
1

Which Attacks Lead to Hazards?
Combining Safety and Security Analysis for Cyber-Physical Systems

Luca Maria Castiglione and Emil C. Lupu

Abstract—Cyber-Physical Systems (CPS) are exposed to a plethora of attacks and their attack surface is only increasing. However,
whilst many attack paths are possible, only some can threaten the system’s safety and potentially lead to loss of life. Identifying them is
of essence. We propose a methodology and develop a tool-chain to systematically analyse and enumerate the attacks leading to safety
violations. This is achieved by lazily combining threat modelling and safety analysis with formal verification and with attack graph analysis.
We also identify the minimum sets of privileges that must be protected to preserve safety. We demonstrate the effectiveness of our
methodology to discover threat scenarios by applying it to a Communication Based Train Control System. Our design choices emphasise
compatibility with existing safety and security frameworks, whilst remaining agnostic to specific tools or attack graphs representations.

Index Terms—Security, Safety, Formal Verification, Attack Graphs, Cyber Physical Systems.

F

1 INTRODUCTION

In February 2021, an individual gained unauthorised
access to the computer network managing Florida’s water
supply and tried to abuse the treatment software in order to
inject dangerous levels of lye in the water [1]. Along with
other similar incidents such as [2] [3] [4], this case serves
as a reminder that attacks against Cyber Physical Systems
(CPSs) can impact the safety of the controlled processes and
result in monetary losses, significant physical damages to
infrastructure and, in some cases, loss of life. As operators of
Industrial Control Systems deploy new families of network-
enabled Operational Technology (OT) devices to augment
connectivity and minimise costs, the attack surface also in-
creases, allowing for a constantly growing variety of attacks.
Whilst more attacks are becoming possible, only some of
them will impact the safety of the system. For example,
losing the availability of non-critical components can reduce
the quality of the provided service but not threaten safety.
Similarly, a breach of confidentiality can result in a data
loss which is, generally, not a safety critical event. There
is no doubt that identifying the attacks that lead to safety
violations is a priority. However, the complexity of modern
CPSs renders this task extremely difficult. Sophisticated
attacks often rely on the effect of apparently legitimate
commands that, interleaved with system behaviour, trigger
cascading effects within the CPS with the aim of rendering
it vulnerable to further attacks and eventually cause losses.
For example, in [5] the adversary relies on a vulnerability
affecting the alternate mode of functioning of an aircraft to
hijack it. By changing the environment around the aircraft
(communication jamming), they were able to trigger a legit-
imate transition of operating mode, where a spoofing attack
became successful. To prevent these scenarios, tools and

• Authors are with Department Computing, Imperial College London, UK.
E-mail: {l.castiglione, e.c.lupu} @imperial.ac.uk

• The support of the EPSRC Centre for Doctoral Training in High Per-
formance Embedded and Distributed Systems (HiPEDS, Grant Reference
EP/L016796/1) is gratefully acknowledged. For the purpose of open access,
the author has applied a Creative Commons Attribution (CC BY) licence
to any Author Accepted Manuscript (AAM) version arising.

methodologies need to be developed to support complex
integrated analyses of safety and security in the context of
the behaviour of the system.

In this work, we address the following questions: (RQ1)
How do we identify the attacks leading to violations of the system
level safety properties?, (RQ2) Which attack paths allow these
attacks?, and (RQ3) Which vulnerabilities should be remediated
first to mitigate these paths and preserve system safety? To
answer these questions we have developed Tiresias 1, a
methodology (Figure 1) that combines System Theoretic
Process Analysis Security (STPA-Sec) [6] and STRIDE [7]
with formal verification and attack graph analysis in novel
ways.

Threat Scenarios
Identification

Identification of
 Minimal Safety Set

Attack Graph
Construction and Path

Analysis 1 2 3

Preparation
0

Fig. 1. Overview of the proposed methodology.

The process starts with preparatory step where we use
System Theoretic Accident Models and Processes (STAMP)
to model the safety aspects of the system, and perform
part of STPA (0). Unlike traditional frameworks such as
HAZOP [8], FMEA/FMECA [9] [10], and FTA [11], STAMP
models the safety as a control problem and sees accidents
as the result of flaws in the interactions between system
components. We start with the identification of threat sce-
narios, where certain sequences of malicious actions can
result in catastrophic consequences (1). Our approach,
grounded in STPA-Sec and formal verification, enables us to
automatically identify threat scenarios, answering the first
research question. Then, we define and solve a Boolean
satisfiability (SAT) problem to find the minimum set of
privileges that should be protected to prevent the attacker
to trigger threat scenarios (2). Finally, we leverage the
integration with the architecture of the CPS to construct,
starting from the set of privileges, a system wide attack

1. In Greek mythology, Tiresias was a blind prophet renowned for
clairvoyance.

2

graph [12] (3) . The resulting graph encompasses feasible
attack paths that are relevant to system safety. Finally, we
analyse the attack paths found and elaborate on mitigation
strategies. The output of our methodology is a set of safety
critical attack paths in the CPS. More broadly, the solutions
found reveal the weight of individual vulnerabilities and
weaknesses with respect to the preservation of system level
safety properties.
In this work, we bring the following contributions:
• We build a clear correspondence between the safety

model, security threats and system vulnerabilities.
• We define a methodology to systematically derive se-

quences of threats that, in combination with the be-
haviour of the system, can lead to safety violations
(threat scenarios).

• We develop and present a tool-chain that employs
formal verification to identify and enumerate threat
scenarios - also considering the behaviour of system
components.

• Threat enumeration is lazily2 combined with the gener-
ation of attack graphs. The analysis of the latter enables
us to verify the feasibility of complex attacks and to
evaluate the importance of individual vulnerabilities
with respect to consequences.

• We identify the minimum sets of privileges that must
be protected to preserve safety.

• We demonstrate the effectiveness of our methodology
applied to a realistic use case, a Communication Based
Train Control System.

Novelty This work introduces the following novel aspects.
First, we combine STPA-Sec with threat modelling and
formal verification. The analysis of the combined models
allows to enumerate complex sequences of attack steps
leading to system-level losses. The second novel aspect
consists in the integration of the results obtained from the
analysis of functional models with attack graphs. In doing
so, we can verify the feasibility of safety critical attacks. By
evaluating the importance that individual vulnerabilities
have in enabling these attacks it is thus possible to help
prioritise remediation. Finally, to the best of our knowledge,
our work is the first to analyse the impact of all generic
threats identified in a threat analysis on emergent safety
properties of the CPS.

Impact The impact of this work is threefold. Firstly, it enables
to enumerate the threat scenarios, complex sequences of
threats, which when exploited and combined with system
behaviour lead to hazards. Secondly, formal verification
guarantees the soundness of these scenarios. We provide
a clear map between elements of the safety model, and
between safety and security models so that they can be
independently replaced and/or improved. Thirdly, by de-
coupling the formal verification from the attack graph anal-
ysis, we can evaluate the impact of vulnerabilities on safety
without repeating the formal verification.

The rest of the paper is organised as follows. Section 2

2. Each stage of our methodology was implemented as a separate
program. The analyst is expected to run start each separately.

presents the state of the art at the intersection of safety and
security. We introduce STPA-Sec and present our use case in
Section 3. In Section 4 we show an overview of Tiresias. In
Section 5 we build a set of relations between the behavioural
and the safety model of the CPS, and we introduce the
threat model in Section 6. In Section 7 we formalise the
process of discovery of threat scenarios, while the second
and third steps of Tiresias are formalised in Section 8. The
methodology is applied to the use cases in Section 9. Finally,
in Sections 10 and 11 we discuss the obtained results and
present our conclusions.

2 RELATED WORK

Whilst our approach is novel to the best of our knowledge,
several studies, in literature, have proposed steps in
similar directions. SAHARA combines STRIDE threat
modelling with the safety analysis methodology HARA,
to perform integrated safety and security analysis [13].
VERDICT is an annex for Architecture Analysis & Design
Language (AADL) that facilitates integrated safety and
security analysis on AADL models [14]. It consists of two
major components: Model Based Architecture Analysis
and Synthesis (MBAAS) and Cyber Resiliency Verification
(CRV). MBAAS uses AGREE [15] to infer the propagation
of the effects of threats in the CPS model. To do that,
MBAAS requires the system designer to specify a set of
propagation rules, hard-coded inside each component of
the AADL model. In contrast, our approach relies directly
on the behavioural model of system components to analyse
the impact of the attack and does not require human input
to specify the threats’ propagation. On the other hand, CRV
employs model checking to verify the reachability of threat
scenarios directly from the behavioural model of system
components, given a limited set of threats. MBAAS uses a
subset of CAPEC [16] as source for threats whereas CRV
employs a non-standard fixed set of threats hard-coded
in the model. By contrast, our methodology relies on
STRIDE to systematically construct the attacker model.
VERDICT returns high-level threats that can potentially
impact safety; instead, we analyse the attack graph of the
system architecture and determine the attack paths leading
to those threats. Longari et al. use attack trees to perform
a goal oriented analysis of automotive systems [17]. They
need to manually select the objectives for the analysis and
cannot automatically discover complex attacks that rely
on cascading effects as in our approach. [18] proposes a
threat modelling methodology for CPS based on STRIDE.
[19] presents a methodology to identify attacks leading to
the shut down of system operations, while [20] introduces
a recursive approach for building attack graphs for IoT
systems based on cyber and physical interactions. Barrère et
al. use an approach based on MaxSAT on AND/OR graphs
to identify the “Most Likely Mission Critical Component Set
of a CPS” [21]. A Boolean Driven Markov Processes (BDMP)
approach is proposed to analyse interactions between safety
and security and subsequently used to assess the impact
of vulnerabilities on the safety risks in a control system for
a pipeline in [22]. [23] proposes a quantitative analysis of
the effects of securing communications between controller
and physical process. More recently, [24] presents an
interesting study on the need for standards for security and

3

safety co-analysis. Two surveys summarise methodologies
to perform integrated and security analysis [25] and
discuss their similarities and differences [26]. [27] relies
on manually specified attack-fault-maintenance trees
(AFMT) to determine trade-offs between system attributes
including safety, security, and maintenance. In contrast,
we use STRIDE as threat modelling methodology and
the sequences of attack steps interleaved with component
behaviour (for cascading effects) are automatically derived
through symbolic model checking. International standards
for safety critical industry are also mandating the need of
integrated security and safety analysis across a variety of
sectors from nuclear [28], [29] to aviation [30].

