
Computer Science Review 50 (2023) 100597

A
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Model-based joint analysis of safety and security:
Survey and identification of gaps✩

Stefano M. Nicoletti a,∗, Marijn Peppelman a, Christina Kolb b, Mariëlle Stoelinga a,c

a University of Twente, Formal Methods and Tools, Enschede, The Netherlands
b University of Twente, Industrial Engineering & Business Information Systems, Enschede, The Netherlands
c Radboud University, Department of Software Science, Nijmegen, The Netherlands

A R T I C L E I N F O

Keywords:
Safety
Security
Model-based
Fault trees
Attack trees
Component fault trees
Attack-fault trees
State/event fault trees
BDMPs
Bow ties
SysML
STAMP
ALLOY
Event-B
Bayesian networks
AADL

A B S T R A C T

We survey the state-of-the-art on model-based formalisms for safety and security joint analysis, where safety
refers to the absence of unintended failures, and security to absence of malicious attacks. We conduct a
thorough literature review and – as a result – we consider fourteen model-based formalisms and compare
them with respect to several criteria: (1) Modeling capabilities and Expressiveness: which phenomena can be
expressed in these formalisms? To which extent can they capture safety-security interactions? (2) Analytical
capabilities: which analysis types are supported? (3) Practical applicability: to what extent have the formalisms
been used to analyze small or larger case studies? Furthermore, (1) we present more precise definitions for
safety-security dependencies in tree-like formalisms; (2) we showcase the potential of each formalism by
modeling the same toy example from the literature and (3) we present our findings and reflect on possible ways
to narrow highlighted gaps. In summary, our key findings are the following: (1) the majority of approaches
combine tree-like formal models; (2) the exact nature of safety-security interaction is still ill-understood and (3)
diverse formalisms can capture different interactions; (4) analyzed formalisms merge modeling constructs from
existing safety- and security-specific formalisms, without introducing ad hoc constructs to model safety-security
interactions, or (5) metrics to analyze trade offs. Moreover, (6) large case studies representing safety-security
interactions are still missing.
1. Introduction

New technology comes with new risks: self-driving cars or train
automation systems [1] may get hacked, people depend on the proper
functioning of medical implants for their continued health [2]. Such
risks concern both accidental failures (safety) and malicious attacks
(security). Safety and security can be heavily intertwined. Measures
that increase safety may decrease security and vice versa: the Internet-
of-Things offers ample opportunities to monitor the safety of a power
plant, but their many access points are notorious for enabling hackers to
enter the system [3]. Passwords secure patients’ medical data, but are a
hindrance during emergencies. This is not an entirely new problem [4]:
in fact, it has been widely acknowledged – including by international
risk standards [5,6] – that safety and security must be analyzed in
combination [7,8]. To cater for this need, various risk frameworks have

✩ This work was partially funded by the NWO, The Netherlands grant NWA.1160.18.238 (PrimaVera), and the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 101008233, and the European Research Council Consolidator Grant 864075
(CAESAR).
∗ Corresponding author.
E-mail addresses: s.m.nicoletti@utwente.nl (S.M. Nicoletti), m.peppelman@utwente.nl (M. Peppelman), c.kolb@utwente.nl (C. Kolb),

m.i.a.stoelinga@utwente.nl (M. Stoelinga).

been developed for the joint analysis of safety and security, i.e. the
safety-security co-analysis. Process-oriented frameworks consider the
steps needed for performing safety-security risk analysis [9]. Various
formalisms specifically support the risk assessment phase within this pro-
cess, i.e., the identification, analysis and evaluation of safety-security
risks. Text-based methods include FMVEA [10,11], CHASSIS [10,12],
HAZOP [13,14] and SAHARA [15].

Motivation. Our focus, however, is on model-based risk assessment.
Model-based formalisms provide a detailed insight in different failure
and attack modes, mechanisms and their root causes. Understanding
these is crucial for effective decision making. Furthermore, model-
based formalisms allow one to compute various dependability metrics:
such metrics quantify key performance indicators, such as the system
availability and mean time to attack/failure. The goal of this paper
vailable online 7 November 2023
574-0137/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.cosrev.2023.100597
Received 7 November 2022; Accepted 17 October 2023
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
mailto:s.m.nicoletti@utwente.nl
mailto:m.peppelman@utwente.nl
mailto:c.kolb@utwente.nl
mailto:m.i.a.stoelinga@utwente.nl
https://doi.org/10.1016/j.cosrev.2023.100597
https://doi.org/10.1016/j.cosrev.2023.100597
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2023.100597&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.
is to survey the state-of-the-art on these model-based formalisms for
safety-security co-analysis, as an overarching work unitedly addressing
this literature space is still lacking. We compare these formalisms with
respect to several criteria: (1) Modeling capabilities and Expressiveness:
which phenomena can be expressed in these formalisms? To which
extent can they capture safety-security interactions? (2) Analytical ca-
pabilities: which analysis types are supported? (3) Practical applicability:
to what extend have the formalisms been used to analyze small or
larger case studies? These questions summarize well known criteria
used when selecting appropriate formal methods for a given task, and
synthesize principles seen in corresponding literature [16].

Methodology: an overview. To address the proposed task, we conducted
a systematic and standard literature review process, which yielded 14
formalisms for safety-security co-analysis (see Table 1). We grouped
these into 4 categories: Combinations of attack trees and fault trees; For-
malisms extending attack trees and/or fault trees; Mathematical formalisms
and Architectural formalisms that extend architectural system models
with additional means for safety-security aspects. For expressiveness, we
compare to what extent these formalisms are able to capture the four
safety-security interactions identified by Kriaa et al. [17]: Conditional
dependency, where security requirements necessitate safety require-
ments, or vice-versa; Mutual reinforcement, where safety requirements
or measures increase security, or vice-versa; Antagonism, where safety
and security requirements or measures conflict with each other; and
Independence, where no interaction takes place. To illustrate what the
formalisms look like, we model in each formalism the Locked Door Ex-
ample [18,19]. This is a classical example of safety-security interaction,
exemplifying an antagonistic dependency between safety and security:
if locked, a door is unsafe in case of a fire. However, if unlocked, the
door is insecure in case of a burglary. Our methodology is thoroughly
presented in Section 2.

Key findings. Our survey revealed several noteworthy findings, some
of which are summarized in Tables 2 and 3. First, most formalisms
are based on extensions of Attack Trees (ATs) and Fault Trees (FTs).
Since FTs and ATs are widespread formalisms that model how systems
can fail or be attacked, this is not surprising. Extensions of these
formalisms are Attack-Fault Trees (AFTs) [20], Component Fault Trees
(CFTs) [21,22], Fault Tree/Attack Trees (FT/ATs) [23], Boolean driven
Markov processes (BDMPs) [24], Attack Tree Bow Ties (ATBTs) [25,
26], Failure-Attack-CounTermeasure (FACT) Graphs [27], and
State/Event Fault Trees (SEFTs) [28]. Secondly, the investigated for-
malisms can capture different safety-security interactions. These for-
malisms are mostly based on safety-specific or security-specific tech-
niques, that are further adapted to account for the other. However,
none of the formalisms introduce novel modeling constructs to capture
safety-security interactions, and neither are novel metrics introduced
to capture dependencies between safety and security. Moreover, some
methods can only provide qualitative insight into the safety-security
relationships, while others can also account for quantitative (fail-
ure/attack) probabilities. Furthermore, a large-sized industrial case
study has not yet been conducted. Finally, some of the investigated
modeling methods could be enhanced to increase their expressiveness.
We detail these findings and reflect on highlighted gaps in Section 10.

Related work. There are a few earlier surveys [38] on safety-security
analysis methods. An important survey was published by Kriaa et al.
[17] that introduces definitions for safety and security interactions.
The authors compare non-model-based and model-based approaches,
the latter being graphical or non-graphical. The survey [39] compares
seven frameworks with respect to model creation, origin, stages of the
risk assessment, and main use cases. The comparison conducted here
is, however, carried out at a high level. The survey [40] summarizes
current practices in safety and in security modeling. Then a new
model is proposed, combining the goal structuring notation GSL with
Attack-Defense Trees. In contrast to their work, we focus on model-
2

based approaches and we present more detailed definitions for safety
Table 1
Overview of safety-security formalisms.
Source: Citations from Google Scholar, October 2023.

Formalism Ref. Year #Citations

Fault Tree/Attack Tree Integration (FT/AT) [23] 2009 210
Component Fault Trees (CFTs) [22] 2013 79
Attack-Fault Trees (AFTs) [29] 2017 109

State/Event Fault Trees (SEFTs) [28] 2013 34
Failure-Attack-CounTermeasure (FACT) Graphs [27] 2015 104
Boolean Driven Markov Processes (BDMPs) [19] 2014 53
Attack Tree Bow-ties (ATBTs) [25] 2018 177

Bayesian Networks (BNs) [30] 2015 64
Threats-Hazards-Opportunities (THO) Framework [31] 2007 388

STAMP [32] 2017 253
SysML [33] 2011 104
ALLOY [34] 2002 1736
Event-B [35] 2017 20
Architectural Analysis and Design Language (AADL) [36] 2020 5

and security interactions. Furthermore, we employ a running example
that we model in every analyzed formalism whenever possible. We
then compare formalisms with respect to their ability to model safety-
security interactions. Our work details how the formalisms work, what
their technical capabilities are, and how safety-security interact. The
survey [41] provides an overview about text-based models for engineer-
ing. It investigates research questions such as at which development
stage the research was conducted, which methods and tools were em-
ployed during the research — e.g., FMVEA [10,11], CHASSIS [10,12],
HAZOP [13,14] and SAHARA [15] — what the classification of the
contribution of the research is, in which research domains were the
results evaluated, where was the research published, and what the
research publication time-line and trend is. In contrast to their work,
we focus our attention on model-based formalisms rather than on text-
based ones, and we are interested in concrete dependencies between
safety and security. Furthermore, we present examples for each formal-
ism. Finally, the survey [42] provides an overview of different kinds
of formalisms that consider safety or security, although separately. On
the contrary, our focus is on formalisms that consider both safety and
security.

A summary of our contributions:
(1) We conduct a thorough literature review on model-based

formalisms for joint analysis of safety and security.
(2) We compare found formalisms by their modeling and anal-

ysis capabilities, their application domains in industry and
expressiveness, i.e., their ability to capture safety-security
dependencies.

(3) We present more precise definitions for safety-security
dependencies in tree-like formalisms (Section 6).

(4) We showcase the potential of each formalism by modeling the
same toy example from the literature [18,19].

(5) We present our findings and reflect on possible ways to
narrow highlighted gaps (Sections 10 and 11).

Structure of the paper. Section 2 details our methodology, Section 3 pro-
vides background for fault trees and attack trees., Sections 4, 5, 7 and 8
compare the various formalisms. Section 6 presents our definitions for
dependencies on tree-like formalisms, Section 9 presents a comparison
of formalisms based on their expressiveness. Section 10 presents – and
reflects on – our findings and Section 11 concludes the paper.

2. Methodology

Research questions. The goal of this survey is to understand the state-
of-the-art on safety-security co-analysis and to identify future needs. In

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.
Table 2
Comparison of safety-security formalisms. A = Antagonism, CD = Conditional Dependency, MR = Mutual reinforcement, I = Independence. T = Time/order, S = States, C =
Consequences. ∗ = capable when NOT-gate is supported. → = capable but only directional from security to safety. ◦ = only if BNs are dynamic. □ = possible in principle, not
showcased in literature.

