;
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Else
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F.3 Function Machines

The plant control system does not contain function machines

F.4 Sub Machines

Listing F.8 Rules of the EXECUTEBUNDLES sub machine
R1: Execute plantsim

if exec_bundle = plantsim and plantsims != done then
PLANTSIMBUNDLE ();

R2: Pass is done

{
if execbundle = plantsim and plantsims = done then
plantsim-s := not-done;
exec-bundle := plantsim;
execution := done;

Listing F.9 Rules of the PLANTSIMBUNDLE sub machine
R1: Bundle Active

{
if plantsimbundle-status = active then

EXECUTE_PLANTSIMSEQUENCES () ;

R2: Bundle Inactive
{

if plantsimbundlestatus = inactive then
plantsims := done;

}
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Listing F.10 Rules of the EXECUTE_PLANTSIMSEQUENCES sub machine
Ri: Exec Temp Seq
{
if exec.seq = temp_monitor and tempseqs = notdone then
SEQUENCE_TEMP_MONITOR();

R2: Switch Seq

{
if execseq =

exec-seq
humid_seqs

temp_monitor and temp-seqs = done then
:= humid_monitor;
:= notdone;

R3: Exec Humid Seq

if exec_seq = humidmonitor and humid.seq-s = not_done then
SEQUENCEJHUMIDITY_MONITOR();

R4: Bundle finished

if execseq = humidmonitor and humidseq-s = done then
plantsims := done;
execseq := temp-monitor;
temp_seqs := notdone;

Listing F.11 Rules of the SEQUENCETEMPMONITOR sub machine
Ri: Sequence Active

{
if tempseq_status = active then

SEQUENCE_TEMPMONITOR_WORK();

R2: Sequence Inactive

{
if tempseq-status = inactive then

temp_seqs := done;

}
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Listing F.12 Rules of the SEQUENCE_TEMPMONITORWORK sub machine
(part 1)
R1: bO -> bl

f
t := 685;

if tempseqb = bO then
tempseqb := bl;

R2: bi -> b2

t := 2285;

if temp_seq_b = bl and temperature >= 26 then
temp_seq_b := b2;
tryingtocool_system := True;

cooling := on;

R3: bl -> b3

{
t := 1730;

if temp_seqb = bl and temperature < 26 then
temp_seq_b := b3;

R4: b2 -> b2

I
t := 1625;

if temp_seq_b = b2 and temperature > 22 then
temp_seqb := b2;
temp_seqs := done;
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Listing F.13 Rules of the SEQUENCETEMPMONITORWORK sub machine
(part 2)
R5: b2 -> b3

t := 1730;

if temp_seqb = b2 and temperature <= 22 then
temp_seq_b := b3;
tryingtocoolsystem := False;
cooling := off;

R6: b3 -> bO

t := 1950;

if temp_seq_b = b3 and temperature > 19 then
temp_seq_b := bO;
temp_seq_s := done;

R7: b3 -> b4

t := 2390;

if temp_seq_b
temp_seq_b
heating

= b3 and temperature <= 19 then
:= b4;

:= on;

R8: b4 -> b4

t := 1630;

if temp_seq_b = b4 and temperature < 22 then
temp_seq_b := b4;
temp_seq_s := done;

R9: b4 -> bO

t := 3195;

if tempseq_b
temp_seq_b
heating
temp_seq_s

= b4 and temperature >= 22 then
bO;

:= off;
done;
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Listing F.14 Rules of the SEQUENCEHUMIDITYMONITOR sub machine
Ri: Sequence Active
{
if humid.seq-status = active then
SEQUENCEHUMIDITYMONITORWORK();

R2: Sequence Inactive

if humidseq-status = inactive then
humid_seq-s := done;

}
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Listing F.15 Rules of the SEQUENCEHUMIDITYMONITORWORK sub ma-
chine (part 1)
Ri: cO -> cl

t := 685;

if humidseqb = cO then
humid_seq_b := ci;

R2: ci -> c2

{
t := 2395;

if humid_seqb
humid-seqb
cooling

= ci and humidity >= 61 then

:= c2;
:= on;

R3: ci -> c4

{
t 1730;

if humidseq_b = ci and humidity < 61 then
humid_seqb := c4;

R4: c2 -> c2

{
t 1625;

if humidseqb = c2 and humidity > 50 then
humid_seq_b := c2;
humid-seqs := done;

R5: c2 -> c3

t := 1625;

if humid_seqb = c2 and humidity <= 50 then
humid_seq_b := c3;

R6: c3 -> c4

t
t := 2160;

if humidseqb = c3 and trying_to_cool-system = False then

humid_seq_b := c4;
cooling := off;
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Listing F.16 Rules of the SEQUENCEHUMIDITY_MONITOR_WORK sub ma-
chine (part 2)
R7: c3 -> c4

t := 1265;

if humid&seqb = c3 and trying_to_cool-system = True then
humid_seqb := c4;

R8: c4 -> c5
I

t := 2390;

if humidseq_b = c4 and humidity <= 39 then
humidifier := on;
humidseqb := c5;

R9: c4 -> cO

t := 1950;

if humid.seqb = c4 and humidity > 39 then
humid-seqb := cO;
humid-seqs := done;

R10: c5 -> c5

t := 1630;

if humid.seq_b = c5 and humidity < 50 then
humid-seq_b := c5;
humid-seqs := done;

R11: c5 -> cO

t := 3195;

if humid_seq_b = c5 and humidity >= 50 then
humid-seq_b := cO;
humid-seq_s := done;
humidifier:= off;
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