System Theoretic Process Analysis and Security. STPA-Sec [6],
[31] extends STPA [32] to the security domain. Both STPA
and STPA-Sec are widely accepted methods for integrated
safety analysis and are applied to identify safety critical
threat scenarios across a number of different sectors [33], in-
cluding industrial control systems [34], micro-grids [35] and
aerospace [36]. Friedberg et al. propose STPA-SafeSec [37]
which builds a correspondence between the STAMP model
and the architecture of the CPS. STPA-SafeSec manually
investigates the effects on safety of high-level threats. [38]
propose a methodology to analyse the impact of security
flaws on a STAMP model at a functional level. [39] extend
STPA with STRIDE. These approaches are executed by hand
and require a significant amount of effort as well as deep
expert knowledge. Furthermore, their output is a set of
high level scenarios and recommendations. With Tiresias ,
we automatically discover complex sequences of high level
threats that impact safety without losing generality. Towards
the end of the process we exploit the map with the deployed
architecture to identify specific attack paths. In a previous
work, we have performed the integrated safety and security
analysis of a smart grid testbed using a manual approach to
combine STPA-Sec with attack graph analysis [40]. Finally,
Nourian et al. show the effectiveness of STAMP for safety
and security analysis to analyse the Stuxnet case [41].
System Theoretic Process Analysis and Model Checking.
Although partially automated in [42], STPA remains a
manual process driven by expert knowledge. Several
studies [43], [44] and [45] map a STAMP model of the
CPS to the behavioural model of its implementation. Such
mapping enables to formulate hazardous control actions as
specifications in Linear Temporal Logic (LTL) [46], which
are then formally verified to ensure that safety requirements
are met by the current implementation. Abdulkhaleq et
al. [44] use this strategy to generate tests for safety critical
software. System safety requirements (SSRs) are similarly
generated in [47]. Finally, Zhao et al. in [48] construct
specifications for an avionic system and verify them with
the UPPAAL model checker [49].

Adversarial Model Checking. The use of formal verification to
discover vulnerabilities in complex systems and protocols
dates back to, at least, 1998 when Mitchell at al. used model
checking in [50] to find vulnerable attack paths in SSL. More
recently, Hussain et al. in [51] combined model checking
and cryptographic protocol verification to identify attack
paths in LTE. CVAnalyzer [52] relies on both traditional

and probabilistic model checking to find vulnerabilities and
assess risk in inter-vehicle communication protocols. They
also consider the presence of an attacker in the loop. [53]
proposes to derive the Finite State Machine (FSM) of a fire-
wall through fuzzy requests and subsequently use it to find
attack paths through model checking. Researchers at AWS
applied model checking in TLA+ to find complex sequences
of actions leading to unexpected behaviour [54]. However,
they do not consider an adversarial environment. Alshalal-
fah et al. [55] use UPPAAL to verify safety properties of an
insulin pump against a custom designed attacker capable
of executing replay attacks. Poorhadi et al. developed a
framework based on Event-B to analyse the impact of cyber
attacks on the safety of a railway signalling system [56].

3 PRELIMINARIES

Safety is generally defined as freedom from unacceptable risk
[57], where the risk is a combination of likelihood of harm and
severity of that harm [58] [59]. In this work, we rely on a
simpler definition of safety, namely the absence of accidents
and their consequent losses. The objective of our methodol-
ogy is to analyse how security threats such as the spoofing
of a component, the tampering, or the unauthorised access
to a piece of information, etc. can contribute to the causation
of accidents. The definitions of losses, accidents and hazards
that we use in this paper are those presented in [32].

Tiresias relies upon System Theoretic Process Analysis
Security (STPA-Sec) to analyse the safety of the CPS. STPA-
Sec is built on System Theoretic Process Analysis (STPA)
and they are both organised in the same four steps [60].
The fundamental difference between STPA and STPA-Sec
lies in the identification of possible causes for accidents.
In fact, while STPA looks at faults and miscommunication as
possible root causes for accidents, STPA-Sec finds them in
threats [6]. An overview of STPA-Sec is shown in Figure
2. The steps involved are represented in white rectangles

Modelling of
 Control Structure

(STAMP)

Identification of
Unsafe Control

Actions

Identification of
Hazards and Losses

(STAMP) CS H CS UCAH

Threat Scenarios
Identification

UCA 1TS

H: Hazards CS: Safe Control Structure UCA: List of Unsafe Control Actions TS: Threat Scenarios

H CSH

Fig. 2. STPA-Sec Overview

whereas the input processed and the output produced at
each step are shown in white and black circles, respectively.
The acronyms used in the diagram are expanded in the key
at the bottom of the Figure. Steps (1) and (2) of STPA/STPA-
Sec provide guidance towards the definition of the STAMP
model for the system [32]. In fact, (1) consists of the defini-
tion of system level hazards, losses, and safety requirements,
followed by the modelling of the control structure (2). The
control structure or Safe Control Structure (SCS) is a tuple
(C,D,K) where C is the set of components, D the set
of information flows (control actions and feedback), and K
the set of functional channels [61]. For each controller in
the SCS, STAMP requires to specify its process model and
control algorithm. The former retains a representation of
the controlled physical process while the control algorithm
defines the input/output relations. Step 3 defines the Unsafe
Control Actions (UCA), those control actions (and feedback)
that can cause hazards when applied in a specific context.

4

The context of a UCA describes the combination of values of
variables in the process model of the issuing controller for
which the application (or missed application) of the control
action is unsafe [42], [43]. More formally, a UCA can be
defined as a tuple (ca, ctx, r, type) where ca ∈ D is the
control action, ctx the context, r is the value for which the
hazard subsists and type the type of the UCA [44]. A control
action can be unsafe if it is: provided when not required or
not provided when required. In addition, a UCA in the case
provided can be: simply provided but also provided too early, too
late or in the wrong order, or provided with wrong duration [32].
The Context Table of a controller has been introduced in [42]
as a tool to systematically enumerate UCAs. Finally, step (4)
consists in the identification, through the whole Safe Control
Structure, of possible scenarios of applications of UCAs. The
fundamental difference between STPA and STPA-Sec lies in
the domain of the causes identified at this stage (faults for
STPA, security threats for STPA-Sec). Traditionally, the four
steps of STPA are all performed by hand, mainly relying
on expert knowledge. Although there have been proposals
to automate at least part of the analysis using techniques
based on formal verification and model-checking, they do
not consider security threats [42] and [43]. In Section 3.1, we
briefly introduce our use case and conventionally apply the
first three steps of traditional STPA/STPA-Sec as they are
proposed in [60].

3.1 Railway management infrastructure

A Communication Based Train Control (CBTC) system is
a traffic management system typical of wide railway infras-
tructures such as the European Railway Traffic Management
System (ERTMS) [62]. In our scenario N trains share access
to the same railway infrastructure which is divided into M
zones that trains access in a mutually exclusive fashion. The
zone controller (ZC) coordinates access through the zones
by allowing or declining requests from trains, depending
on their current location and signalling context. When a
train enters a new zone, it sends a clear message to the
ZC, to indicate that it has left the previous zone. Trains are
fitted with an onboard Train Controller (TC) that constantly
receives their current position from an on-board location
unit (LU) and speed from the Speed Controller (SC). TC
sends ’access’ and ’clear’ requests to ZC and evaluates the
replies. In our scenario, the location unit combines data from
a GNSS module with radio beacons to improve the accuracy
of the estimated position [63], in a configuration similar to
[64]. A fallback strategy allows the LU to solely rely on
GNSS if the radio signal is unavailable. The TC also receives
a reference speed limit from the ZC for the current zone
and sets the target speed for SC. Train motion is controlled
by the speed controller, which computes the acceleration
profile and commands the brake and acceleration units (AU)
over a local bus. Positive values of the acceleration are
interpreted as acceleration and negative ones as a brake [61].
A safety mechanism halts the trains if the communication
between the ZC and one of the trains fails. We start with
the definition of accidents and find the related hazards.
For brevity, we only consider collision (A1) and derailment
(A2) as accidents, as these lead to the heaviest losses and
could endanger human lives [65]. For completeness, we

also consider traffic disruption (A3) as an example of a less
important accident. In fact, although (A3) is a non life-
threatening accident, an adversary can still aim to cause it,
to induce financial loss. We identify the following system
level hazards: Train enters a not cleared zone, Train exceeds
speed limit, Train authorised but does not enter a cleared zone,
and Train travels below minimum speed. Their refinement leads
to the seven hazards reported in Table 1.

TABLE 1
Table of Hazards for the CBTC system.

Hazard Accidents
H1 Train enters a not cleared zone A1, A3

H2 Train authorised but does not enter a cleared
zone

A3

H3 State of zone controller is not consistent with
the trains’ position

A1, A2, A3

H4 Train travels below minimum speed A3

H5 Clear zone wrongly marked as not clear A3

H6 Not clear zone wrongly marked as clear A1

H7 Train travels above maximum speed A1, A2

The safe control structure (SCS) of the system is shown
in Figure 3. Control actions (shown in red) and feedback
signals (in blue) are exchanged over digital (dashed) and
physical (dotted) channels. The system comprises one zone
controller, and three controllers for each train: a train con-
troller, a location unit and a speed controller. ZC is responsible
for issuing control actions CA1 (Authorisation) and CA3

(Speed Limit) in a timely manner over a GSM-R channel.
The process model of the ZC has a view of the zones, and
specifies which zones are free and which are engaged along
with their speed limits. The status of a zone is a binary value
indicating whether it is free or engaged, while the speed limit
is an integer value. CA1 carries the value allow or deny while
CA3 is a positive integer. Both control actions depend on

CA5 : TargetSpeed
[LocalNet]

Train (Physical Process)

 Zone Controller

 Train Controller

 Location Unit

GNSS
Module

Radio
ModuleOdometer

Braking
Unit

Acceleration
Unit

F7 : SpeedO

CA9 : Brake CA10 : Acceleration

Position
Speed

Zones []
Free
Engaged

CA1 : Authorisation [GSM-R]
CA3 : Speed Limit [GSM-R]

CA2 : Zone [GSM-R]
CA4 : Clear [GSM-R]

Status
Full
Backoff

Speed Controller

CA6 : Location [LocalNet]

CA7 : Brake Signal [BUS] F4 : Speed
[Bus]

F3: GPS_Pos [GNSS]F2 : RTK_Pos [Radio]

Proceed
True
False

Traini

Speed Limits []
Process Model

Process Model

Process Model

Control
Algorithm

Control
Algorithm

Control AlgorithmProcess Model

CA8 : AccSignal

[BUS]

F1 : Speed [LocalNet]

F6: PosGPS [Bus]F5 : PosRTK [Bus]

Fig. 3. Safe Control Structure of CBTC system.

the internal status of the controller (Zones and Speed Limits
arrays, respectively) and the position of the recipient. The
Train Controller holds, in its process model, the current
position (zone) and speed as well a binary value, which

5

indicates whether the train has been cleared to proceed
or not. TC issues CA2 and CA4 to respectively request
access to and clear a specific zone. CA2 and CA4 carry
the id of the issuer train (tid ∈ N) along with the id of
the zone (i ∈ M) and also depend on the internal state
of the controller for the current position. TC also sets the
target speed CA5 on the speed controller and receives the
current speed from the speed controller (F1). The Location
Unit is responsible for sending the current location CA6 to
TC. The value of CA6 depends on the operating mode (full,
fallback), which is saved in LU’s process model as a binary
variable. The LU receives its current position from the Radio
(F5) and GNSS (F6) sensors. The LU relies solely on GNSS
(F6) when operating in fallback mode. The Speed Controller
receives the target speed from the TC and, given the current
speed (F4) computes an acceleration profile. The latter is
used to command the brake (CA7) and acceleration (CA8)
units. The odometer, radio sensor and GNSS module receive
feedback signals (F7), (F2) and (F3) respectively.