Formalism Dependencies Expressiveness Modeling Application Tool

A CD MR I T S C

FT/AT ∗
→ → x ATs refine FT leaves Chemical plant

CFTs ∗ x x x Merge ATs + FTs Cruise control SafeTbox [37]
AFTs x x x x x Merge dynamic ATs + FTs Pipeline, lock door UPPAAL

SEFTs x → x x x FTs + Petri nets Tyre pressure, lock door ESSaRel
FACT graphs ∗

→ → x x FT/ATs + Triggers + Countermeasures Overpressure vessel
BDMPs x x x x x x Triggers, Petri nets Pipeline, lock door KB3, Figaro
ATBTs ∗

→ → x x Bowties + FT/AT Pipeline, Stuxnet

BNs x x x x ◦ ◦ x Conditional prob. Pipeline MSBNx
THO framework ∗

→ → x x FTs + event trees Electrical grid

STAMP x Process controller Synchronous-islanding
SysML System components Embedded systems TTool
ALLOY x x x x x Prove system correctness Fire detection system ALLOY
Event-B x x x x x x □ Prove system correctness Charging system RODIN
AADL x System components + ports Lock door Cheddar, Marzhin
Table 3
Overview of analysis capabilities of safety-security formalisms. QL = Qualitative Analysis, QT = Quantitative Analysis.
Formalism Analysis Details

QL QT

FT/AT x x Same as base FTs (MCS, MPS, probabilities...).
CFTs x x Same as base FTs (MCS, MPS, probabilities...) + extension on MCS analysis.
AFTs x x Same as base FTs + time, cost, likelihood of an attack. Trade offs between attributes.

SEFTs x x Same as FT/ATs plus details on the state of components via Petri nets.
FACT Graphs x x Same as FT/ATs plus triggers and countermeasures
BDMPs x x Mean Time to Success, probability of success, list of possible attack success sequences.
ATBTs x x Risk level evaluation like regular BTs, trade offs analysis.

BNs x x Calculate reliability metrics (mean time to failure) and conditional independence analysis.
THO Framework x x Likelihood of an attack

STAMP x Identify potential hazards and undesired behaviors.
SysML x Checks for reachable states that violate safety properties/security requirements.
ALLOY x Prove properties of a system under given assumptions.
Event-B x Prove properties of a system under given assumptions.
AADL x x Calculate MTBFs of the system. Error model statements can generate FTs.
particular, when analyzing surveyed formalisms, we focus on the fol-
lowing questions: (Q1) How expressive are these formalisms, e.g., how
many safety-security interaction can they capture? (Q2) Which mod-
eling constructs exist to model the interactions between safety and
security? (Q3) Which analyses do these formalisms enable? (Q4) How
do these formalisms compare on industrial case studies and (Q5) What
are the gaps and the findings? What would be desirable extensions?
These questions summarize well known criteria employed to assess
formal methods, and synthesize principles seen in corresponding liter-
ature [16].

Search methodology. We followed an established methodology for our
literature search [43,44]. Our aim was to find peer-reviewed publi-
cations from 1922 until 2020, focusing on model-based formalisms
jointly analyzing safety and security. Following [43], we first queried
the publication databases Scopus, Microsoft Academic and Google
Scholar with relevant keywords. By using ‘‘safety’’ and ‘‘security’’ we
collected 4997 results. We further refined them – 2714 entries – by
focusing on ‘‘model-based’’ formalisms and subsequently by employing
keywords such as ‘‘dependency’’ together with appropriate Boolean
operators and wildcards. Finally, we refined our search by exploring the
formalisms and tools we found (e.g., fault-attack trees, BDMP, AADL).
We also explored earlier surveys on safety-security combinations [17,
39,40]. Moreover, we considered several safety-only and security-only
analysis frameworks, to see if they had been extended to handle safety-
security combinations. In particular, we looked into threat analysis [45,
46]: however, to the best of our knowledge, no threat analysis frame-
work tackles safety-security interactions in a model-based fashion. After
3

gathering selected literature, publications were independently assessed
by three reviewers following the methodology showcased in [44]. They
were included or cited only upon agreement of two or more reviewers.
Papers that were included in our final selection are listed in Table 1,
together with number of citations taken from Google Scholar. The
following paragraph showcases literature that was considered but then
excluded from our final selection.

Fig. 1. Percentages of published work that mention ‘‘safety’’ and ‘‘security’’ in title,
abstract or keywords, divided by research field (time frame: 1922–2020).
Data source: Scopus.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

‘
k
D

E
o
f
T
s
s
n
s
s
w
S
t
m

B
c
t
i

a
g
h
t
m
w
s
i
s
b
o

3

f
c
T
A

M
l
l
a
s
i
a
A

A
a
t
s
a
b
t
h

O
r
c
[
i
t
c
a
i
b
d

4

F
t
A
I
b
l
d
f

4

M
a

Fig. 2. Number of published documents with ‘‘safety’’ (yellow line in the figure),
‘security’’ (red line) and both ‘‘safety’’ and ‘‘security’’ (blue line) in title, abstract or
eywords, ranging from 1970 to 2020.
ata source: Scopus.

xcluded papers. During our literature review, we encountered papers
n related topics regarding safety-security, which do not match the
ocus of this survey. We encountered a few papers on S-Cube [47,48].
his modeling technique is very relevant for modeling safety and
ecurity interactions, however it seems to be focused on SCADA systems
pecifically. A paper on SOTERIA [49] presents modeling of IoT device
etworks for automated safety and security analysis from the device
ource code. This modeling relates specific to IoT devices. In this
urvey, we are interested in more general modeling techniques. There
ere several methods based on textual approaches, such as CHAS-
IS [10,12], FMVEA/FMEA [10,11,50] and SAHARA [15]. However,
hey are based on a textual structure, while this survey focuses on
odel based approaches.

ibliometric analysis. The areas of computer science and engineering
over about 44.4% of the published research on safety and security in
he considered time frame, thus being the two major fields interested
n this topic (as seen in Fig. 1).

Moreover, by comparing the bibliometric data regarding literature
bout safety, security and both safety and security we uncovered a
rowing interest in these fields since 1970s, testified by an increasingly
igher number of publications mentioning these terms in the abstract,
itle or keywords. As shown in Fig. 2 the amount of publications that
ention both safety and security in these fields is also increasing,
hile remaining at a considerably lower number when compared with

afety-only and security-only literature. While the interest for their
nteractions is rising, the low amount of publications on safety and
ecurity suggest that there is still a considerable amount of work to
e done in order to address challenges and open problems in the area
f safety-security co-analysis (cfr. the blue line in Fig. 2).

. Background on attack trees and fault trees

Since several safety-security formalism combine attack trees and
ault trees, we briefly introduce these formalisms before discussing their
ombinations. In Section 4, we compare plain combinations of Fault
rees (FTs) and Attack Trees (ATs), while Section 5 surveys FTs and
Ts combinations with additional features.

odelling. FTs and ATs are hierarchical diagrams that model how
ow level failures (resp. attacks) propagate through the system and
ead to system level failures (resp. attacks). Despite their name, FTs
nd ATs are Directed Acyclic Graphs (DAGs), rather than trees, since
ubtrees can have multiple parent gates. Furthermore, FTs are part of
nternational standards [51]. FTs were developed in the early ’60s [52]
longside Fault Tree Analysis (FTA) [53] and, due to their popularity,
4

Ts were proposed in the ’90 as their security counterparts [54]. FTs t
Fig. 3. Fault tree (on the left) and attack tree (on the right). Nodes in blue (resp.
yellow) indicate safety-related (resp. security-related) events.

(resp. ATs) start with a Top Level Event (TLE), modeling a system
level failure (attack), which is then refined through Boolean gates: the
AND-gate indicates that all children must fail (be attacked) in order
for the gate to fail (be attacked). For the OR-gate to fail (be attacked),
at least one of its children need to fail (be attacked). When refining
is no longer needed, one arrives at leaves of the tree: the Basic Events
(BEs) in FTs model atomic failures; the Basic Attack Steps (BASs) in ATs
model atomic attack steps. Non-leaves nodes (Fig. 3), such as Locked
in during fire and Attacker walks through door, are called intermediate
events, denoted by rectangles. The FT in Fig. 3 models that integrity is
compromised if one is either locked in during a fire or the door lock
fails to close. This is modeled via the top OR-gate. One is locked in
during a fire if there is a fire and the door is locked. This is modeled
via the AND-gate connecting the BEs Fire and Locked.

nalysis. FT and AT enable different kinds of analyses [55]: qualitative
nalyses include Minimal Cut Sets (MCSs), indicating which combina-
ions of BEs or BASs lead to the TLE. The set {Fire, Door locked} is a cut
et in Fig. 3. Quantitative analyses compute dependability metrics, such
s the system reliability, attack probabilities and costs. For example,
y equipping the BEs and BASs with probabilities, one can compute
he likelihood of a system level failure or attack to occur. FTs and ATs
ave been used to analyze numerous case studies [56–58].

bservations. Apart from similarities, FTs and ATs also feature some
emarkable differences: FTs often focus on probabilities, whereas ATs
onsider several other attributes, like cost, effort and required skills
59]. The difference with respect to the OR-gate between FTs and ATs
s that in FTs, the probability of failure asks for total probability. Thus
he (probability) value of an OR-gate is the sum of the values of its
hildren, minus the value of their intersection. In ATs instead, attacks
re characterized by their max probability. So the value of an OR-gate
n ATs is the max value among its children. Furthermore, FTs have
een extended with repairs [60], and dynamic gates [61,62]; ATs with
efenses, and sequential AND (SAND) gates [57,63].

. Category 1: formalisms combining fault trees and attack trees

We first survey formalisms that combine FTs and ATs:
ault Tree/Attack Trees refine the basic events of a fault tree by an attack
ree; Component Fault Trees merge fault trees and attack trees; and
ttack-Fault Trees merge dynamic fault trees and dynamic attack trees.

n all figures, we use blue for safety-events, yellow for security, and
rown for their combinations. In the following paragraphs, we high-
ight answers to research questions with bold placeholders, e.g., (A1)
enotes an answer to the first research question for the considered
ormalism.

.1. Fault tree-attack trees

odelling. Fault Tree/Attack Trees (FT/ATs) [23] are based on the
ssumption that attackers try to force a system failure by triggering

he BEs in a FT. Thus, (A2) a FT/ATs indicates how the BEs can be

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.
Fig. 4. Lock door example as (a) FT/AT (left), (b) component fault tree (center) and (c) attack-fault tree (right). Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and security.
a

4

M
t
n
d
t
s
F
s
D
o
i

t
i
a
b
¬

attacked by refining these BEs by ATs with the BE as goal. By making
this BE the goal of the AT depicted in yellow, Fig. 4(a) details the
basic event Door lock fails in Fig. 3. (A1) FT/ATs do not provide a
clear method for modeling dependencies of components in the AT on
parts of the FT, so mutual reinforcement cannot be modeled due to a
lack of bidirectionality. Conditional dependency and antagonism can
be modeled as per Section 6.

Analysis. The paper [23] (A3) computes the probability for the TLE to
occur, given probabilities for the BEs and the BASs.

