65 research outputs found

    Which attacks lead to hazards? Combining safety and security analysis for cyber-physical systems

    Get PDF
    Cyber-Physical Systems (CPS) are exposed to a plethora of attacks and their attack surface is only increasing. However, whilst many attack paths are possible, only some can threaten the system's safety and potentially lead to loss of life. Identifying them is of essence. We propose a methodology and develop a tool-chain to systematically analyse and enumerate the attacks leading to safety violations. This is achieved by lazily combining threat modelling and safety analysis with formal verification and with attack graph analysis. We also identify the minimum sets of privileges that must be protected to preserve safety. We demonstrate the effectiveness of our methodology to discover threat scenarios by applying it to a Communication Based Train Control System. Our design choices emphasise compatibility with existing safety and security frameworks, whilst remaining agnostic to specific tools or attack graphs representations

    Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking

    Get PDF
    International audience— Architecture Analysis and Design Language (AADL) is widely used for the architecture design and analysis of safety-critical real-time systems. Based on the Hybrid annex which supports continuous behavior modeling, Hybrid AADL enables seamless interactions between embedded control systems and continuous physical environments. Although Hybrid AADL is promising in dependability prediction through analyzable architecture development, the worst-case performance analysis of Hybrid AADL designs can easily lead to an overly pessimistic estimation. So far, Hybrid AADL cannot be used to accurately quantify and reason the overall performance of complex systems which interact with external uncertain environments intensively. To address this problem, this paper proposes a statistical model checking based framework that can perform quantitative evaluation of uncertainty-aware Hybrid AADL designs against various performance queries. Our approach extends Hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into Networks of Priced Timed Automata (NPTA) and performance queries, respectively. Comprehensive experimental results on the Movement Authority (MA) scenario of Chinese Train Control System Level 3 (CTCS-3) demonstrate the effectiveness of our approach

    Model-based Joint Analysis of Safety and Security:Survey and Identification of Gaps

    Get PDF
    We survey the state-of-the-art on model-based formalisms for safety and security joint analysis, where safety refers to the absence of unintended failures, and security to absence of malicious attacks. We conduct a thorough literature review and - as a result - we consider fourteen model-based formalisms and compare them with respect to several criteria: (1) Modelling capabilities and Expressiveness: which phenomena can be expressed in these formalisms? To which extent can they capture safety-security interactions? (2) Analytical capabilities: which analysis types are supported? (3) Practical applicability: to what extent have the formalisms been used to analyze small or larger case studies? Furthermore, (1) we present more precise definitions for safety-security dependencies in tree-like formalisms; (2) we showcase the potential of each formalism by modelling the same toy example from the literature and (3) we present our findings and reflect on possible ways to narrow highlighted gaps. In summary, our key findings are the following: (1) the majority of approaches combine tree-like formal models; (2) the exact nature of safety-security interaction is still ill-understood and (3) diverse formalisms can capture different interactions; (4) analyzed formalisms merge modelling constructs from existing safety- and security-specific formalisms, without introducing ad hoc constructs to model safety-security interactions, or (5) metrics to analyze trade offs. Moreover, (6) large case studies representing safety-security interactions are still missing

    Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems.

    Get PDF
    Unlike practices in electrical and mechanical equipment engineering, Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized practices for assurance and certification that ensures safe, secure and reliable operation with typical software and hardware architectures. This paper presents a recent initiative called AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) to promote harmonization, reuse and automation of labour-intensive certification-oriented activities via using model-based approaches and incremental techniques. AMASS will develop an integrated and holistic approach, a supporting tool ecosystem and a self-sustainable community for assurance and certification of CPS. The approach will be driven by architectural decisions (fully compatible with standards, e.g. AUTOSAR and IMA), including multiple assurance concerns such as safety, security and reliability. AMASS will support seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance). The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692474. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Czech Republic, Germany, Sweden, Austria, Italy, United Kingdom, Franc

    FREPA: An Automated and Formal Approach to Requirement Modeling and Analysis in Aircraft Control Domain

    Full text link
    Formal methods are promising for modeling and analyzing system requirements. However, applying formal methods to large-scale industrial projects is a remaining challenge. The industrial engineers are suffering from the lack of automated engineering methodologies to effectively conduct precise requirement models, and rigorously validate and verify (V&V) the generated models. To tackle this challenge, in this paper, we present a systematic engineering approach, named Formal Requirement Engineering Platform in Aircraft (FREPA), for formal requirement modeling and V\&V in the aerospace and aviation control domains. FREPA is an outcome of the seamless collaboration between the academy and industry over the last eight years. The main contributions of this paper include 1) an automated and systematic engineering approach FREPA to construct requirement models, validate and verify systems in the aerospace and aviation control domain, 2) a domain-specific modeling language AASRDL to describe the formal specification, and 3) a practical FREPA-based tool AeroReq which has been used by our industry partners. We have successfully adopted FREPA to seven real aerospace gesture control and two aviation engine control systems. The experimental results show that FREPA and the corresponding tool AeroReq significantly facilitate formal modeling and V&V in the industry. Moreover, we also discuss the experiences and lessons gained from using FREPA in aerospace and aviation projects.Comment: 12 pages, Published by FSE 202

    Anytime system level verification via parallel random exhaustive hardware in the loop simulation

    Get PDF
    System level verification of cyber-physical systems has the goal of verifying that the whole (i.e., software + hardware) system meets the given specifications. Model checkers for hybrid systems cannot handle system level verification of actual systems. Thus, Hardware In the Loop Simulation (HILS) is currently the main workhorse for system level verification. By using model checking driven exhaustive HILS, System Level Formal Verification (SLFV) can be effectively carried out for actual systems. We present a parallel random exhaustive HILS based model checker for hybrid systems that, by simulating all operational scenarios exactly once in a uniform random order, is able to provide, at any time during the verification process, an upper bound to the probability that the System Under Verification exhibits an error in a yet-to-be-simulated scenario (Omission Probability). We show effectiveness of the proposed approach by presenting experimental results on SLFV of the Inverted Pendulum on a Cart and the Fuel Control System examples in the Simulink distribution. To the best of our knowledge, no previously published model checker can exhaustively verify hybrid systems of such a size and provide at any time an upper bound to the Omission Probability

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners
    • …
    corecore