We apply the third step of STPA to the CBTC system (Figure
3) and derive the context table (Table 2). For brevity, we only
analyse the unsafe application of CA1, CA2, CA3, CA4 and
CA5. These actions are all in the discrete domain; therefore,
UCAs of the type applied for too long or applied for too short are
not included in Table 2. UCAs of the types provided for too
short and provided for too long are not included as they only
apply to continuous control actions. The following UCAs
facilitate the zone management and the i-th train. We also
indicate the hazard they lead to. A list of UCAs derived
from table 2 for CA1, CA2, CA4 and CA5 is shown below

UCA1: CA1 not provided when zone[i] is engaged −→ (H4)
UCA2: CA1 provided with allow when zone[i] is engaged
−→ (H1)
UCA3: CA1 provded late when zone[i] is engaged −→ (H4)
UCA4: CA1 not provided when zone[i] is free −→ (H4).
UCA5: CA1 provided with deny when zone[i] is free −→
(H2).
UCA6: CA1 provided too late when zone[i] is free −→ (H4).
UCA7: CA2 not provided −→ (H4).
UCA8: CA2 provided with wrong parameter −→
(H3, H5, H1).
UCA9: CA2 provided too late −→ (H4).
UCA10: CA3 not provided −→ (H4).
UCA11: CA3 provided with parameter r, with r > v and v
is the allowed speed limit −→ (H7).
UCA12: CA3 provided early (r > v) −→ (H7).
UCA13: CA4 provided late −→ (H4).
UCA14: CA4 not provided −→ (H3, H5).
UCA15: CA4 provided with wrong position −→
(H3,H5, H6).
UCA16: CA4 provided too late −→ (H6).
UCA17: CA5 provided when controlled replied deny (H1)
UCA18: CA5 not provided when Proceed is true (H2)

4 METHODOLOGY OVERVIEW

A detailed overview of Tiresias is shown in Figure 4.
Preparatory stages P.1 to P.6 precede its application and are
highlighted with a lighter background. The input consumed
and the output produced at each stage are indicated in
white and black circles, respectively. During the preparation,
we perform the conventional application of the first three
steps of STPA/STPA-Sec. In particular, in (P.1) we identify

Losses, Accidents and Hazards, in (P.2) we model the Safe

Control Structure, and in (P.3) we determine the Unsafe
Control Actions (Section 3). Model checking enables us to

Threat Scenarios
Identification

Threat Modelling
(STRIDE)

Adversarial
Instrumentation

MAA CS

Modelling of System
Behaviour

Modelling of
 Control Structure

(STAMP)

Identification of
Unsafe Control

Actions

STPA 1-3

1M* 1

Identification of
Hazards and Losses

(STAMP)

STPA 4

M

H: Hazards
CS: Safe Control Structure

UCA: List of Unsafe Control Actions
M: Behavioural Model of the CPS MAA: Model of Adversarial Actions

M*: Instrumented Model

CS

CS M

SA: System Configuration

AG: Attack Graph SM: Suggested Security Measures

P.1 P.2 P.3

P.4P.5P.6

CSMAA

H CS UCAH

UCA M* 1TS

Identification of
 Minimal Safety Set

TS SA

Attack Paths
Construction and

Analysis
MSS SMMSS

1 2 3

TS: Threat ScenariosMSS: Minimal Safety Set

AG

Fig. 4. Overview of the proposed methodology.

automatise the fourth step of STPA-Sec and automatically
identify threat scenarios in the first stage of Tiresias. For it
to be applicable we need to model (P.4) the safe behavioural
model (SBM) of the CPS and build a map to its safe control
structure (SCS) [66]. The output of this step is a behavioural
model of the CPS that maps to its SCS. In this step, we
assume that the high-level behaviour of system components
is already known from system design and provided as
labelled transition system (LTS). We propose and apply a
set of rules to map the a subset of the states of the LTS to
the SCS. Such map allows us to formally verify UCAs on the
behavioural model of the system. The implementation of the
process is outlined in Section 5. Then, we apply STRIDE
to identify potential threats to elements of the SCS (P.5).
STRIDE allows us to identify the adversarial actions (AAs),
where each action represents the use of a STRIDE threat
against an element of the SCS. We aggregate the AAs into
a model of adversarial actions (MAA). As final stage of the
preparation, we construct the parallel composition between
the SBM and the MAA (P.6) (Section 6). As STPA and
STPA-Sec are accepted for the creation of assurance cases
for safety critical systems we assume that stages P.1 , P.2 ,

P.3 , P.5 and P.6 , are carried out already in the design life-
cycle of Cyber Physical Systems [30]. At the same time, we
assume that the high-level behaviour of system components
is known at design time; therefore it is possible to design the
SBM (P.4). Although the preparation phase is essential to
apply our methodology, we leave the development of tools
that support it for further work.

6

TABLE 2
Context Table of Zone Controller (ZC) and Train Controller (TC). r is the value for which CA is unsafe, v is the speed limit.

Controller CA Zone[i] Limit Position Previous Proceed Not Provided Provided PE PL
ZC CA1 Engaged - - - - H4 H1 [r = allow] - H4

ZC CA1 Free - - - - H4 H2 [r = deny] - H4

ZC CA2 - - i ∈M - - H4 H3, H5, H1 [r 6= i] - H4

ZC CA3 - v - - - H4 H7 [r > v] H7 H4

ZC CA4 - - - i ∈M - H3, H5 H3, H5, H6 [r 6= i] - H6

TC CA5 - - - - False - H1 [r > 0] - -
TC CA5 - - - - True H2 - - -

In the first stage of our methodology (1), we
combine STPA-Sec with STRIDE and model-checking
to automatically generate threat scenarios, sequences of
malicious actions that, together with the behaviour of
the system, can result in catastrophic consequences. The
identification of threat scenarios corresponds with the
fourth step of STPA-Sec, where this operation is performed
manually. In contrast, we rely on model checking to
formally verify the reachability of UCAs in presence of
a omniscient attacker (Section 7). Then (2), we define a
Boolean function that evaluates true for those combination
of privileges that enable causing catastrophic attacks3. We
use an SMT solver to find the minimum set of privileges
that should be defended to preserve the safety. When more
than one set of privileges is discovered, defending any
of these sets guarantees overall safety. Thus in (3), we
leverage the integration with the architecture of the CPS
to produce an attack graph that identifies feasible attack
paths leading to the privileges in the set found (Section
8). To do so, we assume that the network topology of the
CPS is known and that a vulnerability assessment has
already been carried out. It is obviously not possible to
address unknown vulnerabilities (zero-days), although
further analysis on this point is possible, which we leave
for further work. The map between STRIDE threats and the
privileges required to effect the threats needs to be carried
out manually, as part of the preparation stage. Finally,
we perform a reachability analysis on these paths and
identify the weaknesses and vulnerabilities that should be
addressed first to prevent accidents. Our approach is able to
uncover a wide range of mitigations strategies, within both
the OT and the Enterprise network. This is a considerable
advance on other approaches that only consider measures
applicable on the OT network (Section 10).

Tool-chain. Each stage of our methodology was imple-
mented as a separate program. In Section 7 we outline
our implementation of the Threat Enumeration Process (1).
The identification of the Minimal Safety Set (2) has been
implemented as a Python application using the Microsoft
Z3 libraries (Section 8) [67]. Finally, ((3) we use MulVal
to generate a system-wide attack graph and developed our
own Java routines to perform the analysis presented in
Section 3.1.

5 SAFETY VERIFICATION

In STPA-Sec, the identification of threat scenarios is an
exceptionally complex operation that requires a deep

3. An attack is catastrophic if it has the potential to provoke a loss.

understanding of the functioning of the CPS components,
and how their output varies, depending on their current
state and their input. The manual nature of this process
constitutes a bottleneck in the application of STPA-Sec. To
overcome this problem in STPA, it is possible to model the
behaviour of the CPS in the safe behavioural model (SBM)
and use model checking to identify hazardous scenarios
[43], [66]. In this section, we propose our implementation
of the safe behavioural model (SBM) to automatise the
identification of threat scenarios. This fundamentally differs
from the implementation proposed in [66] in the case of
STPA, as we allow for the integration of the SBM with
the behavioural model of the adversary. Furthermore, we
employ an approach based on Time-based Computational
Tree Logic (TCTL), instead of linear logic, to verify the
reachability of unsafe states. While the relative benefits of
branching logic and linear logic have been debated in the
literature [68], our choice of using TCTL is linked to the tool
used for verification (Section 7).

Safe Behavioural Model (Structure). We define the safe be-
havioural model (SBM) of the CPS as a network of timed
automata (NTA). Semantically, a NTA is a labelled transi-
tion system N = (T,Ch,B) where T is the set of timed
automata (TAs), B a set of data buffers and Ch a set
of synchronisation channels. Automata in T synchronise
with each other over synchronisation channels in Ch and
exchange data through data-buffers in B. The semantics of
the NTA and of the Timed Automata used here are the
same as those in [69] and [70]. A Timed Automaton (TA)
is a tuple (Σ, L, l0,V, C, E, I) with Σ the input alphabet,
L the set of locations and V the set of local variables. l0
marks the initial location while C, E and I are the sets
of clock variables, edges and invariants respectively. An
edge (l, l′, σ, λ, δ, o, s) marks the transition (l → l′), from
location l to location l′. The transition is fired on the word
σ, λ represents the updates engaged when the transition
is fired and δ represents the guard conditions. Finally, o is
the output and s points to the synchronisation channel. The
latter is set only if the transition (l → l′) is synchronised
with one or more different transitions.
The structure of the SBM largely depends on the behaviour

of the CPS components, which we assume is known at
design time. At the same time, a subset SBM needs to
be linked to the safe control structure (SCS) to enable
the formal verification of UCAs. Let (C,F,K) be the SCS
of a CPS with Np physical processes, Nc controllers, Nk

functional channels and Nf control actions and feedback
signals. Let N = (T,Ch,B) be the related SBM. N has
NTA = Np +Nc +NM +Nk Timed Automata synchronised