Observations. Exploiting safety faults is a common method for hackers
to enter a system, e.g.,: triggering a fire alarm to disengage a fire
safety lock. Thus, it seems reasonable to consider the leaves of a FT
as vulnerabilities, refining them via ATs. The fault tree’s TLE then
becomes the target for hackers. This can be reasonable e.g., shutting
down a factory for ransomware. However, attackers are often exploiting
safety faults to achieve other goals, such as stealing digital assets
(e.g., Stuxnet worm targeting the availability of nuclear power plants
to damage the nuclear program of Iran [64]). In that case, the forcing
of BEs is only a starting point in an attack. (A5) Subsequent attack
steps could be modeled in an AT; this could be a natural extension for
FT/ATs. (A4) FT/ATs are used to model a case study on toxic chemical
spill at a chemical plant in [23].

4.2. Component fault trees

Modelling. Component Fault Trees (CFTs) equip FTs with a modular
structure [21], so that a large FT can be modeled and analyzed in terms
of smaller components. (A2) The paper [22] extends CFTs with security
aspects by introducing a new BEs type for security breaches, which are
essentially BASs. CFTs make no distinction between BEs and BASs. This
is exemplified in Fig. 4(b), where attacks and failures are freely merged.

(A1) As per Section 6, CFTs model mutual reinforcement, con-
ditional and antagonistic dependencies. In particular, antagonism is
achieved by connecting one event A to an intermediate safety event
B and an intermediate security event C, but having one of those
connections be through a not gate (see Fig. 5).

Analysis. (A3) The CFTs from [22] enable the same analysis methods
as FTs. The authors remark that, if a BAS only occurs in MCSs with
multiple, low probability and independent BEs, then this attack is very
unlikely to ever cause a disruption, as it requires multiple other unlikely
events to occur. However, one may remark that the same holds for any
5

event. (
Fig. 5. CFT antagonism. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and
security.

Observations. (A5) Not distinguishing between safety and security has
the advantage that all existing tools remain applicable. Moreover, one
may ask if it really matters whether a disruption is due to a failure or
an attack. A disadvantage of merging failures and attacks, however, is
that no interactions or trade offs between safety and security can be
studied. (A4) Paper [22] models an Adaptive Cruise Control system as

case study.

.3. Attack-Fault Trees

odelling. Attack-Fault Trees (AFTs) [29] treat attacks and failures in
he same way CFTs do. However, (A2) AFTs merge dynamic ATs and dy-
amic FTs. These provide additional gates to model dynamic behavior:
ynamic ATs include the sequential AND-gate (SAND), modeling at-
acks as sequence of steps [20]. Dynamic FTs include gates for modeling
pare components, functional dependencies (FDEP) and priority ANDs.
urther, attacker profiles quantify the BASs with attacker’s capabilities,
uch as resources, skills and damage. Fig. 4(c) presents the Locked
oor Example as an AFT. The various SAND-gates indicate the order
f events. E.g., for the Door lock breached event to happen, first Attack
nitiated must happen, and then the Access event as well.

(A1) AFTs can model conditional dependencies more explicitly via
he FDEP gate: the trigger of the FDEP (i.e. leftmost input) automat-
cally makes the dependent events (i.e. the other inputs) fail or be
ttacked. Even though AFTs do not include a NOT-gate, antagonism
etween events 𝐴 and ¬𝐴 can be expressed through IFAIL nodes 𝐴 and
𝐴, where 𝐴 has probability 0 if the ¬𝐴 is activated, and vice versa
Fig. 6).

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

n
a

a
b
t
v
e
F
F

c

Fig. 6. AFT antagonism. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and
security.

Analysis. (A3) AFTs are analyzed via statistical model checking by
translating the AFTs to a network of stochastic timed automata. Using
the attribute values in the attacker profiles, several metrics can be
computed, such as the time, cost and likelihood of the attacks. Pareto
frontiers elucidate trade offs between attributes, e.g., the likelihood of
an attack within a given budget.

Observations. (A5) AFTs share the two disadvantages common to all
FT approaches in that there is no distinction between safety or security
failures once the TLE occurs, and the methods of modeling interactions
may not clearly highlight the antagonistic dependencies. The attacker
profiles in AFTs support a wide range of quantifiable parameters, en-
abling versatile analysis and trade offs. (A4) Remarkably, AFTs are used
to model the medium-sized case study of an oil pipeline, in addition to
modeling the Locked Door Example.

5. Category 2: formalisms extending fault trees and/or attack
trees

This section surveys combinations of FTs and ATs with additional
features: State/Event Fault Trees join a fault tree-like model with Petri
ets, FACT Graphs join FTs and ATs with countermeasures and the
bility to capture dynamic behaviors using triggers, Boolean Driven
Markov Processes extend FTs and ATs with Petri nets and triggers, and
Attack Tree Bow-ties combine Event Trees with an FT/AT-like model.

5.1. State/Event fault trees

Modelling. (A2) State/Event Fault Trees (SEFTs) [28] join FTs and
Petri nets,1 expressing that certain failures can only happen in certain
states. Whereas the leaves in ATs and FTs model atomic events, SEFTs
deploy Petri nets to accommodate state changes inside basic events.
In Fig. 7, the Door component can move between the states Unlocked
nd Locked. These state changes are triggered by events, depicted as
lack rectangles, that can be exponentially distributed, deterministic, or
riggered by other events. Both states and events can be communicated
ia the gates of the tree, via in and out ports. In this way, Fig. 7
xpresses that a fire casualty can only happen if the door is locked.
ig. 7 models antagonism: the door should be unlocked to escape from
ire but locked to prevent failure of the AND-gate Enter unlocked door.

Following [28], we would model each subsequent attack step in the
attacker component: first, the attacker tries to enter the door and, if
it is not open, he/she tries to force it (the Force door step). However,
to better represent antagonism wrt. the Door component, we decided
to model the Attacker tries door step by embedding an AND-gate in the
House component.

(A1) Besides antagonism, SEFTs support (directional) conditional
dependency and mutual reinforcement, as per Section 6. This is
achieved by a state machine that will always activate a safety or
security state (Fig. 8). (A5) Reworking SEFTs so that conditional
dependency from safety to security can also be accounted could address
a gap in the formalism and be considered a desirable extension.

1 [28] says state charts instead of Petri nets, but we did not see any state
hart constructs, like hierarchical composition.
6

Fig. 7. State-event fault trees. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) states/events. Nodes in brown indicate states/events related to both
safety and security.

Fig. 8. SEFT antagonism. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) states/events. Nodes in brown indicate states/events related to both
safety and security.

Analysis. (A3) SEFTs support the same dependability metrics as attack-
fault tree combinations. The tool ESSaReL translates SEFTs to extended
deterministic stochastic Petri nets, which can be further analyzed by
the TimeNet tool, e.g., for steady state analysis.

Observations. (A4) The authors of [28] model the small-sized example
of a Tyre Pressure Monitoring System. Even though not mentioned
explicitly in [28], it appears that Petri nets in the SEFT leaves must
be disjoint between components. E.g., it is not possible to use the
Unlocked state of the Door component as a direct input for an attack
step. Allowing this could increase the expressivity of SEFTs.

5.2. Failure-Attack-CounTermeasure (FACT) graphs

Modelling. Failure-Attack-CounTermeasure (FACT) Graphs [27] (A2)
join FTs and ATs with countermeasures and the ability to capture
dynamic behaviors using triggers. To capture failures, attacks, and
possible countermeasures the authors provide as a first step importing
FTs at the end of the safety hazard and risk assessment phase. In the
second step safety countermeasures are added to the graph. The third
step adds an AT to the graph. Attacks are related to failures: much
like FT/ATs, the elements of the FT are detailed with an OR-gate to
specify that the failure can happen by itself or through the action of
an attacker. In step four security countermeasures are added, possibly
to any element of the AT. This results in a model similar to an FT/AT,
with added countermeasures, as illustrated in Fig. 9.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

N
o
F

5

M
e
d
d
o
f
t
f
n
(
M
M
t
a
m
t
E
O
h
e
s
t
t

A
s
p
t
s

s

Fig. 9. FACT graphs. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and
security.

Analysis. (A3) In spite of [27] not presenting any analysis of the
proposed model, FACT graphs support analysis techniques like the ones
enabled by FT/ATs. In addition to these, the presence of triggers and
countermeasures could enable the analysis of the dynamic behavior of
the system and the role of countermeasures.

Observations. (A1) Similarly to FT/AT, FACT graphs can capture condi-
tional dependency only directionally: in fact, FTs are detailed with ATs,
but not vice-versa. (A5) Antagonism could be easily obtained in case a

OT-gate is added, filling a sensible gap. In [27], (A4) the authors focus
n cyber–physical systems (CPS) and model vessel overpressure with a
ACT graph.

.3. Boolean driven Markov processes

odelling. (A2) Boolean Driven Markov Processes [24] extend FTs by
quipping each leaf with a Markov process (MP), representing the
ifferent modes a component can be in. Various templates provide stan-
ard MPs to model standard failure behavior. For example, the failure in
peration MP contains two modes, operational and failed. One transitions
rom operational to failed with an exponential failure rate 𝜆, and back
o operational with a repair rate 𝜇. The IFAIL MP models instantaneous
ailures. Moreover, users can define their MPs as a stochastic Petri
et [19], similarly to SEFTs. In [65], Boolean driven Markov processes
BDMPs) are extended with security aspects by providing additional
arkov processes for attacker steps. For example, the Attacker Action
P (AA) contains tree modes: in Idle the attacker has not yet initiated

he attack. The Active mode corresponds to actual attempt, requiring
n exponentially distributed time to succeed, and leading to the success
ode. Further, triggers, represented by dotted red arrows, allow one MP

o trigger a mode change in another MP. Fig. 10 shows the Locked Door
xample from [19]. The triggers pointing from Attack initiated to the
R-gate means that the OR-gate is not activated until Attack initiated
appens. (A1) The use of Petri nets and the presence of intermediate
vents allow BDMPs to model all dependencies between safety and
ecurity, as detailed in Section 6. Antagonism is achieved by assigning
he same Petri net to two leaves, activating one node on one state, and
he other when not in that state (Fig. 8) (see Fig. 11).

nalysis. (A3) BDMPs allows both quantitative and qualitative analy-
is. The authors of [65] build BDMPs with the KB3 modeling software
latform. The computation of the overall mean time to success (MTTS),
he probability of success in a given time and the list of possible attack
7

uccess sequences (ordered by decreasing probability) is possible.
Fig. 10. BDMP. Dashed lines in red denote triggers. Nodes in blue (resp. yellow)
indicate safety-related (resp. security-related) events. Nodes in brown indicate events
related to both safety and security.

Fig. 11. BDMP antagonism. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and
security.

Observations. [66] is (A4) one of the few analyzed papers with a
medium-sized case study, referring to an oil/gas pipeline. Furthermore,
the authors discuss dependencies corresponding to those mentioned
in the introduction. (A5) As an observation, in BDMPs negation is
not explicitly encoded in the structure but in underling Petri Nets for
the leaves. An extension indicating such a negation similarly to how
triggers are shown would be desirable. In Section 6 we propose a
more general definition of dependencies in tree-like formalisms, thus
dependencies definitions presented in [66] do not coincide with ours.

5.4. Attack Tree Bow-ties

Modelling. (A2) Attack Tree Bow Ties (ATBTs) [25,26] combine Bow-
ties with ATs. Bow-ties [67] themselves combine FT and Event Trees
(ETs): the left part of a Bow-tie is a FT modeling the causes of an
hazardous event, which is in the middle of the Bow-tie. The ET on the
right models its consequences. Barriers, i.e., a measure 𝑀 preventing
ome failure 𝐹 from happening, are modeled as AND(𝐹 ,𝑀), so that the

failure 𝐹 only propagates if the barrier 𝑀 fails. Now, ATBTs extend
regular Bow-ties by attaching ATs to the basic events of a FT, just as in
FT/ATs. Thus, in ATBTs, the left part of the Bow-tie is an FT/AT, rather
than an FT. Fig. 12 models the Locked Door Example via ATBTs. The
leftmost part is equivalent to the FT/AT from Fig. 4(a). The ET on the
right details the consequences in several cases: if the failure was a fire
or a burglary, if alternate escape routes were available or inner doors
were locked. (A1) Dependencies expressed in ATBTs are the same as in
FT/ATs, as further explained in Section 6.

Analysis. (A3) Just like for regular Bow-ties, [25,26] identify vulnera-
bilities via MCSs. By assigning likelihood level to all BEs and BASs, two
likelihood levels are assigned to these cut sets: one for safety and one
for security. Thus, trade offs can be made.

Observations. Since the left, causal part of ATBTs is similar to FT/ATs,
similar observations apply. (A5) Furthermore, it would be natural to

study trade offs between safety and security by equipping ATBTs with

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

r
m
s
i
d
i

A

𝐴
f
m
f
e
A
f
o
w
s
s

Fig. 12. Attack tree bowties. Nodes in blue (resp. yellow) indicate safety-related (resp. security-related) events. Nodes in brown indicate events related to both safety and security.
Nodes in orange indicate consequences.
M
o
e
s
M
a
o
C

I
𝑃
t
s
f
t
S

7

p
f
O
w
s

7

M
m
a
a
𝐵
𝑃
p
p
r
i
d

two hazardous events, one for safety and one for security. Moreover,
ATBTs are one of the few formalisms that consider safety-security trade
offs. (A4) In [25,26] the authors create a small case study of a risk
scenario in a chemical facility. In [68], the authors investigate the
Facebook DNS outage from 2021 to show safety-security dependencies.
They extend disruption trees which were introduced by [69] and add
barriers (safety) and mitigations (security) in an attempt to model the
four dependency types.

6. Dependencies in ATs and FTs combinations

Below, we propose more precise definitions of the dependency
types from [17] for the specific context of FTs and ATs. We focus on
events in FTs, ATs and their combinations. These events correspond to
equirements: the TLE provides the main disruption to be avoided; the
ain requirement. The TLE refines into sub-events to be prevented; the

ub-requirements. As such, these events and their interactions are the
nverse of the logical interactions between the requirements. For each
ependency type, we investigate to what extent these are expressible
n the various FT and AT formalisms.

ntagonism. Two undesirable events 𝐴,𝐵 are antagonistic, or conflicting,
with respect to 𝐶 if at least one of them always occurs due to 𝐶. In tree-
based formalisms, let 𝐴 and 𝐵 have a shared security/safety event 𝐶 as
a child. Let 𝐶 be connected to either 𝐴 or 𝐵 through a NOT-gate. 𝐶
(not) occurring will either trigger 𝐴 or 𝐵 directly, or the other through
the NOT-gate.

The events Locked in during fire and Attacker walks through door
in Fig. 4(b) are antagonistic with respect to Door unlocked. As such,
expressing antagonism requires a form of negation. CFTs use NOT-gate
to express negation. AFTs do so by tweaking (in a somewhat artificial
way) the parameters of IFAIL. SEFTs and BDMPs express antagonism
through a state-based model, where a system can be in only one state,
e.g., door open or door closed. Like standard FTs and ATs, the FT/ATs
and ATBTs models cannot model antagonism. However, a NOT-gate
could easily be added.

Conditional dependency. If an undesirable event 𝐵 is conditionally de-
pendent on event 𝐴, then event 𝐵 not occurring is only possible if event

has not occurred: 𝐴 occurring implies 𝐵 occurring. In tree-based
ormalisms, if we make 𝐵 the TLE, and 𝐴 a leaf, each set containing 𝐴
ust be a cut set for 𝐵. In Fig. 4(b), Attacker forces door is a condition

or Integrity breakdown. All tree-based safety-security formalisms can
xpress conditional dependencies between events. Since FT/ATs and
TBTs refine the leaves of a FT by an AT, they contain only paths

rom security to safety events. Thus, safety requirements can depend
n security, but not the other way around. That also holds for SEFTs,
here attack steps cannot depend on system’s components that capture

afety events. Further, the Functional Dependency (FDEP) gate in AFTs
8

upports conditional dependencies, where 𝐵 occurs as soon as 𝐴 does.
utual reinforcement. Event 𝐴 reinforces event 𝐵 if the consequences
f 𝐵 are less likely to happen due to event 𝐴. In tree-based formalisms,
vent 𝐴 reinforces event 𝐵, if every time 𝐵 appears in a cut set, 𝐴 does
o as well. Events 𝐴 and 𝐵 mutually reinforce if the reverse also holds.
utual enforcement typically occurs due to AND-gates, where both 𝐴

nd 𝐵 are exclusively connected to the same AND-gate, either directly
r through other (S)AND-gates. This configuration is expressible in
FTs, AFTs, SEFTs and BDMPs.

ndependence. Two events 𝐴 and 𝐵 are statistically independent if
[𝐴&𝐵] = 𝑃 [𝐴]⋅𝑃 [𝐵]. By assumption, all leaves in FTs and ATs are sta-

istically independent. Events that are (mutually) reinforcing can also
atisfy this statistical independence requirement. Thus, in tree-based
ormalisms the absence of (mutual) reinforcement is also required
o capture Independence as intended. All tree-based formalisms from
ections 3 to 5 can express independence.

. Category 3: Mathematical formalisms

Two formalisms are based on modeling outcomes and interactions
rimarily mathematically, namely Bayesian Networks and an unnamed
ramework based on Calculating the impact of Threats, Hazards, and
pportunities, which we will call the THO framework. The THO Frame-
ork allows analysis of threats, hazards and opportunities of a given

ystem and presents similarities with ATBTs.

.1. Bayesian Networks

odelling. (A2) A Bayesian Network (BN) is a probabilistic graphical
odel that represent probabilistic dependencies between several vari-

bles via a directed acyclic graph. Each node 𝐴 represents a variable,
nd an edge from 𝐴 to 𝐵 indicates that A stochastically depends on
. A conditional probability table yields the conditional probabilities
[𝐴|𝐵]. If the probabilities of the leaves in the BN are known, the
robabilities of the root nodes can be calculated. In [30], BNs are pro-
osed to model safety and security dependencies. The two root nodes
epresent system safety and security. Fig. 13 expresses that Door locked
s a common factor for safety and security. (A1) BNs model conditional
ependency, mutual reinforcement, and antagonism with a stochastic

Fig. 13. Bayesian networks. Nodes in blue (resp. yellow) indicate safety-related (resp.
security-related) events. Nodes in brown indicate events related to both safety and
security.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

𝑃

A
t
n
m

O
o
𝑃

c
m
N
c

7

M
b
w
c
s
s
r
f
T
y
a
2
s
a
u
v
i
1
s
o
o
s
a
f
i
d

s
a
r
e
s
a
a
S
o

A
p
d
5
e
p
o
i
T
a
o
s
o
h
W
a

O
t
p
v
c
a
e
b
s
s
a
d
c
i
r

8

c
A
s
m
r

8

M
(

Fig. 14. Bayesian network antagonism. Nodes in blue (resp. yellow) indicate safety-
related (resp. security-related) events. Nodes in brown indicate events related to both
safety and security.

dependency in the DAG and appropriate values in the Conditional
Probability Tables (CPTs). Antagonistic dependencies in particular are
modeled by having a safety B and a security node C both depend on A,
where the failure probability for one is higher when A is true, and for
the other is higher when A is false: 𝑃 [𝐵 = 1|𝐴 = 1] > 𝑃 [𝐵 = 1|𝐴 = 0] ∧
[𝐶 = 1|𝐴 = 0] > 𝑃 [𝐶 = 1|𝐴 = 1] (Fig. 14).

nalysis. (A3) Qualitative analysis can be done in the form of condi-
ional independence analysis (analyzing which nodes influence other
odes and how). BNs enable quantitative analysis to calculate reliability
etrics such as mean time to failure.

bservations. Fault trees and attack trees can be seen as special cases
f Bayesian networks, where the CPT encode the Boolean gates, e.g.,
[𝐴 = 1|𝐵 = 1, 𝐶 = 1] = 1, 0 for other 𝐵 and 𝐶, for an AND-

gate 𝐴 with children 𝐵 and 𝐶. Thus, the BNs extend ATs and FTs
with flexible dependencies, and enable separate TLEs for safety and
security. Furthermore, events after a TLE failure could potentially also
be modeled. [31] discusses modeling Bowties with conditional prob-
abilities, which appears to be a perfect example of such an extension.
However, the gates in ATs and FTs provide a clearer visualization of the
behavior, since in BNs these must be read from the probability tables.
(A4) Paper [30] uses the pipeline example as a case study. (A5) BNs
an also be extended to Dynamic Bayesian Networks (DBNs), where
ultiple copies of the BN represent the state at different time steps.
odes in the DBN can depend on nodes in previous time steps. More
omplex gates like sequence enforcers can then be modeled [70].

.2. Threads-hazards-opportunities framework

odelling. [31] presents a framework to perform risk analysis for
oth safety and security. When modeling a given system, the frame-
ork considers possible threats and hazards that can lead to various

onsequences, or outcomes. Opportunities – such as e.g., a planned
hutdown, which allows for preventive maintenance – are also con-
idered. Consequences would be typically expressed by real values
epresenting observable quantities for e.g., economic loss, number of
atalities, number of attacks, the proportion of attacks being successful.
he author provides steps that describe the risk and vulnerability anal-
sis process: 1. Identify the relevant functions and subfunctions to be
nalyzed, and relevant performance measures (observable quantities).
. Define the systems to meet these functions. 3. Identify relevant
ources (threats, hazards, opportunities). 4. Perform an uncertainty
nalysis of the sources 5. Perform a consequence analysis, addressing
ncertainties. 6. Describe risks and vulnerabilities. 7. Evaluate risks and
ulnerabilities. 8. Identify possible measures, and return to 3. After
dentifying the relevant functions and subfunctions to be analyzed (Step
), the system in question is defined (Step 2): understanding how the
ystem works is a key step, so departures from normal, successful
peration can be easily identified. In Step 3 threats, hazards and
pportunities are identified. This can be done e.g., through analysis of
tatistics or through tools such as FMEA/FMECA/FMVEA [10,11,50]
nd HAZOP [14]. This step is heavily integrated with Step 4, per-
orming an uncertainty analysis of sources. Once initiating events are
dentified and attackers’ resources are assessed, event trees are used to
9

evelop scenarios starting from the initiating events. (A2) Once specific
cenarios are identified e.g., a burglar entering the house, standard
nalysis can be performed using event trees and FTs (Step 5). In Step 6
isks and vulnerabilities are described. Specific quantities are selected
.g., the number of future attacks, the proportion of the attacks being
uccessful, the number of successful attacks, and then uncertainties are
ssessed using probabilities: this leads to probability distributions of the
bove quantities (details on this in the following paragraph). Finally,
tep 7 and 8 take place: however, [31] does not provide further details
n these.