7

over NCh = 2∗Nf synchronisation channels with |B| = Nf

buffer variables. NM is the number of observer automata.
These are used to monitor the unsafe applications of control
actions of the type not applied, applied with wrong duration
and applied with wrong timing. Thus, the SBM contains as
many observer automata as there are control actions whose
unsafe applications we need to monitor. Modelling func-
tional channels through dedicated automata enables us to
split the send and receive phases of the communication
between two automata in two subsequent transitions. By
doing so, we can verify safety properties related to attacks
on the integrity and the availability of the information flow,
such as altered, missing or delayed communications. In
Section 3, we defined an UCA as a tuple (ca, ctx, r, type). To
verify unsafe control actions, we begin by building a map
of control actions and contexts between the SCS and the
SBM. Let T1, T2, ..., TNTA

be the timed automata in T , if Ti
encodes the behaviour of the component Ci, we build a one-
to-one mapping between the process model variables of Ci

and the subset V ′i ⊆ Vi of Ti. Such correspondence between
process model variables and automata local variables allows
us to unambiguously translate the context of a UCA from
one model to the other. Additionally, for each control action
and feedback, we define a provided location in the automa-
ton that encodes the behaviour of the issuer component.
Checking that the automaton transits through the provided
location enables us to formally verify a UCA. Furthermore,
we introduce transactions to verify UCAs defined on the
timed, ordered execution of multiple events. Let a! and b?
be two synchronisation events on two different channels,
we define a transaction as any pair < a!, b? >. We employ
a special class of observer automata to measure the time
elapsed between the two events that define the transaction
and flag any violation of time-critical safety constraints. N
counts NM observer automata, with NM also being the
number of real-time sensitive transactions in the system. For
each physical process in the safe control structure, the SBM
features one automaton that describes its evolution. This is
important as safety attributes can also be defined on the
states of the physical process (e.g. the process never enters
the hazardous state s̄).
Verification. We express STPA UCAs in Timed Computa-

tional Tree Logic (TCTL) [69] and verify them against the
SBM. The presence of clocks in TCTL allows us to explicitly
handle and verify time constrained hazards. Safety specifi-
cations are expressed in TCTL as reachability statements of
the form: E <> φUCA, i.e., there is at least one computation
where φUCA is true. UCAs of the type provided when not
required or provided with wrong parameters are expressed as:

φUCA := ctx ∧ Ti.lCA [arg]

where ctx denotes the context, Ti.lCA denotes the location
of the controller automaton that issues the control action
and arg the (optional) parameters. The verification of UCAs
of the type not provided (NP), provided with wrong timing
and provided with the wrong duration is carried out through
observers, e.g., the observer automaton of a control action
enters a wait state when a particular context is true. From
there, we can tell if the UCA is not provided within an
amount of time t̄ or whether it lasts for too long or too short.

φUCA := (CAMonitor).NP ∧ (CAMonitor).clock ≤ t̄

where Ti.clock denotes the observer’s clock. Similarly,
UCAs of the type stopped too early (too late) are formulated
as:

φUCA := (CAMonitor).Stop∧(CAMonitor).clock ≤ (≥)t̄

Finally, we combine observers with logical clocks [71] to
identify whether a control action is provided too early or
too late. Given a reachability statement, the model checker
verifies whether the hazardous location is reachable under
the current context and returns a witness trace π of the
sequence of events leading to the hazard.

5.1 Modelling the behaviour of the CBTC

We have designed, implemented and tested the Safe Be-
havioural Model of the CBTC subsystem responsible for
the zone management. This includes aspects related to the
exchange of the train position between the zone controller
and multiple trains as well as coordination, permissions
and clearances (Section 3.1). Details on the implementation
are outlined in the Additional Materials (Appendix ??). For
brevity, we focus here on the zone access control and omit
aspects related to the control of the trains’ speeds. The Safe
Behavioural Model is represented by a NTA that includes
5N + 1 timed automata, with N the number of trains. In
fact, Np = 1 status of the mutual exclusive access zone,
Nc = 2N+1 with two controllers for each train (TC and LU)
and ZC, and Nk = 1 GSM-R channel for communications
between ZC and trains. For each train we have NM = 2 ob-
servers in place to monitor unsafe control actions of the type
Not Provided and Provided too Late on CA1, CA2 and CA4.
Three pairs of synchronisation channels and three buffer
variables allow to orchestrate the information exchange.
Using the UCAs in the context table (Table 2) of the CBTC

(shown in Figure 3), and the safe behavioural model of
its implementation we define the following TCTL specifi-
cations:
UCA1, UCA4 - φ1 := E <> CA1Monitor.NotProvided
and clk < t̄

Explanation: The ZC must always reply to CA2. A violation
occurs if it is not provided within t̄ from CA2.

UCA2 - φ2 := E <> zones[i] == j and t id 6= j
loc[j] == loc[zones[i − 1]] and ZC.ReplyProvided and
reply == allow

Explanation: Find an example of trace where, if i-th zone is
engaged by train j the ZC replies allow to an access request
for the same zone incoming from a train with an id that is
different from the one in the zone i.

(UCA3, UCA6) - φ3 := E <> CA1Monitor.T imeout

Explanation: The automaton that monitors the time delay
between CA2 and CA1 reaches timeout.

UCA5 - φ4 := E <> zonei == 0 and t id = k and
ZC.Busy

Explanation: Finds examples where a controller infers that a
zone is ”busy” when the zone is not occupied by any train.

UCA7 - φ5 := E <> CA2Monitor.NotProvided and
clk < t̄

8

Explanation: Control action CA2 is not provided within t̄
from a change of location.

UCA8 - φ6 := E <> (trains.Approach and area code! =
location)

Explanation: The train communicates a location that is dif-
ferent from its actual current location to the zone controller.

UCA15 − φ7 := E <> (trains.Clear and area code! =
previous location)

Explanation: The train asks the controller to clear an area
different from the one it has just left.

UCA17 − φ8 := E <> (zonei == j and trains(k).Enter)

Explanation: Train Controller commands to proceed
through a zone already occupied by another train.
These safety properties should be satisfied by a correct SBM
of the CPS in the absence of an adversary. Indeed, we have
verified that our model checker does not find any traces that
violate the above TCTL specifications on the initial model.
In the next sections we will investigate what happens in
adversarial conditions.

6 THREAT MODEL

We employ STRIDE to identify potential threats to elements
of the SCS. We find that STRIDE provides a more structured
approach to the analysis of potential threats compared to
traditional STPA-Sec. Moreover, STRIDE is widely estab-
lished, and has already been used with STAMP [18]. STRIDE
allows us to identify the adversarial actions (AAs), where each
action represents the use of a STRIDE threat against an ele-
ment of the SCS. By aggregating the adversarial actions into an
aggregated model (MAA) and formally verifying the specifications
derived from STPA against the composition of the MAA with
the CPS behavioural model, we identify the threat scenarios as
sequences of AAs that, combined with system behaviour, lead to
hazards (Section 6.1). The SCS is a functional model and does
not include deployment details. Thus, we need to ground
the analysis in the specific deployment context to map the
output from the STRIDE analysis to the specific exploita-
tion of vulnerabilities on system components. To address
this gap, we build the Threat-Accident model, which relates
the adversarial actions (AA) to the exploitation of specific
vulnerabilities on system components by identifying the
privileges required to perform an AA (Section 6.2). Finally,
we relate these privileges to an attack graph representation
(Section 6.3) to reason about the attack paths [12], [72].

6.1 Model of adversarial actions
We employ STRIDE on the STAMP model (Step P.5 , Fig-
ure 4), to build the model of Adversarial Actions (MAA).
The MAA is a synthetic aggregated model of the possible
behaviour of an adversary. This synthetic model is an over
approximation of an adversary’s behaviour, i.e., it includes
threat sequences that may not be feasible, but serves our
purpose well. In particular, we use STRIDE-per-interaction
[73] on control actions, feedback and process models to
build the MAA in a semi-automated, systematic, staged
process shown in Figure 5. From the systematic application
of STRIDE we derive an attack library (AL) i.e., a list of
adversarial actions an attacker can apply against the SCS.

Formally, the attack library is an alphabet of adversarial
actions AL∗ = {a1, a2, . . . , aK} of size K .
Definition 1 (Adversarial action). An adversarial action a is

the specialisation of a STRIDE threat to an element of the SCS.
It is defined as a tuple (type, obj, values, privileges).

Where type is type of threat (e.g. spoofing, tampering, etc.),
obj is the target object in the safe control structure, values
are the values of the action’s parameters (e.g., values that are
injected or spoofed), and privileges is the set of privileges
required to perform the action in the system. values can be
null (e.g. Denial of Service), a value or a range of values
and is determined during the safety analysis. Because we
are applying model checking, we are considering discrete
(or discretised values) with at least one adversarial action
defined for each value range. In general, determining values
for data spoofing in conjunction with a model checking
approach remains a topic for further research. To our knowl-
edge no related studies have attempted this. Privileges are
obtained through the exploitation of vulnerabilities (see
Section 6.3). The map between STRIDE threats and required
privileges needs to be carried out manually, as part of the
preparation stage (P.5). The output of P.5 is the the model of

Trust boundaries Attack Library

Security assesment

STRIDE

Fig. 5. Derivation of the model of adversarial actions.
adversarial actions (MAA). The process is shown in (Figure
5). The MAA is a Timed Automaton where the location set
consists of the actions in the Attack Library together with a
set of buffer locations for the communication (synchronisa-
tion) between the MAA and the behavioural model (e.g., to
represent injection or tampering with a message). The MAA
is constructed as follows:

• Each adversarial action in the AL is a state in the MAA.

• The MAA synchronises with the behavioural model
when a control action (or feedback) is exchanged be-
tween two components. From there, the MAA non-
deterministically chooses whether to perform the attack.
For this reason, the SBM is also an input in the process of
generation of MAA Figure 5)

• The attacker chooses the next action non-
deterministically and after each action, the attacker
returns to the initial location.

• We assume that all adversarial actions are independent
from each other. However, we allow dependencies be-
tween them to be set manually (e.g., when the outcome
of an action depends on the success of the preceding
action). For example, a tamper action can only be reached
following an information disclosure.

The resulting automaton models the adversary performing
any of the adversarial actions identified in the STRIDE
model at any point or following the dependencies included

9

in the model. This represents a superset of the possible
attacks. An example of an MAA for the CBTC use case is
shown in Figure 9. In Step P.6 (Figure 4), we then integrate
the MAA with the safe behavioural model following a pro-
cess of adversarial instrumentation (Figure 6). The output of
the instrumentation is M̂ = MCPS |MA where MCPS is
the safe behavioural model of the CPS andMA the MAA. It
is possible to generate more than one MAA and analyse
them separately e.g., one for each subset of threats that
analysts intend to consider. This allows for faster analysis
on a reduced set of threats.

Instrumentation

Fig. 6. Process of adversarial instrumentation

6.2 Threat-Accident Model
We aim to identify threat scenarios, i.e., those attacks where
the attacker can trigger Losses to the CPS by causing Acci-
dents. To achieve this, we build the Threat-Accident model to
relate attack steps such as the exploitation of a vulnerability
to hazards and their respective accidents. Figure 7 shows the
relations we establish amongst the elements of the STAMP
model, threats and low-level attack steps. This diagram,
extends the concepts presented in [74] with elements from
the STAMP domain. In STAMP, Losses are defined as the
consequences of Accidents which constitute the high level
target of Threat Actors; Threat Actors use Threats to cause
Accidents. From a functional perspective, Threats affect the
Control Actions, Feedback Signals and the Process Model. The
unsafe application of Control Actions leads the system into a
hazardous state that can cause an Accident. From an architec-
tural perspective, Threats are facilitated by the exploitation
of vulnerabilities on system components and weaknesses
(e.g. credentials, network access, etc.), which lead to the
attacker obtaining the Privileges to spoof/tamper/read/delay/-
drop the information flow of the CPS and thus cause the
unsafe application of Control Actions. This application can
be through direct actions e.g. through compromising Control
Actions, Feedback or Process Models or through cascading
effects.

The representation shown in Figure 7 plays a key role
in linking specific vulnerabilities to malicious actions, Acci-
dents and Losses. Security engineers can define adversary
goals in terms of the system level Losses and Accidents.
Our approach provides them with the tools to identify the
Privileges required to trigger a specific Accident and to find
the respective attack paths. Security engineers and operators
can then address the remediation of these paths.

6.3 Model of attacker progression
Formally verifying the safety properties against the instru-
mented behavioural model M̂, together with the references
provided in the threat-accident model, produces a list of

Control Action /
Feedback

Accident

Hazard

leads to

unsafe application causes

Process Model

changes

decides

Threat

<<assets>>

Actor

facilitated by

uses
targets

affects

read/write

affects

grants

Message Event Variable Parameter

s/t/r/i/d/e s/t/r/i/d/e

Vulnerability Weakness

<<assets>>

Privilege

Loss
causes

Fig. 7. Associations among threats to safety properties and vulnerabili-
ties in a CPS deployment

privileges that the attacker needs to acquire to cause an
accident. An attack graph based approach then allows us to
explore the paths to the acquisition of those privileges from
the moment a foothold is established in the network [75].
We use logical attack graphs to model relations between
vulnerabilities and privileges [76] [12]. In particular, we use
MulVal to generate attack paths leading to threat scenarios.
MulVal is a logic-based network security analyser [77] and uses
facts and rules to derive the attacker’s progression through-
out the computer network. We provide, as input, a set of
logic predicates (facts) which define the architecture of the
system (e.g., hosts, network topology, programs, privileges,
etc.), the vulnerabilities affecting system components as well
as the privileges which are objectives of the attack. To derive
the progression of the attack, we use the set of rules already
available in MulVal. These define the relations among the
facts and are expressed through Horn clauses [78].

7 DISCOVERY OF THREAT SCENARIOS

The discovery of threat scenarios is the first stage of Tire-
sias (Figure 4). It is a top-down staged process and uses,
as input, the UCAs obtained from the execution of the
third step of STPA. We have shown (Section 5) that, for
each UCA, it is possible to define the safety properties
as reachability properties in TCTL. We have then shown
(Section 6) that we can use model checking to verify these
safety properties against the parallel composition of the
SBM and the synthesised attacker model MAA. When a
violation of the safety properties in the instrumented model
is reachable, the model checker outputs a trace leading to
that violation (witness trace). This trace contains the ordered
and timed sequence of adversarial actions that the threat
actor needs to perform to trigger a hazard. A sequence of
adversarial actions leading to a safety violation is a threat
scenario. A traditional verification process would return a
single trace that violates the safety properties, whereas we
are interested in all the traces, i.e., all the ways in which

10

the property can be violated. Therefore, we re-iterate the
model checking process multiple times, each time excluding
the traces already found. When no more traces (and threat
scenarios) are found, the safety property cannot be violated
by the attacker, assuming that the model is correct and
complete.

7.1 Formalisation
Formally, let H be the hazard caused by the application of
UCAs

H ← {UCA}

Let MCPS be the safe behavioural model of the CPS
and ΦH = {φ1, φ2, .., φN} the set of safety properties for
UCA1, ..., UCAN , where UCA1, ..., UCAN are the UCAs
leading to H. Also, let MA be the model of adversarial
actions built with respect to a specific threat model, and
M̂ =MCPS |MA be the parallel composition of theMCPS

and MA. We verify that M̂ |= φi, ∀i ∈ {1, .., N} and call
πi the symbolic trace that satisfies φi. Therefore, a threat
scenario (attack) Ai consists of the locations of MA visited
in πi, and is defined as Ai := {ei1, ei2, ..., eiKi}, where eik
are the locations of MA contained in πi. This can be easily
generalised to multiple hazards and UCAs per hazard. For
example, given hazards H1, H2,,HN ,

H1 ← {UCA11, ..., UCA1M1
}

...
HN ← {UCAN1, ..., UCANMN

}
we define K = Πi∈NMi sets of safety specifications (one for
each hazard)

Φ1 = {φ11, ..., φ1M1}
...

ΦN = {φN1, ..., φNMN
}

where φij is the safety specification that verifies the reach-
ability of UCAij . Thus for M̂ |= φij (φij ∈ Φi), πij is the
respective trace, where there exists an attack Aij leading to
UCAij , and therefore to Hi. An attacker aiming to cause Hi

must therefore be able to carry out all the adversarial actions
in Aij for any i and j.

7.2 Attack enumeration
As mentioned earlier, each verification of each φ ∈ Φ returns
a single witness trace that satisfies φ. To obtain all the traces
that violate φwe need to re-iterate the verification excluding
the previous found traces until no more traces that satisfy
M̂ are found. We have therefore developed an algorithm for
this.

Notation. Let N be the number of timed automata in M̂,
we introduce the notation φ(L̂1, L̂2, . . . , L̂N̄) with N̄ < N
and L̂i ⊆ Li a subset of locations of the automaton Ti.

Let L̂ =
N̄⋃
i=1

L̂i and let si be a state of M̂. Formally,

φ(L̂1, L̂2, ..., L̂N) |= M̂ if there exists a trace π such that
(s1, s2, ..., sM) /∈ π and lj /∈ si, with lj ∈ L̂ ∀ i and ∀
j. In other words, φ(L̂1, L̂2, ..., L̂N) |= M̂ is true if there
exists trace π that satisfies φ for which the automaton Ti
does not pass through any location lij ∈ L̂i ∀j and ∀ i ∈ N̄ .

Looking for infinite traces would take an infinite time, so
we introduce a time bound t̄ for the search. This gives us
φ(l1, l2, ..., lP)≤t̄ with P, t̄ ∈ N where we search for a trace
that does not go through (l1, l2, ..., lP).

Description. The algorithm to enumerate safety critical at-
tacks against the specification φ of a CPS is fully detailed in
Appendix ??. In short, given the hazard H triggered by the
hazardous control action UCA and being ΦUCA = {φ} the
set of specifications that verifies the presence of H in M̂, the
algorithm starts with the verification of the specification φ.
If M̂ |= φ with witness trace π, we call threat scenario A(π)
the sequence of locations of the MAA contained in π. After
we find a threat scenario, a new specification φ(A(π))≤t̄ is
generated to verify the existence of other attacks different
from the one has been found. The process is repeated until
the new generated specification does not satisfy M̂.

Completeness of Results. When iterated over all φij , the
algorithm allows us to discover all the threat scenarios,
i.e., sequences of adversarial control actions, leading to
the violation of a specification φ. The enumeration process
can lead to the discovery of threat scenarios that contains
redundant adversarial actions. Therefore, discovered sce-
narios need to be reduced before further processing. Let
Ap = (ep1, . . . , epN) and Aq = (eq1, . . . , eqM), Ap is redun-
dant if and only if Ap ⊂ Aq .

Implementation. We have implemented the attack enumera-
tion process (Step 1, Figure 4) in a JAVA tool featuring two
main components: a query generator and a model checker
service (wrUPPAL). Given a safety specification φ and a time
limit for the verification t̄, the pair (φ, t̄) is sent to the wrUP-
PAAL service which has been previously initialised with the
instrumented model M̂CPS . wrUPPAAL is a wrapper of
UPPAAL [49] JAVA API with a cache for the queries and
a watchdog. The latter is key to limit the verification in
time. The results of the verification are sent back to a query
generator that extracts the sequence of adversarial actions
A1 = e11, e12, . . . , e1K from the witness trace and computes
the next query φ(A1) until no more traces can be found, i.e.,
no more attacks are possible given the current implementa-
tion and threat model. The query generator and the model
checker service communicate through Java Message Service
(JMS) over Apache ActiveMQ.

8 MSS & PATH ANALYSIS

In Section 7, we have shown that, given the hazards H , we
can enumerate the threat scenarios A1, A2, ..., AN leading to
H . Given a set of adversarial actions AL = {a1, a2, ..., aK},
a threat scenario is an ordered sequence of length Mi of
adversarial actions Ai = (ei1, . . . , eiMi

), with eij ∈ AL∗. To
cause harm, an adversary must execute the entire sequence
of adversarial actions in at least one scenario Ai. We man-
ually map each adversarial action to one or more set(s) of
privileges required to perform it. Thus, to perform an action,
the adversary must obtain all the privileges in at least one
privilege set. The relation between the hazard H and the
privileges required to cause it is summarised in Figure 8.

Formally, let {p1, . . . , pM} be the set of privileges that
map to the adversarial actions in AL and {P1, . . . , PM} be

11

AND ANDOR OR

Fig. 8. Hazards in functions of privileges.

a set of Boolean variables, such that Pi is true if the attacker
has acquired the privilege pi. We can write the hazard H as
a function of the P1, . . . , PM .

H(P1, . . . , PM){0, 1}M → {0, 1}

whereH is a Boolean function that evaluates to true for those
combinations of privileges that enable the attacker to cause
the hazard. We denote with S the minimal safety set(s), i.e.,
the minimum set of privileges that falsifies H. We compute
S during the second step of Tiresias. If the defender can
remediate the vulnerabilities leading to privileges pi ∈ S ,
Pi is always false and the attacker cannot cause H . Finally,
in the third step of Tiresias, we build the attack graph
of the CPS A = G(V,E), which contains all the attack
paths starting from the system perimeter and leading to
{p1, . . . , pM}. Given two vertices v ∈ V and w ∈ S ⊆ V ,
we consider a vulnerability leading to v as critical if there
exists a path from v to w. Finally, given the attack graph
A = G(V,E) and the minimal safety set S we propose an
enumeration algorithm (Appendix ??) that enables us to find
common vulnerabilities vi ∈ Vc ⊆ V in the logical attack
graph. However, the complexity of the algorithm grows
with the product of the number of edges in the attack graph
and can only be applied by limiting the depth of the search
(Appendix ??). We leave the development of more tractable
algorithms for further work.