nalysis. (A3) For the quantitative analysis the uncertainties are ex-
ressed with probabilities and expected values 𝐸(𝑋) for the uncertainty
istribution of 𝑋. For example 𝑋 can take one of the values 0, 1,
0 and the associated probabilities are 0.8, 0.11 and 0.05, then the
xpected value is 𝐸(𝑋) = 0 ⋅ 0.8 + 1 ⋅ 0.11 + 50 ⋅ 0.05. In this framework,
robability is used as a measure of uncertainty, seen through the eyes
f the assessor. In contrast to BNs, when [31] uses the notation 𝑃 (𝐶|𝐷),
t does not indicate the probabilities of 𝐶 depend on the result of 𝐷.
he probability assignments are dependent on available information
nd knowledge of the system. 𝑃 (𝐶|𝐷) indicates that the Expected value
f 𝐶 depends on 𝐷 with unchanged probabilities. For example with
ufficient information we are able to predict with certainty the value
f the quantities of interest. The quantities are unknown to us as we
ave lack of knowledge, i.e., how people act, how machines work, etc.
ith the help of this framework one can calculate the likelihood of an

ttack and its consequences to failures.

bservations. (A4) In [31], the authors utilize the THO Framework
o model the case study of an electrical grid. (A1) Given that [31]
roposes to utilize both FTs and event trees, and to assess the impact of
ulnerabilities/attacks on a given system, a clear parallel with ATBTs
an be drawn. FTs can be employed to assess hazards on a given system,
nd we could evaluate the role of attacks by using ATs as seen in
.g., FT/ATs. Moreover, for every successful attack, consequences can
e evaluated through the use of event trees. This structure suggests
trong similarities with ATBTs. Thus, the framework proposed in [31]
eems to capture dependencies in the same ways as ATBTs do (this
lso applies to our running example). (A5) It is however unclear if
eveloping an ATBT for every identified scenario would be the best
hoice to represent the aforementioned procedure. Other options would
nclude the development of an ATBT with multiple TLEs in order to
epresent diverse scenarios and their consequences.

. Category 4: Architectural formalisms

Several of the formalisms are based on modeling the system ar-
hitecture and then verifying its correctness, namely STAMP, SysML,
lloy, Event-B, and AADL. These models primarily describe the overall
tructure, architecture, behavior or interactions of the system they
odel, and then check if the modeled properties comply to a set of

equirements and/or conditions.

.1. STAMP

odelling. The System-Theoretic Accident Model and Processes
STAMP) is rooted in the observation that system risks do not come

Fig. 15. STAMP.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

m
g
r
p
(
S

A
b
i
c
d

O
a
m
a
s
q
i
s
P
S

8

M
p
U
w
t
c
i
m
s
m
i
s
s
E
W
I
a
l
c
u
a
t

from component failures, but from inadequate control or enforce-
ment of safety-related constraints. Rather, (A2) in STAMP, systems are
viewed as interrelated components that are kept in a state of dynamic
equilibrium by feedback loops of information and control [71]. Each
component enforces the safety and security constraints in the processes
it controls, using control actions and feedback messages. Inability to
enforce these constraints results in failures in safety or security. System
Theoretic Process Analysis (STPA) and its extensions STPA-sec [72] and
STPA-safesec [32] systematically identify the consequences of incorrect
control actions and feedback [73], e.g., when these happen too early, in
the wrong order, or were maliciously inserted. Fig. 15 shows the Person,
who can lock and unlock the door. Locking mechanism is controlled
by Person, and controls if the Door can open. A safety constraint is
that Person must be able to unlock a door in case of fire; a security
constraint is an unauthorized person must not be able to gain access.
A violation is, e.g., the scenario where the person locks the locking

echanism while the door is open, forcing the door to stay open and
ranting unauthorized access. (A5) STPA-safesec can discover these
isks in a structured manner, however this is currently still a manual
rocess requiring domain knowledge and has not been automated [74].
A1) STAMP is not geared towards expressing dependencies. However,
TPA-safesec analysis may reveal safety-security conflicts [75].

nalysis. (A3) STPA is used to identify potential hazards and undesired
ehaviors: e.g., the violation previously described. It would for example
nvert the order of control actions, such as locking the lock before
losing the door, and identifying if that leads to a prohibited state. A
oor locked permanently open would violate security requirements.

bservations. STAMP models control flows of the system and further
nalysis identify safety and security hazards in that control flow. Do-
ain experts are required to properly identify issues. STAMP provides
structured way of reasoning based on a high level description of the

ystem that should ensure the identification of safety and security re-
uirements. STAMP can identify safety and security issues in a system,
t is not for documenting those interactions. It is suited to help with the
yntheses of a model describing safety and security interactions. (A4)
aper [32] analyze synchronous-islanded operating microgrids using
TAMP.

.2. SysML

odelling. The Systems Modeling Language (SysML) is a general-
urpose modeling framework for systems engineering, extending the
nified Modeling Language (UML). (A2) SysML-sec [76] extends SysML
ith safety and security requirements. Its functional model describes

he communication channels between processes, detailing their en-
ryption methods and the complexity overhead cost. SysML-sec also
ncludes a system mapping model, describing which part of the com-
unication process occurs in which components. SysML-sec enables

afety and security properties to be expressed and verified via separate
odel checkers, e.g., checking if confidential communications can be

ntercepted by compromising a bus. The interaction between safety and
ecurity properties can, however, not be modeled. (A5) Since SysML-
ec is geared towards embedded software, we replaced the Locked Door
xample with a digital keypad lock. Fig. 16 shows the mapping model.
ithin the keypad, the CPU is connected to the main memory and an

nput-Output Bus. Connected to this bus is the physical button pad,
s well as a Digital Analog Converter that engages and disengages the
ock. Fig. 17 details the process of (dis)engaging the lock. The correct
odes are stored in an encrypted format, and an input code is received
nencrypted. Both codes are collected, and the input code is checked
gainst the stored key, either by decrypting the stored key or encrypting
he input key. On a match, a command is sent to (un)lock the door.
10
Fig. 16. SysML mapping.

Analysis. (A3) The TTool [33] can encode ATs and FTs in a SysML
parametric model. It then uses UPPAAL to test for reachability of the
TLE. Counter measures can be annotated to the ATs and FTs models,
and individual attack vectors/BEs switched on or off. UPPAAL will
then indicate if preventing the chosen subset of attack vectors/BEs is
sufficient to prevent the TLE. No method for discovering the ATs and
FTs from data is included. TTool can also verify security requirements
with ProVerif [77]. Requirements can be tagged as e.g. Confidentiality,
Non Repudiation, Data Origin Authenticity [78]. A confidentiality re-
quirement on all communications can be created, and communication
channels from the functional model are then linked to these require-
ments. An unsecured bus does not satisfy the confidential requirement,
and with no other mitigation, e.g. encrypted messaging, ProVerif will
find a state where the confidential requirement of the communication
channel is violated, returning a trace showing how this state was
reached. Paper [33] uses Key Masters Keying Protocol, which aims to
securely distribute a randomly generated key among a group of in-car
Electronic Control Units, as a case study.

Observations. (A1) In SysML, safety and security are modeled and
analyzed separately. Violation of safety and security requirements can
be observed, as well as mitigation measures that violate other require-
ments. (A5) SysML does not provide tools for analyzing interactions
between requirements, as interactions between safety and security are
an emergent behavior of the models.

8.3. ALLOY

Modelling. Alloy [34] is an Object Oriented system modeling language,
using set theory to prove assertions on a given model. It consists mainly
of signatures, which define the structure of classes of objects, facts,
which define rules the overall system follows, and assertions, behaviors
that the overall system should comply to, but counterexamples that
violate them could exist for. The authors in [79,80] propose (A2) Alloy
as a basis for creating a system model, and then creating two derivative
models, which separately check the safety and security requirements
through assertions. This is similar to SysML, which also defines a
base behavior of the system for which safety and security are checked
separately. (A4) The literature we examined contained a case study for
a fire safety system [80], but it did not contain a security element.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

f
f
a
a
a
f
f
t
e
a
w

𝐚
𝐨
𝐨
𝐬
𝐬
𝐨

𝐟
𝐟
𝐟

𝐩
d
𝐩
b
𝐩

𝐚
𝐚
𝐚
a

A
m
A
a

Fig. 17. SysML function diagram for digital door.
o
o
v
a

O
d
r
d
p
r
c
t
s
p
m
c
p
s

|

b
t
r
a
a
o
d
s
c
s
s
s
b
b
=
v
w
a

Due to a lack of an industrial case study that fits our focus of safety-
security co-analysis, we have crafted an Alloy model that captures the
locked door example. The first step in defining the model was creating
the mechanism for having a Boolean data type. This is achieved by
extending an abstract Boolean into a singular TRUE and FALSE. In
stead of requiring a new object for every attribute that could be added
to a class, the name of the attribute in combination with pointing to
a globally unique TRUE and FALSE would describe if the property is
present or not. Next, Doors, Locks and the Building are defined. A door
can be opened or not and a Lock engaged or not, state registered by a
Boolean. A Door has a single Lock and a Lock can be installed in a single
Door. There is also a Building that contains all the Doors, which can be
on fire described by a Boolean. Next we impose some rules on the model
to ensure accurate behavior by defining facts. If a Door has a Lock, then
that Lock must reflect it is installed in that Door, and if a Lock identifies
a Door it is installed in, that Door must reflect it has that specific Lock.
Lastly, all Doors that exist must be installed in the Building to exclude
ree floating Doors. Three predicates are defined, which can be used
or evaluation. A predicate defining if a specific Door d is openable,
predicate defining if a person can always escape the Building fire,

nd a predicate defining if a burglar is prevented from entering. Lastly,
sserts are defined, which are used to check if the above defined model
ulfills the safety and security requirements. The current model does not
ulfill the asserts, since the model does not prevent states that violate
he asserts. However, introducing new facts to enforce the safety assert
ither violates the security assert, no doors are not openable results in
ll doors are openable, or requires the Building to never be on fire,
hich is unrealistic.