Implementation. We have developed a program that uses
Microsoft’s Z3 solver to compute S . The program expects in
input a Boolean function that we defined from the threat
scenarios identified during the previous step of Tiresias.
After computing the MSS, we employ MulVal to generate
the attack paths leading, from the system perimeter, to the
privileges in S .

9 RAILWAY TRAFFIC CONTROL SYSTEM

We apply our methodology to the CBTC use case introduced
in Section 3.1. We start by applying STRIDE to the CBTC
system (Figure 3) and determine the Adversarial Actions
(AA) in Table 3. We consider Spoofing, Tampering, ID and
DoS threats against control action CA1. For each tampering
and spoofing threat, we instantiate an adversarial action
for each significant4 value to inject, in this case allow and
deny. Similar threats affect CA2 and CA4. We assume that
RTK messages are signed and cannot be tampered with or
spoofed; but they can be disrupted (a14). However, the com-
munication with the GNSS can be spoofed. We introduce a
dependency between information disclosure and tampering
i.e., we assume that the communication protocol requires an

4. STPA provides values r for which a UCA is hazardous.

TABLE 3
Resulting Attack Library

Object Type Value Privileges
a1 ZC : Zone[i] Tamper [0− 1] (p10, p11, p12)
a2 LU : GNSS Tamper [1− 5] p13
a3 CA1 : Auth Spoof [0− 1] p2
a4 CA1 : Auth DoS - (p14), (p8)
a5 CA1 : Auth Disclosure [0− 1] (p10), (p11), (p12), (p2)
a6 CA1 : Auth Tamper - (p10, p11, p12), (p2)
a7 CA2 : Zone Spoof [1− 5] p7
a8 CA2 : Zone DoS - (p14), (p8)
a9 CA2 : Zone Tamper [1− 5] (p3, p6, p5), (p7)
a10 CA2 : Zone Disclosure - (p3), (p6), (p5), (p7)
a11 CA4 : Clear Spoof [1− 5] (p7)
a12 CA4 : Clear Tamper [1− 5] (p3, p6, p5), (p7)
a13 F3 : GNSS Spoof [1− 5] (p9)
a14 F2 : RTK Dos - (p4), (p1)
a15 LU RTKOn Tamper true p13

attacker to read a message before modifying it. Three further
tampering actions can be carried out against the process
model variables held in zone controller (a1), and the location
unit (a2, a15). Each adversarial action in Table 3 is mapped to
one or more sets of privileges. Privileges in {p1, . . . , p14} are
obtained through the exploitation of critical vulnerabilities
within the system architecture. These are vulnerabilities
affecting components responsible for the exchange of con-
trol actions and feedback. The model of adversarial actions
(MAA) is shown in Figure 9. Initial and buffer locations are
shown in blue, while locations corresponding to adversarial
actions are shown with a white background. Transitions
towards the execution of adversarial actions are shown in
red, whilst those in blue return to the initial location 5. We
proceed with the adversarial instrumentation and build the
parallel composition M̂ = MCPS |MA of the SBM of the
CBTC system and the MAA in Figure 9.

Init
Sent
[CA1]

T[MA]

S[GPSPos]

ID[CA1]

D[CA1]

T
[CA10]

T[MA]
T[CA1]

S[CA1]

S[MA]
S[CA2]
value

value

value

Sent
[CA2]

ID[CA2]

T[MA]
T[CA1]

valuevalueT[CA2]
value

D[CA2]

D
[CA12]

T[Zone[i]]

S[GPSPos]
S[CA4]
value

value
valuevalueT[CA4]

value

Sent
[CA4]

Fig. 9. MAA for the CBTC use case.
We use our tool-chain to verify safety specifications

φ1, .., φ8 defined in Section 5. The outcome of the verifi-
cation with a time bound set to t̄ = 500s is shown in
Table 4. For each specification φ we report: the number of
threat scenarios found (TS), the number of threat scenarios
after elimination of redundant attacks (RTS), the respective
hazards and threat scenarios and the time taken to verify
each query φi and those derived from it i.e., the time elapsed
(TE) (Table 4).

5. The colour coding only aims to aid the visualisation. There is no
difference in terms of semantics

12

TABLE 4
Attack traces violating safety specifications. Size of trace set (TS). Size

of reduced trace set (RTS). Verification time (TE).

Hazard Spec TS RTS Threat Scenarios TE
H4 φ1 1 1 {a4} 500.14s
H1 φ2 7 7 {a10, a9}, {a14, a13},

{a15, a13}, {a7}, {a1},
{a2}, {a11}

500.93s

H4 φ3 1 1 {a4} 500.17s
H2 φ4 2 2 {a4} 500.3s
H4 φ5 1 1 {a8} 300.15

H1, H3, H5 φ6 8 4 {a10, a9}, {a4}, {a15} 962.3s
H3, H5, H6 φ7 6 6 {a10, a9}, {a5, a6},

{a14, a13}, {a15, a13},
{a11}, {a2}

537.3s

H1 φ8 10 6 {a5, a6}, {a10, a9},
{a14, a13}, {a15, a13}
{a2}, {a3}

864.11s

Hazards H1, H3, and H6 lead to a collision event. We
enumerate attacks leading to these hazard through the
verification of φ2, φ6, φ7, φ8 and find, respectively, 7, 3,
6, and 6 attacks. Thus, there are 11 distinct ways an at-
tacker can cause a collision between two trains (some of the
22 traces enumerated in Table 4 appear more than once).
We use Z3 [67] to find a minimal safety set S for which
H = (H1 ∨ H3 ∨ H6) is false (i.e. a collision cannot be
caused). As the set of privileges is contained, the solver
can completely enumerate all the 9 minimal safety sets
S1, . . . ,S9 in < 1s (Appendix ??). In complex examples,
enumerating all sets may be computationally challenging.
However, preventing one minimal safety set is sufficient
to make the attack impossible. We use one of the minimal
safety sets that satisfy ¬H to identify the minimum number
of vulnerabilities the defender needs to remediate to prevent
the hazard.
We use the architecture for the CBTC system shown in

Figure 10, which features three layers: enterprise, ground
control (RBC) and mobile. The enterprise layer consists of
three interconnected sub-networks, including both work-
stations and servers. The ground network (RBC) ensures the
infrastructure control operations and comprises three mod-
ular redundant (TMR) [79] implementations of the zone con-
troller that orchestrates access to the shared infrastructure
and a GSM receiver/transmitter module that also acts as
arbitrator of the TMR. Each train has its own local network
that hosts a TMR implementation of the train controller, a
GSM module, the GNSS and radio modules for positioning
and the HMI. We omit components not connected to the
TPC/IP layer such as speed controller, odometer and actua-
tion units as they communicate with the train controller over
a dedicated bus (i.e. CAN), which we assume is out of reach
for the adversary. We have instantiated this architecture
with 54 known vulnerabilities including 36 vulnerabilities
on components of the mobile and ground layers that lead
to an attacker obtaining access to the privileges {p1, ..., p14}
(the full list of privileges is shown in Appendix ??). We are
interested in understanding which of the 54 vulnerabilities
can lead to a safety critical attack.

We use MulVAL [80] to build the attack graph for the
system assuming that the attacker can establish a connection
with some of the work-stations in the enterprise network
(e.g., as a result of phishing or through a physical backdoor
[81]). At the same time, we also assume that they can carry

GSM-R Base
Module R

Router

Controller (2)

GSM-R
ModuleGPS Module

RTK Module

HMIR

Train

RBC
Controller (2)

Interface
Server

RBC

R Application 1
Server

Firewall

R

HistorianWorkstationsWorkstations

Firew
allNFSServer

Domain
ControllerR

Database
Enterprise Network

RBC
Controller (1)

RBC
Controller (3)

Controller (3)

FTPServer

Internet

Controller(1)

Fig. 10. Deployment of the CPS

out a GNSS spoofing attack. To carry out an attack that leads
to a safety violation on the hazards, the attacker must obtain
privileges p1, . . . , p14, so they are used as targets for the
attack graph generation. The corresponding attack graph
produced by MulVAL has 333 nodes: 170 and nodes, 45 or
nodes and 118 facts.

Identifying which vulnerabilities should be remediated
requires an enumeration of the attack graphs and is chal-
lenging given its depth. To solve the problem, we select
one of the minimal safety sets that satisfies H = false,
and use JGrapht [82] to evaluate, individually, the paths
leading to the privileges in the set. For each path, we count
the occurrences of AG nodes that are common among all
paths. Our program identifies 119353 potential paths in the
graphs in < 5s. However, some nodes shown below occur
very frequently, in all or most of the paths.

netAccess(opgInterfaceServer,_,_)
execCode(opgInterfaceServer,root)
execCode(application_server_1,root)

These privileges were not part of the initial set
{p1, . . . , p14} but are necessary to reach them. We select
p∗=execCode(opgInterfaceServer,root) and apply our reverse
enumeration algorithm (Appendix ??) to find all the attack
paths leading to p∗. This is feasible now since p∗ is closer to
perimeter than the privileges in the initial set {p1, . . . , p14}.
We identify the following vulnerabilities that are shared
across the attack paths leading to p∗.

(opgInterfaceServer,vulnCVE2022_x,kernel,
localExploit,privEscalation)

(opgInterfaceServer,vulnCVE2022_y,
operatorLogin,remoteExploit,privEscalation
)

(applicationServer1,vulnCVE2021_x,
internalWebApp,remoteExploit,
privEscalation)

(workstationHost1,vulnCVE2021_y,rdp_server,
remoteExploit,privEscalation)

(workstationHost10,vulnCVE2021_z,rdp_server,
remoteExploit,privEscalation)

p∗ is common to 119352 of the 119353 paths found in the
original attack graph, from the perimeter to {p1, . . . , p14}.
We fix the five vulnerabilities above and generate a new
attack graph for the entire system. Since p∗ was a common
node, by removing it we remove almost all the paths leading
to the minimal safety set. In fact, the new AG contains
only one attack path, which is the one leading to p9 which,

13

together with any privilege in the set {p1, p4, p15} can
lead to a collision. This corresponds to a GNSS spoofing
attack against the system, which is not easy to remediate.
A possible solution is to remediate vulnerabilities leading
to {p1, p4, p15}. Protecting these privileges can prevent the
attacker to disrupt the radio beacons (Table 3), making
any eventual GNSS spoofing attempt not safety threatening
anymore.

10 DISCUSSION

We have presented a novel methodology that integrates
safety and security analysis to identify those threats that
can lead to accidents and hazards. The key points for the
integration between the two analyses are: the generation of
a combined MAA from the results of the STRIDE threat
analysis, and the creation of a correspondence between
the behavioural model of the system and its safe control
structure. By combining the MAA with a behavioural model
of the SCS and using formal analysis to verify the safety
properties we identify the sequences of adversarial actions
that lead to the violation of the safety properties. The
existence of a map between STRIDE threats and privileges
in a deployed architecture enables us to identify, via at-
tack graph analysis, specific vulnerabilities the exploita-
tion of which facilitates threat scenarios. The defender can
then prioritise the remediation of those vulnerabilities (e.g.,
through patching, traffic isolation, etc.). Our analysis can be
applied for specific hazards (e.g., those with the potential
for more serious consequences) at system design time or,
alternatively, at runtime. In the first case the results of the
analysis can be used, within an iterative design process,
with different levels of details [36]: 1) to produce security
requirements for the design team to improve the security of
the system architecture (e.g., changing function allocation,
network segmentation, etc.); 2) to prove the effectiveness
of mitigations to limit the impact on safety of attacks.
Similarly, at runtime, it is possible to use the results of our
methodology to identify and apply security measures (e.g.,
host isolation, patching, etc.) to preserve safety. We have
proposed and integrated a concrete set of tools (UPAAL,
Mulval, Z3) and developed additional algorithms to support
this analysis.

Complexity and Scalability. Threat analysis using STRIDE and
safety analysis using STAMP/STPA are common and these
methods have been applied to large scale complex systems
(e.g., [18], [32], [34], [41], [42] for STPA/STPA-Sec). The
main scalability limitations to apply our methodology stem
from the formal verification process used to identify and
enumerate the safety critical attacks. We have taken several
steps to mitigate this: using automata to encode only high
level behaviour, decoupling between the functional model
and its more complex deployment via the use of privileges
and limiting the analysis in time. For example, the CBTC use
case 3.1 shows the effectiveness of the decoupling. While its
SCS (Figure 3) is relatively simple and straightforward to
analyse, its deployed architecture (Figure 10) is significantly
more complex. However, the complexity arising from the
formal verification process is unavoidable and common to
the application of such formal techniques in safety analysis
and software engineering in general.

The completeness of the analysis and of the results obtained
depends on the completeness of the models and of the
formal analysis process. By limiting the analysis in time,
we can compromise that completeness. For example, by
restricting the analysis to a too short time frame we have
missed a possible attack (e.g., tampering of clear request)
because it was buried too deep in the state space. Running
the analysis for longer requires computational resources but
also more human intervention to manage the cases where
the model-checker is stuck. Further optimisations to manage
the complexity of the process are possible. For example,
by synthesising a more specific model for the MAA using
more information from the attack graphs or by using more
efficient strategies for the formal verification. We leave the
investigation of such optimisations for future work.
An additional limitation of our work lies in the mapping

between STRIDE threats and the privileges in the system
architecture. This can be a complex process, which we
have carried out manually. It could be, at least partially,
automated but we have not yet investigated this in depth.

Genericity. The methodology proposed remains generic. It
can be applied to different CPS and could be used with
different methods for threat analysis and safety analysis
as long as the integration points mentioned above remain
applicable. Similarly, different tools (e.g., model-checkers,
SAT solvers, tools for attack graph generation) could be used
for the analysis.

11 CONCLUSIONS

Cyber-Physical Systems increasingly pervade all aspects of
daily life. As systems are increasingly interconnected and
new devices are increasingly being added to them, their at-
tack surface increases exponentially. It becomes increasingly
difficult to defend such systems against all possible attacks
and it is therefore essential to identify and remediate those
attacks that can lead to accidents and hazards, and threaten
loss of life. This requires a combined safety and security
analysis. However, although several attempts have been
made to bridge between the two, no definitive methodology
has emerged. We have proposed Tiresias, a methodology
that combines STPA analysis with STRIDE and applies
formal techniques to identify the threat scenarios and the
vulnerabilities that facilitate them. Equally importantly, we
have also proposed an integrated tool-chain to perform this
analysis and demonstrated its use in a realistic use case.
Our methodology relies on building a synthesised model

of possible attacks from the security analysis, combining
this with the safe control behavioural model of the CPS
and formally verifying that safety properties (derived from
the safety analysis) are preserved. This takes into account
possible attack steps as well as their cascading effects in the
system’s behavioural model. It also takes into account the
ordering/timing of events. The output from this analysis is
used in conjunction with attack-graph analysis to identify
which specific vulnerabilities should be remediated in order
to break attack paths leading to accidents and hazards.
Several mappings need to be established across different

models to make this possible. The generation of a combined
MAA from the results of the threat analysis, the analysis
of the safety control structure and the generation of safety

14

properties are key for integrating threat analysis and safety
analysis. Reasoning over the privileges acquired as a result
of the exploitation of vulnerabilities is key to integrate with
attack-graph analysis and identify the specific vulnerabil-
ities that need to be remediated. Several strategies and
metrics can then be employed to prioritise between them
and safeguard the minimal safety set. Security measures can
themselves have an impact on safety. While our tool-chain
does not yet support the application of countermeasures on
system design, our method allows to verify that changes do
not lead to the violation of other safety properties. We leave
this analysis for further work. Like with most other formal
verification and model-checking based approaches, there are
complexity and scalability challenges. Several optimisations
are still possible to considerably mitigate this. We leave them
for further work. Our methodology could be applied with
different approaches for safety analysis, security analysis
and formal verification as well as with different tools. The
work presented there could therefore form the foundation
for further investigations and new solutions in this space.

REFERENCES

[1] BBC. (2021) Hacker tries to poison water supply of
florida city. [Online]. Available: https://www.bbc.co.uk/news/
world-us-canada-55989843

[2] J. Slowik, “Anatomy of an attack: Detecting and defeating
crashoverride,” VB2018, October, 2018.

[3] ESET, “Industroyer2. Industroyer reloaded.”
https://www.welivesecurity.com/2022/04/12/
industroyer2-industroyer-reloaded/, 2022, [Online; accessed
20-April-2022].

[4] A. Ross. (2022) ’cyberpartisans’ hack belarusian
railway to disrupt russian buildup. [Online].
Available: https://www.theguardian.com/world/2022/jan/25/
cyberpartisans-hack-belarusian-railway-to-disrupt-russian-buildup

[5] S. Shane and D. E. Sanger, “Drone crash in iran reveals secret us
surveillance effort,” The New York Times, vol. 7, 2011.

[6] W. Young and R. Porada, “System-theoretic process analysis for
security (STPA-SEC): Cyber security and STPA,” in 2017 STAMP
Conf., 2017.

[7] A. Shostack, “Experiences threat modeling at microsoft.” MOD-
SEC@ MoDELS, vol. 2008, 2008.

[8] F. Crawley and B. Tyler, HAZOP: Guide to best practice. Elsevier,
2015.

[9] D. H. Stamatis, Failure mode and effect analysis: FMEA from theory to
execution. Qual. Press, 2003.

[10] J. B. Bowles, “The new sae fmeca standard,” in Annu. Rel. and
Maintainability Symp.. 1998 Proc. Int. Symp. Product Qual. and In-
tegrity. IEEE, 1998, pp. 48–53.

[11] C. A. Ericson and C. Ll, “Fault tree analysis,” in Syst. Saf. Conf.,
Orlando, Florida, vol. 1, 1999, pp. 1–9.

[12] S. Jajodia, S. Noel, and B. O’berry, “Topological analysis of net-
work attack vulnerability,” in Managing cyber threats. Springer,
2005, pp. 247–266.

[13] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner,
“Sahara: a security-aware hazard and risk analysis method,” in
2015 Design, Automation & Test in Eur. Conf. & Exhib. (DATE).
IEEE, 2015, pp. 621–624.

[14] B. Meng, D. Larraz, K. Siu, A. Moitra, J. Interrante, W. Smith,
S. Paul, D. Prince, H. Herencia-Zapana, M. F. Arif et al., “Verdict: a
language and framework for engineering cyber resilient and safe
system,” Syst., vol. 9, no. 1, p. 18, 2021.

[15] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and
L. Sha, “Compositional verification of architectural models,” in
NASA Formal Methods Symp. Springer, 2012, pp. 126–140.

[16] MITRE. (2023) Common attack pattern enumeration and
classification. [Online]. Available: https://capec.mitre.org/

[17] S. Longari, A. Cannizzo, M. Carminati, and S. Zanero, “A secure-
by-design framework for automotive on-board network risk anal-
ysis,” in 2019 IEEE Vehicular Networking Conf. (VNC). IEEE, 2019,
pp. 1–8.

[18] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based
threat modeling for cyber-physical systems,” in 2017 IEEE PES
Innovative Smart Grid Technol. Conf. Eur. (ISGT-Europe). IEEE, 2017,
pp. 1–6.

[19] H. Esquivel-Vargas, J. H. Castellanos, M. Caselli, N. O. Tip-
penhauer, and A. Peter, “Identifying near-optimal single-shot
attacks on icss with limited process knowledge,” arXiv preprint
arXiv:2204.09106, 2022.

[20] I. Stellios, P. Kotzanikolaou, and C. Grigoriadis, “Assessing iot
enabled cyber-physical attack paths against critical systems,” Com-
put. & Secur., vol. 107, p. 102316, 2021.

[21] M. Barrère and C. Hankin, “Analysing mission-critical cyber-
physical systems with and/or graphs and maxsat,” ACM Trans.
Cyber-Physical Syst., vol. 5, no. 3, pp. 1–29, 2021.

[22] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, and L. Pietre-
Cambacedes, “Safety and security interactions modeling using the
bdmp formalism: case study of a pipeline,” in Int. Conf. Comput.
Saf., Rel., and Secur. Springer, 2014, pp. 326–341.

[23] I. Gashi, A. Povyakalo, and L. Strigini, “Diversity, safety and
security in embedded systems: modelling adversary effort and
supply chain risks,” in 2016 12th Eur. Dependable Comput. Conf.
(EDCC). IEEE, 2016, pp. 13–24.

[24] C. Ponsard, J. Grandclaudon, and P. Massonet, “A goal-driven
approach for the joint deployment of safety and security standards
for operators of essential services,” J. Softw.: Evol. and Process, p.
e2338, 2021.

[25] C. Kolb, S. M. Nicoletti, M. Peppelman, and M. Stoelinga, “Model-
based safety and security co-analysis: a survey,” arXiv preprint
arXiv:2106.06272, 2021.

[26] L. Piètre-Cambacédès and M. Bouissou, “Cross-fertilization be-
tween safety and security engineering,” Rel. Eng. & System Saf.,
vol. 110, pp. 110–126, 2013.

[27] R. Kumar, B. Narra, R. Kela, and S. Singh, “Afmt: Maintaining the
safety-security of industrial control systems,” Comput. in Industry,
vol. 136, p. 103584, 2022.

[28] L. Pietre-Cambacedes, E. L. Quinn, and L. Hardin, “Cyber security
of nuclear instrumentation & control systems: overview of the iec
standardization activities,” IFAC Proc. Volumes, vol. 46, no. 9, pp.
2156–2160, 2013.

[29] L. Pietre-Cambacedes and E. L. Quinn, “Iec 62859: towards an
international standard on the coordination between safety and
cybersecurity for nuclear i&c systems,” in 9th International Topi-
cal Meeting on Nuclear Plant Instrumentation, Control, and Human
Machine Interface Technologies (NPIC&HMIT 2015), 2015.