𝐛𝐬𝐭𝐫𝐚𝐜𝐭 𝐬𝐢𝐠 Boolean { }
𝐧𝐞 𝐬𝐢𝐠 TRUE extends Boolean { }
𝐧𝐞 𝐬𝐢𝐠 FALSE extends Boolean{ }
𝐢𝐠 Lock {lock_engaged: one Boolean, installed_in: one Door}
𝐢𝐠 Door {opened: one Boolean, installed_lock: one Lock}
𝐧𝐞 𝐬𝐢𝐠 Building {doors: set Door, on_fire: one Boolean}

𝐚𝐜𝐭 {all d:Door, o: d.installed_lock | o.installed_in = d}
𝐚𝐜𝐭 {all l:Lock, o: l.installed_in | o.installed_lock = l}
𝐚𝐜𝐭 {all d:Door, b:Building | d in b.doors}

𝐫𝐞𝐝 door_openable [d: Door] {d.opened = TRUE or
.installed_lock.lock_engaged = FALSE}
𝐫𝐞𝐝 can_escape_fire {no d: Door, b:Building |

.on_fire = TRUE and not door_openable[d]
𝐫𝐞𝐝 burglar_cant_enter {no d:Door | door_openable[d]}

𝐬𝐬𝐞𝐫𝐭 fire_safe {can_escape_fire}
𝐬𝐬𝐞𝐫𝐭 secure {burglar_cant_enter}
𝐬𝐬𝐞𝐫𝐭 safe_and_secure {can_escape_fire
nd burglar_cant_enter}

nalysis. (A3) Alloy is both a language and a toolkit: as such, Alloy
odels can be automatically analyzed. This is achieved by SAT solving.
lloy can perform checks for a given amount of objects, either a specific
11

mount of objects or all integers up to a specific amount. For these
bjects, Alloy checks if the assertions hold in all possible configurations
f those objects, returning a counterexample where an assertion is
iolated. A graphical representation of such a counterexample can be
utomatically generated.

bservations. (A1) Alloy can model the absence of interactions by
efault. Due to the predicate logic, conditional dependency, mutual
einforcement, and antagonism can be encoded directly. Conditional
ependency is achieved by defining a mainly safety or security focused
redicate that requires a predicate of the other kind to be true. Mutual
einforcement can be modeled by having a safety and a security predi-
ate requiring the same state of another predicate or of a component in
he model. Antagonism can be directly modeled by defining a combined
afety and security predicate or assert that simultaneously requires a
redicate to be true and not true. For example, defining that all doors
ust simultaneously satisfy and not satisfy the door_openable predi-

ate. Similar to SysML, antagonism can also be detected as an emergent
roperty of the model, where changing the base behavior to satisfy a
afety assert would violate a security assert and vice versa. However

we do not count this behavior as explicitly modeling antagonism. While
the Alloy language is capable of handling these interactions, using alloy
as described in [34] – making separate adaptations of a base model to
check safety and security separately – would preclude defining all these
interactions. (A5) At the time of writing this survey, a new version of
Alloy has just released adding support for some temporal relations. No
literature exists yet that explores the possibilities of this extension in the
context of safety and security. As such, we will consider only the older
version of Alloy, and exclude the temporal element in our analysis.

8.4. Event-B

Modelling. Event-B [81–83] has been developed out of the framework
RODIN [84]. It is a rigorous approach to correct-by-construction system
development. Development starts from the definition of an abstract
specification – which models the essential functionalities of the sys-
tem – that is later refined. In the refinement process, the abstract
model is transformed into a detailed specification, expressed using set
theory and propositional logic. This propositional logic also supports
expressing properties at differing time steps, for example, statements
that the difference of variables over time is constrained (|𝐴(𝑇 + 1)| <
𝐴(𝑇)| + |𝛥|). (A4) In [35], the authors model the architecture of a
attery charging system representing its failure behavior and defining
he mechanisms for error detection and recovery. (A2) During the
efinement process, they also represent the effect of security vulner-
bilities such as tampering, spoofing and denial-of-service attacks and
nalyze their impact on system safety. The step-wise refinement process
f Event-B allows one to systematically derive the constraints and
efine the assumptions that should be fulfilled to guarantee system
afety in presence of security attacks. This example is representative of
onditional dependency, specifically of security potentially influencing
afety. First, we detail the system by defining requirements and con-
traints. There are two requirements that encode the integrity of the
ystem: 1. You must not be locked in during fire. 2. Attacker must not
e able to open the door. There is a single constraint: 1. Door cannot
e locked or unlocked in the same time. We assume that door opened
1 and lock locked = 1, and formalize the state of the system using the

ariables 𝑑 and 𝑙. We then proceed to refine the model. First refinement:
e add guards to the lock and the door events. Second refinement: we
dd a variable for fire, an invariant and event for fire safety: when fire

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

H
s

t
s
s

A
t
T
t

O
a
i
a
t
a
a
a
i
a

happens the door must open, the lock must open to ensure the door
can be opened. Third refinement: we add a variable for burglary and an
invariant for burglary, plus an event for burglar security. The process of
refinement unearths the need for the following property: 𝑓 = 0∨ 𝑏 = 0.

owever, it is not realistic that fire and burglary will never happen
imultaneously.

𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐬 ∶
𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 ∶𝑑, 𝑙, 𝑓 , 𝑏
𝐈𝐧𝐯𝐚𝐫𝐢𝐚𝐧𝐭𝐬 ∶

Inv01: 𝑑 ∈ {0, 1}

Inv02: 𝑙 ∈ {0, 1}

Inv03: 𝑓 ∈ {0, 1}

Inv04: 𝑏 ∈ {0, 1}

Inv05: 𝑓 = 1 ⟹ 𝑑 = 1

Inv06: 𝑏 = 1 ⟹ 𝑑 = 0

𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐢𝐞𝐬 ∶
Prop01: 𝑓 = 0 ∨ 𝑏 = 0

𝐄𝐯𝐞𝐧𝐭𝐬 ∶
𝐎𝐏 − 𝐃𝐎𝐎𝐑 ∶𝐰𝐡𝐞𝐧 𝑑 = 0; 𝑙 = 0 𝐭𝐡𝐞𝐧 𝑑 ∶= 1

𝐂𝐋 − 𝐃𝐎𝐎𝐑 ∶𝐰𝐡𝐞𝐧 𝑑 = 1; 𝑙 = 0 𝐭𝐡𝐞𝐧 𝑑 ∶= 0

𝐎𝐏 − 𝐋𝐎𝐂𝐊 ∶𝐰𝐡𝐞𝐧 𝑙 = 1 𝐭𝐡𝐞𝐧 𝑙 ∶= 0

𝐂𝐋 − 𝐋𝐎𝐂𝐊 ∶𝐰𝐡𝐞𝐧 𝑙 = 0 𝐭𝐡𝐞𝐧 𝑙 ∶= 1

𝐅𝐈𝐑𝐄 − 𝐒𝐀𝐅𝐄 ∶𝐰𝐡𝐞𝐧 𝑓 = 1 𝐭𝐡𝐞𝐧 𝑙 ∶= 0; 𝑑 ∶= 1

𝐁𝐔𝐑𝐆𝐋𝐀𝐑 − 𝐒𝐄𝐂 ∶𝐰𝐡𝐞𝐧 𝑏 = 1 𝐭𝐡𝐞𝐧 𝑙 ∶= 1; 𝑑 ∶= 0

Analysis. (A3) Given some events for the system and its invariants
which are the requirements of the system, Event-B can prove properties
of that system (e.g., safety-related properties) under given assump-
tions [85]. However, note that security mechanisms and requirements
are still modeled with a similar method as safety ones are, with the
same limitations. (A5) Event-B is a text-based formalism, thus not
allowing graphical visualization of modeled systems.

Observations. (A1) As shown, antagonism can be modeled in the lock-
door example. Because Event-B is a very general approach – mainly
based on set theory and propositional logic – it can model all four
kinds of safety and security interactions. In particular, we can encode
conditional dependency inside events using guards.

8.5. The architectural analysis and design language

Modelling. The Architectural Analysis and Design Language (AADL)
is a framework to model the software and hardware architecture of
embedded real-time systems. It is an international standard of the
SAE, Aerospace Division [86]. Its core language describes the multi-
threaded, distributed software architecture, and the annexes describe
real-time behavior and error modeling. The EMV2 language is used to
analyze software failures (safety), providing a property set, a library
of error models, and an annex sub-language, expressing how errors are

Fig. 18. AADL.
12
generated and propagated. (A2) Safety and security are added in one
AADL model in [36] as follows: Safety analysis computes the mean
time between failures (MTBF) of the system based on the information
provided by the AADL model and its error annex. For security, the
goal is to avoid unauthorized access to sensitive data. Data is accessed
through AADL ports of subprograms. So it is important to verify that
the indirect data access points are secure enough. This is done with a
dedicated property set that associates a security level (an integer value)
to AADL data. Fig. 18 models the Locked Door Example with AADL: this
is uncommon for AADL because it is often used for the interaction be-
tween software and hardware components. Here we consider a Person,
a Locking mechanism, and Door access as components. They are linked
hrough ports. (A1) AADL does not model any kind of dependencies:
afety and security are considered separately, although they share the
ame AADL model to perform the analysis.

nalysis. (A3) For safety, the MTBFs of the system is calculated via
he AADL Error model statements in various components descriptions.
hey are compiled together to generate a FT. For security, the goal is
o hide data with help of the Stood for AADL tool.

bservations. An AADL model is scalable and appropriate for version
nd configuration management, because it can be fully described by
ts textual representation. AADL can be also integrated into the MILS
rchitectural approach that consists of developing an abstract archi-
ecture intended to achieve the stated purpose, and implementing that
rchitecture on a robust technology platform [87]. FTs can be analyzed
fter transforming AADL to the Arbre Analyste tool, which makes AADL
n excellent application for FTs. (A5) Interesting for future work is to
ntegrate ATs with AADL. (A4) In [36], a toy example is presented,
nalyzing the safety and security of an electrical locked door. (A1) An

AADL model does not represent any kind of safety-security dependency,
thus it could be valuable to study whether the analysis for classical
ATs and FTs combination could help understand if dependencies can
be represented via safety-security measures.

9. Expressiveness

Context of comparison. In light of our analysis, we compare the for-
malisms with respect to their expressiveness, see Fig. 19. We do not
consider AADL, SysML or STAMP in terms of expressiveness. While
they are powerful system modeling techniques, they do not directly
model the safety/security interactions of the system, which is the
primary focus of this survey. Only AFTs, BDMPs, BNs, ALLOY and
Event-B – although with different methods – fully capture all four in-
teractions: antagonism, mutual reinforcement, conditional dependency
and independence. The modeling techniques under analysis are vastly

Fig. 19. Expressiveness of formalisms: higher = more expressive. Solid arrows: tech-
nique subsumes in features. - - if DBNs support general probability distributions. ⋯ if
BNs are expanded to model consequences beyond safety/security TLEs.