[30] EUROCAE, “Ed-203a - airworthiness security methods and con-
siderations,” 2018.

[31] W. Young and N. Leveson, “Systems thinking for safety and
security,” in Proc. 29th Annu. Comput. Secur. Appl. Conf., 2013, pp.
1–8.

[32] N. G. Leveson, Engineering a safer world: Systems thinking applied to
safety. The MIT Press, 2016.

[33] R. Patriarca, M. Chatzimichailidou, N. Karanikas, and
G. Di Gravio, “The past and present of system-theoretic accident
model and processes (stamp) and its associated techniques: A
scoping review,” Saf. science, vol. 146, p. 105566, 2022.

[34] S. Khan, S. Madnick, and A. Moulton, “Cyber-safety analysis of
an industrial control system for chillers using STPA-Sec,” Sloan
Research Paper, 2018.

[35] P. Beaumont and S. Wolthusen, “Micro-grid control security anal-
ysis: Analysis of current and emerging vulnerabilities,” Critical
Infrastructure Secur. and Resilience: Theories, Methods, Tools and Tech-
nol., pp. 159–184, 2019.

[36] M. Span, L. O. Mailloux, R. F. Mills, and W. Young, “Concep-
tual systems security requirements analysis: Aerial refueling case
study,” IEEE Access, vol. 6, pp. 46 668–46 682, 2018.

[37] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, and S. Sezer,
“STPA-SafeSec: Safety and security analysis for cyber-physical
systems,” J. Inf. Sec. and Appl., vol. 34, pp. 183–196, 2017.

[38] S. Khan and S. E. Madnick, “Cybersafety: A system-theoretic ap-
proach to identify cyber-vulnerabilities & mitigation requirements
in industrial control systems,” IEEE Trans. Dependable and Secure
Comput., 2021.

[39] N. P. De Souza, C. d. A. C. César, J. de Melo Bezerra, and C. M.
Hirata, “Extending STPA with STRIDE to identify cybersecurity
loss scenarios,” J. Inf. Secur. and Appl., vol. 55, p. 102620, 2020.

[40] L. M. Castiglione, Z. Hau, K. T. Co, L. Muñoz-González, F. Teng,
and E. Lupu, “Ha-grid: Security aware hazard analysis for smart

15

grids,” in 2022 IEEE Int. Conf. Commun., Control, and Comput.
Technol. for Smart Grids (SmartGridComm). IEEE, 2022, pp. 446–
452.

[41] A. Nourian and S. Madnick, “A systems theoretic approach to
the security threats in cyber physical systems applied to stuxnet,”
IEEE Trans. Dependable and Secure Comput., vol. 15, no. 1, pp. 2–13,
2015.

[42] J. P. Thomas IV, “Extending and automating a systems-theoretic
hazard analysis for requirements generation and analysis,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2013.

[43] A. Abdulkhaleq and S. Wagner, “Integrated safety analysis using
systems-theoretic process analysis and software model checking,”
in Comput. Saf., Rel., and Secur.: 34th Int. Conf., SAFECOMP 2015,
Delft, The Netherlands, September 23-25, 2015, Proc. 34. Springer,
2015, pp. 121–134.

[44] A. Abdulkhaleq, S. Wagner, and N. Leveson, “A comprehensive
safety engineering approach for software-intensive systems based
on STPA,” Procedia Eng., vol. 128, pp. 2–11, 2015.

[45] A. L. Dakwat and E. Villani, “System safety assessment based on
STPA and model checking,” Saf. science, vol. 109, pp. 130–143, 2018.

[46] A. Pnueli, “The temporal logic of programs,” in 18th Annu. Symp.
on Foundations of Comput. Science (sfcs 1977). ieee, 1977, pp. 46–57.

[47] A. Scarinci, A. Quilici, D. Ribeiro, F. Oliveira, D. Patrick, and N. G.
Leveson, “Requirement generation for highly integrated aircraft
systems through STPA: An application,” J. Aerosp. Inf. Syst., vol. 16,
no. 1, pp. 9–21, 2019.

[48] C. Zhao, L. Dong, H. Li, and P. Wang, “Safety assessment of the
reconfigurable integrated modular avionics based on STPA,” Int.
J. Aerosp. Eng., vol. 2021, 2021.

[49] M. Hendriks, W. Yi, P. Petterson, J. Hakansson, K. Larsen,
A. David, and G. Behrmann, “Uppaal 4.0,” in Third International
Conference on the Quantitative Evaluation of Systems - (QEST’06),
2006, pp. 125–126.

[50] J. C. Mitchell, V. Shmatikov, and U. Stern, “Finite-state analysis of
ssl 3.0.” in USENIX Secur. Symp., 1998, pp. 201–216.

[51] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspec-
tor: A systematic approach for adversarial testing of 4G LTE,” in
Network and Distrib. Syst. Secur. (NDSS) Symp. 2018, 2018.

[52] S. Hu, Q. A. Chen, J. Sun, Y. Feng, Z. M. Mao, and H. X.
Liu, “Automated discovery of denial-of-service vulnerabilities in
connected vehicle protocols,” in USENIX Secur. Symp., 2021.

[53] S.-J. Moon, Y. Bieri, R. Martins, and V. Sekar, “Automatic discovery
of evasion attacks against stateful firewalls,” 2021.

[54] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “Use of formal methods at amazon web services,”
See http://research. microsoft. com/en-us/um/people/lamport/tla/formal-
methods-amazon. pdf, 2014.

[55] A.-L. Alshalalfah, G. B. Hamad, and O. A. Mohamed, “Towards
system level security analysis of artificial pancreas via uppaal-
smc,” in 2019 IEEE Int. Symp. on Circuits and Syst. (ISCAS). IEEE,
2019, pp. 1–5.

[56] E. Poorhadi, E. Troubitysna, and G. Dán, “Formal modelling of the
impact of cyber attacks on railway safety,” in Int. Conf. on Comput.
Saf., Rel., and Secur. Springer, 2021, pp. 117–127.

[57] Y. Papadopoulos and J. A. McDermid, “The potential for a generic
approach to certification of safety critical systems in the trans-
portation sector,” Rel. Eng. & system Saf., vol. 63, no. 1, pp. 47–66,
1999.

[58] D. Standard, “Standard 00-56 on safety management requirements
for defence systems,” Ministry of Defence, Directorate of Standardis-
ation, Kentigern House, vol. 65, 2007.

[59] P. Helle, “Automatic sysml-based safety analysis,” in Proc.of the
5th Int. Workshop on Model Based Architecting and Construction of
Embedded Syst., 2012, pp. 19–24.

[60] N. G. Leveson and J. P. Thomas, “STPA handbook,” Cambridge,
MA, USA, 2018.

[61] L. M. Castiglione and E. C. Lupu, “Hazard driven threat mod-
elling for cyber physical systems,” in Proc. 2020 Joint Workshop on
CPS&IoT Secur. and Privacy, 2020, pp. 13–24.

[62] European railway traffic management system (ertms).
[Online]. Available: https://www.era.europa.eu/activities/
european-rail-traffic-management-system-ertms en

[63] L. Wanninger, “Introduction to network rtk,” IAG Working Group,
vol. 4, no. 1, pp. 2003–2007, 2004.

[64] L. M. Castiglione, P. Falcone, A. Petrillo, S. P. Romano, and
S. Santini, “Cooperative intersection crossing over 5g,” IEEE/ACM
Trans. Networking, 2020.

[65] M. Comptier, D. Déharbe, J. M. Perez, L. Mussat, T. Pierre, and
D. Sabatier, “Safety analysis of a cbtc system: a rigorous approach
with event-b,” in Int. Conf. Rel., Saf. and Secur. of Railway Systems.
Springer, 2017, pp. 148–159.

[66] A. Abdulkhaleq and S. Wagner, “A systematic and semi-automatic
safety-based test case generation approach based on systems-
theoretic process analysis,” arXiv preprint arXiv:1612.03103, 2016.

[67] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Int.
Conf. Tools and Algorithms for the Construction and Analysis of Syst.
Springer, 2008, pp. 337–340.

[68] M. Y. Vardi, “Branching vs. linear time: Final showdown,” in Int.
Conf. on tools and algorithms for the construction and analysis of Syst.
Springer, 2001, pp. 1–22.

[69] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-
time systems,” in [1990] Proc. 5th Annu. IEEE Symp. Logic in
Comput. Science. IEEE, 1990, pp. 414–425.

[70] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal
4.0,” Department of Comput. science, Aalborg Univ., 2006.

[71] L. Lamport, “Real time is really simple,” Microsoft Research, pp.
2005–30, 2005.

[72] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-
effective network hardening using attack graphs,” in IEEE/IFIP
Int. Conf. on Dependable Syst. and Networks (DSN 2012). IEEE,
2012, pp. 1–12.

[73] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[74] M. Muckin and S. C. Fitch, “A threat-driven approach to cyber
security,” Lockheed Martin Corporation, 2014.

[75] J. Lambert, “Defenders think in lists. Attackers think in graphs.
As long as this is true, attackers win.” https://github.com/
JohnLaTwC/Shared/, 2015, [Online; accessed 07-November-2021].

[76] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in Proc. 9th ACM Conf. on Comput.
and Commun. Secur., 2002, pp. 217–224.

[77] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proc. of the 13th ACM Conf. on Comput.
and Commun. Secur., 2006, pp. 336–345.

[78] A. Horn, “On sentences which are true of direct unions of alge-
bras1,” The J. Symbolic Logic, vol. 16, no. 1, pp. 14–21, 1951.

[79] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redun-
dancy to improve computer reliability,” IBM journal of research and
development, vol. 6, no. 2, pp. 200–209, 1962.

[80] X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-
based network security analyzer.” in USENIX Secur. Symp., vol. 8.
Baltimore, MD, 2005, pp. 113–128.

[81] BBC. (2019) Raspberry pi used to steal data from nasa lab. [Online].
Available: https://www.bbc.co.uk/news/technology-48743043

[82] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi, “JGraphT–A Java
Library for Graph Data Structures and Algorithms,” ACM Trans.
Math. Softw., vol. 46, no. 2, May 2020.

Luca Maria Castiglione received the M.Sc. degree in computer science
and engineering from the University of Napoli Federico II. He is currently
pursuing his PhD with the Resilient Information Systems Security (RISS)
Group at Imperial College London. where he works at the intersection
of safety and security of Cyber Physical Systems.

Emil C. Lupu is Professor of Computer Systems in the Department of
Computing at Imperial College London where he leads the Resilient In-
formation Systems Security Group. He is a Security Science Fellow with
Imperial’s Institute for Security Science and Technology. His research
activities focus on the resilience of systems to adversarial threats and
means to enable their safe operation even when parts of the systems
have been compromised.