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

r

E
a
A
f
p
p
r
b
r
c
c
t
l
s
s
c
l
t
a
a
t
f
A
d
a
m
i
s
F
s
t
a
n
A
B
q

different and a one-to-one comparison would not be fair or complete.
However, we are not trying to determine an objectively best modeling
method. However, despite the difference of considered formalisms –
especially when comparing architectural ones and formalisms combin-
ing/extending FTs and ATs – we believe a situational comparison can
be drawn by focusing on the ability of each formalism to capture safety-
security interactions, which is one of the key questions proposed in this
paper. Moreover, all the observations regarding key similarities and
differences highlighted in each respective section remain valid. Further-
more, we detail the expressiveness analysis of formalisms by consider-
ing the following properties: ability to capture safety-security dependency
elations, time, state of components, consequences (see Table 2).

xpressiveness. FT/AT express independence, directional antagonism,
nd directional conditional dependency (from security to safety).
TBTs express the same plus consequences after failure. the THO

ramework mirrors ATBTs to a high degree, but is focused on ex-
ected values rather than probabilities. CFT express the same as FT/AT
lus bi-directional conditional dependency/antagonism and mutual
einforcement. FACT graphs can model everything that FT/ATs can,
ut includes the ability to add countermeasures to security or safety
isks. SEFTs express the same as FT/AT plus details on the state of
omponents in the system via Petri nets. This enables negation of single
omponents by depending on the non-failed state (an implicit nega-
ion), but does not enable negating sub-trees. Thus, SEFTs are slightly
ess expressive than CFTs (when NOT-gates are included). The attacker
teps can also not be influenced by anything in the safety portion,
o conditional dependency is directional too. ALLOY’s predicate logic
an model bidirectional antagonism and negation for entire sub-trees,
ike CFTs, and does so by exploring the possible states of components,
hus is able to detail state like SEFTs, though purely for a qualitative
nalysis, since it lacks quantitative analysis. The current literature is
lso not up to date with the state of the ALLOY tool, which now includes
he capability to model temporal relationships. When the capabilities
or such are properly explored, it might be as expressive as EVENT-B.
FT express the same as CFT, plus an element of time/order through
ynamic gates. AFTs use exponential probability distributions, as well
s more complex distributions [29]. BNs model all dependencies,
ultiple TLEs, and potentially can be expanded to model consequences

n a method similar to ATBTs, though they have not been used for
uch in the literature yet. Thus, the introduction of the dotted line in
ig. 19. BDMPs express bidirectional dependencies and details on the
tate of components via Petri nets, like ALLOY, plus time/order through
he use of triggers. Recall they also express probability distributions
s mentioned in Section 5.3. Dynamic BN express time, consequences,
egation and details on the state of components. They also expand on
FTs and BDMPs if they model generic probability distributions. Event-
, due to its general nature, is the most expressive when it comes to
13

ualitative analysis, though it lacks quantitative analyses. It supports
state modeling, and can define system properties over time. Though
not shown in literature, it could model consequences such as defined
by ATBTs as part of system behavior.

10. Findings and reflection

Our survey revealed several noteworthy findings, some of which are
summarized in Tables 2–4.

Finding #1: The majority of approaches combine fault trees and attack trees.
Seven of the fourteen formalisms we found combined FTs and ATs. This
may not be too much of a surprise, since FTs and ATs are similar in
nature and are widely employed, both in industry and academia. Some
of these formalisms are plain combinations of FTs and ATs, while some
others add constructs to extend modeling/analysis capabilities of these
combinations.

Finding #2: No novel modeling constructs are introduced. It is however re-
markable that none of the formalisms for safety and security integration
that we found introduces novel modeling constructs to capture safety-
security interactions. In our opinion, the reason for this phenomenon
is to be attributed to familiarity with either safety-specific or security-
specific formalisms. In fact, the key strategy that we unearthed is to
merge already existing safety and security formalisms without adding
new operators. Thus, one can represent safety and security features in
one model, but one may wonder to what extent the interaction can
be expressed appropriately when the main strategy relies on merging
existing techniques.

Finding #3: Safety-security interactions are still ill-understood. While the
paper [17] coins the four dependency types, these are given in natural
language. As such, when one find him/herself trying to apply these def-
initions to capture interactions via formal methods, it remains unclear
how one might translate them formally. In this work, we make a first
attempt at proposing rigorous definitions that focus on requirements
and events, to then specify these for tree-based formalisms in Section 6.
Furthermore, we find that one of the dependencies – i.e., mutual
reinforcement – could be better understood by defining reinforcement
first, as it appears to not always be a bi-directional interaction. Encour-
aging more work in translating these definitions for specific categories
of formalisms could further narrow this gap. A first practical step
might arise from the analysis of real-life case studies, in settings where
safety-security interactions are already present.

Finding #4: No novel metrics were proposed. No novel metrics were
introduced to quantify safety-security interactions. Again, classical met-
rics were studied, such as the mean time to failure and attacker success
probabilities. These metrics remain anchored to typical safety-specific
or security-specific formalisms, and are subsequently merged as mod-
eling constructs are. To address this gap, trade offs between safety and
security, e.g., through Pareto analysis, could be studied. Trade offs are
– in fact – natural to analyze in these contexts and do not necessitate

novel analysis methods.
Table 4
Comparison of case study complexity per analyzed formalism.
Formalism Metric/Analysis Size

FT/AT Probability 8 #Gates
CFTs Probability 8 #Components
AFTs Probability, time and cost of attacks 24, 6, 5 #Gates

SEFTs Probability, Mean Time Between Attacks 6 #Components
FACT Graphs Probability 9 #Gates
BDMPs Mean Time to Success, probability of success 19 #Gates
ATBTs Risk level evaluation, trade offs analysis 12 #Controls

BNs Mean Time to Failure, conditional independence 16 #Nodes
THO Framework Likelihood of an attack /

STAMP Potential hazards and undesired behaviors 6, 10 #Components
SysML States that violate properties/requirements 5 #Blocks
ALLOY Prove properties under given assumptions 18 #Input/Output ports
Event-B Prove properties under given assumptions 6 #Components in safety goal
AADL Mean Time Between Failures 9 #Gates (corresp. FT)

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.

a
d
2
h

Finding #5: No large case studies were carried out. In general, papers
analyzed in this work present relatively small examples for illustrative
purposes (see Table 4). A notable exception is the medium-size, but
realistic, pipeline case study in [19,29]. Another notable exception
is the electrical grid case study in [79]. This is remarkable, because
for safety and security separately, such numerous large case studies
exist, e.g., [88–92]. Conducting a thorough case study analysis in a
realistic setting could shed light on how safety and security practically
interact, on how one could formally define these interactions in a
specific context and could help gather more insight on how safety and
security can be jointly analyzed.

Finding #6: diverse formalisms model different safety-security interactions.
As per Table 2 and in Section 9, AFTs, BDMPs, BNs, Event-B and ALLOY
are the only formalisms that can model all four safety-security depen-
dencies. CFTs and SEFTs can model them when extended/with some
limitations, which we suggested in the respective sections, e.g., CFTs
need a NOT-gate to express antagonism while SEFTs can only express
directional conditional dependency, from security to safety.

11. Conclusion and future work

We now look back at research questions posed in Section 2, offer
a summary of answers and pointers to valuable sections in the paper.
(Q1) How expressive are these formalisms? (Q2) Which modeling
constructs exist to model the interactions between safety and security?
(Q3) Which analyses do these formalisms enable? (Q4) How do these
formalisms compare on industrial case studies and (Q5) What are the
gaps and the findings? What would be desirable extensions?

In summary:
(A1) Our paper provides a thorough comparison of the analyzed

formalisms. For each formalism, we highlight its expressive-
ness, i.e., their ability to model safety/security interactions,
in the appropriate section and we conduct a thorough com-
parison between them in Section 9. Out of the 14 formalisms
analyzed, AFTs, BDMPs, BNs, Event-B and ALLOY are the
only 5 formalisms that can model all four safety-security
dependencies.

(A2) None of the formalisms present specific constructs for safety-
security interdependencies: constructs are acquired from
safety-only or security-only frameworks and joined after-
wards, following different strategies. The same holds for
metrics: none of those is specific for safety-security inter-
actions. We reflect on reasons behind this phenomenon in
Section 10.

(A3) Studied formalisms enable qualitative and/or quantitative
analyses: details are provided and highlighted in each section
and summarized in Table 3.

(A4) As highlighted in Section 10 and to the best of our knowl-
edge, safety-security interactions are studied inside limited
scenarios and large industrial case studies are still missing.

(A5) We tackle gaps in each section and highlight them while
analyzing formalisms. Moreover, we summarize our general
findings in Section 10. Further extensions could be con-
sidered and are suggested in appropriate sections, e.g., for
every FT/AT-based formalism, one could employ two roots
to account for different safety and security TLEs, as BNs do.

Future work. More rigorous definitions of safety-security dependencies
re needed, to account for: 1. Directionality. Are safety and security
irectional or bi-directional and from which direction do they flow?
. Intensity. For a quantifiable co-analysis, intensity of these interaction
14

as to be considered. 3. Nature of the interaction. For each of the pos-
sible interactions, from reinforcement, to dependency or antagonism,
accounting for the positive or negative impact of such an interaction is
fundamental. Moreover, conditional dependencies like the one showed
in Fig. 4(a) raise the question on who is responsible for depending
actions when safety and security are heavily dependent. Game the-
oretical frameworks could be deployed to analyze this open issue.
The visualization of safety/security interdependencies should also be
considered to ease readability of complex models. The most recent
update of the Alloy tool has introduced more capabilities than explored
in the current literature, exploring how the new temporal modeling
capabilities can be exploited for safety-security modeling would be of
interest as well.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Marielle Stoelinga reports financial support was provided by NWO
grant NWA.1160.18.238 (PrimaVera). Marielle Stoelinga reports fi-
nancial support was provided by EU Marie Sklodowska-Curie grant
agreement No 101008233. Stefano Maria Nicoletti, Marielle Stoelinga,
Marijn Peppelman reports financial support was provided by ERC
Consolidator Grant 864075 (CAESAR). We confirm that this manuscript
has not been published elsewhere and is not under consideration
by another journal. All authors agree with submission to Computer
Science Review. This study was partially funded by the NWO grant
NWA.1160.18.238 (PrimaVera), the European Union’s Horizon 2020
research and the innovation programme under the Marie Skłodowska-
Curie grant agreement No 101008233, and the ERC Consolidator Grant
864075 (CAESAR). The authors have no conflicts of interest to declare.

Data availability

No data was used for the research described in the article.

References

[1] F. Reichenbach, J. Endresen, M.M.R. Chowdhury, J. Rossebø, A pragmatic
approach on combined safety and security risk analysis, in: 2012 IEEE 23rd
International Symposium on Software Reliability Engineering Workshops, 2012,
pp. 239–244, http://dx.doi.org/10.1109/ISSREW.2012.98.

[2] C. Woskowski, A pragmatic approach towards safe and secure medical device
integration, in: International Conference on Computer Safety, Reliability, and
Security, Springer, 2014, pp. 342–353.

[3] A.J. Kornecki, J. Zalewski, Safety and security in industrial control, in: Pro-
ceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, CSIIRW ’10, Association for Computing Machinery, New
York, NY, USA, 2010, http://dx.doi.org/10.1145/1852666.1852754.

[4] D.P. Eames, J. Moffett, The integration of safety and security requirements, in:
International Conference on Computer Safety, Reliability, and Security, Springer,
1999, pp. 468–480.

[5] International Standardization Organization, ISO/DIS 26262: Road Vehicles,
Functional Safety, Technical Report, 2009.

[6] ISO/IEC 25010:2011, Systems and software quality requirements and evaluation
(SQuaRE), in: System and Software Quality Models, 2011.

[7] A. Avizienis, J.-C. Laprie, B. Randell, C.E. Landwehr, Basic Concepts and
Taxonomy of Dependable and Secure Computing, Vol. 1, TDSC, 2004, pp. 11–33.

[8] D.M. Nicol, W. H.Sanders, K.S. Trivedi, Model-based evaluation: From de-
pendability to security, IEEE Trans. Dep. Sec. Comput. 1 (1) (2004)
48–65.

[9] T. Novak, A. Treytl, Functional safety and system security in automation systems
- a life cycle model, in: 2008 IEEE International Conference on Emerging
Technologies and Factory Automation, 2008, pp. 311–318, http://dx.doi.org/10.
1109/ETFA.2008.4638412.

[10] C. Schmittner, Z. Ma, E. Schoitsch, T. Gruber, A case study of FMVEA and
CHASSIS as safety and security co-analysis method for automotive cyber-physical
systems, in: CPSS, 2015, pp. 69–80.

[11] C. Schmittner, Z. Ma, P. Smith, FMVEA for safety and security analysis of
intelligent and cooperative vehicles, in: SAFECOMP, 2014, pp. 282–288.

[12] C. Raspotnig, P. Karpati, V. Katta, A combined process for elicitation and
analysis of safety and security requirements, in: Enterprise, Business-Process and

Information Systems Modeling, Springer, 2012, pp. 347–361.

http://dx.doi.org/10.1109/ISSREW.2012.98
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb2
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb2
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb2
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb2
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb2
http://dx.doi.org/10.1145/1852666.1852754
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb4
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb4
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb4
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb4
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb4
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb5
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb5
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb5
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb6
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb6
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb6
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb7
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb7
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb7
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb8
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb8
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb8
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb8
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb8
http://dx.doi.org/10.1109/ETFA.2008.4638412
http://dx.doi.org/10.1109/ETFA.2008.4638412
http://dx.doi.org/10.1109/ETFA.2008.4638412
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb10
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb10
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb10
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb10
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb10
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb11
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb11
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb11
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb12
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb12
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb12
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb12
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb12

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.
[13] K. Lano, D. Clark, K. Androutsopoulos, Safety and security analysis of object-
oriented models, in: International Conference on Computer Safety, Reliability,
and Security, Springer, 2002, pp. 82–93.

[14] J. Dürrwang, K. Beckers, R. Kriesten, A lightweight threat analysis approach
intertwining safety and security for the automotive domain, in: International
Conference on Computer Safety, Reliability, and Security, Springer, 2017, pp.
305–319.

[15] G. Macher, A. Höller, H. Sporer, E. Armengaud, C. Kreiner, A combined
safety-hazards and security-threat analysis method for automotive systems, in:
SAFECOMP, 2014.

[16] A. Mashkoor, F. Kossak, A. Egyed, Evaluating the suitability of state-based
formal methods for industrial deployment, Softw. - Pract. Exp. 48 (12) (2018)
2350–2379.

[17] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, Y. Halgand, A survey of approaches
combining safety and security for industrial control systems, RESS 139 (2015)
156–178.

[18] M. Sun, S. Mohan, L. Sha, C. Gunter, Addressing safety and security
contradictions in cyber-physical systems, in: CPSSW, Citeseer, 2009.

[19] S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, L. Pietre-Cambacedes, Safety and
security interactions modeling using the BDMP formalism: case study of a
pipeline, in: SAFECOMP, Springer, 2014, pp. 326–341.

[20] F. Arnold, D. Guck, R. Kumar, M. Stoelinga, Sequential and parallel attack
tree modelling, in: F. Koornneef, C. van Gulijk (Eds.), Proceedings SAFECOMP
Workshops, in: LNCS, vol. 9338, Springer, 2015, pp. 291–299.

[21] B. Kaiser, P. Liggesmeyer, O. Mäckel, A new component concept for fault trees,
in: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software-Volume 33, Citeseer, 2003, pp. 37–46.

[22] M. Steiner, P. Liggesmeyer, Combination of safety and security analysis - finding
security problems that threaten the safety of a system, in: SAFECOMP, 2016.

[23] I.N. Fovino, M. Masera, A. De Cian, Integrating cyber attacks within fault trees,
Reliab. Eng. Syst. Saf. 94 (9) (2009) 1394–1402.

[24] M. Bouissou, J.-L. Bon, A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes, Reliab. Eng. Syst.
Saf. 82 (2) (2003) 149–163.

[25] H. Abdo, M. Kaouk, J.-M. Flaus, F. Masse, A safety/security risk analysis
approach of industrial control systems: A cyber bowtie–combining new version
of attack tree with bowtie analysis, Comput. Secur. 72 (2018) 175–195.

[26] H. Abdo, M. Kaouk, J.-M. Flaus, F. Masse, A new approach that considers cyber
security within industrial risk analysis using a cyber bow-tie analysis, 2017,
https://hal.archives-ouvertes.fr/hal-01521762, working paper or preprint.

[27] G. Sabaliauskaite, A.P. Mathur, Aligning cyber-physical system safety and se-
curity, in: Complex Systems Design & Management Asia, Springer, 2015, pp.
41–53.

[28] M. Roth, P. Liggesmeyer, Modeling and analysis of safety-critical cyber physical
systems using state/event fault trees, in: SAFECOMP, 2013.

[29] R. Kumar, M. Stoelinga, Quantitative security and safety analysis with
Attack-Fault Trees, in: 18th International Symposium on HASE, 2017, pp. 25–32.

[30] A.J. Kornecki, N. Subramanian, J. Zalewski, Studying interrelationships of safety
and security for software assurance in cyber-physical systems: Approach based
on bayesian belief networks, in: 2013 FEDCSIS, IEEE, 2013, pp. 1393–1399.

[31] T. Aven, A unified framework for risk and vulnerability analysis covering both
safety and security, Reliab. Eng. Syst. Saf. 92 (6) (2007) 745–754.

[32] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, S. Sezer, STPA-SafeSec: Safety
and security analysis for cyber-physical systems, J. Inf. Secur. Appl. 34 (2017)
183–196.

[33] G. Pedroza, L. Apvrille, D. Knorreck, AVATAR: A SysML environment for the
formal verification of safety and security properties, in: NOTERE, 2011, pp. 1–10.

[34] D. Jackson, Alloy: a lightweight object modelling notation, ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11 (2) (2002) 256–290.

[35] I. Vistbakka, E. Troubitsyna, T. Kuismin, T. Latvala, Co-engineering safety
and security in industrial control systems: a formal outlook, in: International
Workshop on Software Engineering for Resilient Systems, Springer, 2017, pp.
96–114.

[36] P. Dissaux, F. Singhoff, L. Lemarchand, H. Tran, I. Atchadam, Combined
real-time, safety and security model analysis, in: ERTSS, 2020.

[37] D.S. Velasco Moncada, Hazard-driven realization views for component fault trees,
Softw. Syst. Model. 19 (6) (2020).

[38] A. Mashkoor, A. Egyed, R. Wille, Model-driven engineering of safety and security
systems: A systematic mapping study, 2020, arXiv preprint arXiv:2004.08471.

[39] S. Chockalingam, D. Hadžiosmanović, W. Pieters, A. Teixeira, P. van Gelder,
Integrated safety and security risk assessment methods: A survey of key
characteristics and applications, Lect. Not. Comput. Sci. 10242 (2017) 50–62.

[40] V. Nigam, A. Pretschner, H. Ruess, Model-based safety and security engineering,
2019.

[41] A. Mashkoor, A. Egyed, R. Wille, Model-driven engineering of safety and security
systems: A systematic mapping study, 2020, CoRR abs/2004.08471. https://
arxiv.org/abs/2004.08471.

[42] C. Raspotnig, A.L. Opdahl, Comparing risk identification techniques for safety
and security requirements, J. Syst. Softw. 86 (4) (2013) 1124–1151, http:
//dx.doi.org/10.1016/j.jss.2012.12.002.
15
[43] J. Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, A. Cleven, Recon-
structing the giant: On the importance of rigour in documenting the literature
search process, in: ECIS, 2009.

[44] E. Lisova, I. Šljivo, A. Čaušević, Safety and security co-analyses: A systematic
literature review, IEEE Syst. J. 13 (3) (2018) 2189–2200.

[45] S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware trojan attacks: Threat
analysis and countermeasures, Proc. IEEE 102 (8) (2014) 1229–1247.

[46] Microsoft Security Development Lifecycle, Threat modeling, 2021, https://
microsoft.com/en-us/securityengineering/sdl/threatmodeling, [Accessed 29 June
2021].

[47] S. Kriaa, M. Bouissou, Y. Laarouchi, A model based approach for SCADA safety
and security joint modelling: S-cube, 2015.

[48] S. Kriaa, M. Bouissou, Y. Laarouchi, SCADA safety and security joint modeling
(s-cube): case study of a dam, in: Proceedings of the 22th Computer & Electronics
Security Applications Rendez-Vous (C&ESAR’2015), 2015, pp. 55–69.

[49] Z.B. Celik, P. McDaniel, G. Tan, Soteria: Automated iot safety and security
analysis, in: 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
2018, pp. 147–158.

[50] W.G. Temple, Y. Wu, B. Chen, Z. Kalbarczyk, Systems-theoretic likelihood
and severity analysis for safety and security co-engineering, in: International
Conference on Reliability, Safety and Security of Railway Systems, Springer,
2017, pp. 51–67.

[51] International Electrotechnical Commission, IEC 61025: Fault Tree Analysis (FTA),
IEC Standards Online, 2006.

[52] C.A. Ericson, Fault tree analysis, in: Sys. Safety Conf., Vol. 1, 1999, pp. 1–9.
[53] E. Ruijters, M. Stoelinga, Fault tree analysis: A survey of the state-of-the-art in

modeling, analysis and tools, Comp. Sci. Rev. 15–16 (2015) 29–62.
[54] B. Schneier, Modeling security threats, Dr. Dobb’s J. 24 (12) (1999).
[55] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, DAG-based attack and defense

modeling: Don’t miss the forest for the attack trees, Comput. Sci. Rev. 13–14
(2014) 1–38.

[56] E.J. Zampino, Application of fault-tree analysis to troubleshooting the NASA GRC
icing research tunnel, in: RAMS, 2001, pp. 16–22.

[57] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar, M. Stoelinga, R. Trujillo-Rasua,
Using attack-defense trees to analyze threats and countermeasures in an ATM: a
case study, in: IFIP, Vol. 267, Springer, 2016.

[58] E.J. Byres, M. Franz, D. Miller, The use of attack trees in assessing vulnerabilities
in SCADA systems, in: Int. Infrastructure Survivability Workshop, 2004, pp. 3–10.

[59] C. Budde, C. Kolb, M. Stoelinga, Attack trees vs. Fault trees: Two sides of the
same coin from different currencies, 2021, pp. 457–467.

[60] E. Ruijters, D. Guck, P. Drolenga, M. Stoelinga, Fault maintenance trees:
Reliability centered maintenance via statistical model checking, in: RAMS, 2016.

[61] S. Junges, D. Guck, J. Katoen, M. Stoelinga, Uncovering dynamic fault trees, in:
2016 DSN, 2016, pp. 299–310.

[62] J.B. Dugan, S.J. Bavuso, M.A. Boyd, Dynamic fault-tree models for fault-tolerant
computer systems, IEEE Trans. Reliab. 41 (3) (1992) 363–377.

[63] B. Kordy, S. Mauw, S. Radomirović, P. Schweitzer, Attack–defense trees,
LOGCOM 24 (1) (2012) 55–87.

[64] S. Karnouskos, Stuxnet worm impact on industrial cyber-physical system security,
in: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics
Society, IEEE, 2011, pp. 4490–4494.

[65] M. Bouissou, Automated Dependability Analysis of Complex Systems with the
KB3 Workbench: the Experience of EDF R&D, CIEM, 2005.

[66] C.E. Budde, P.R. D’Argenio, R.E. Monti, Compositional construction of im-
portance functions in fully automated importance splitting, in: VALUETOOLS,
2016.

[67] D.S. Nielsen, The Cause/consequence Diagram Method as a Basis for Quantitative
Accident Analysis, Tech. Rep., Danish Atomic Energy Commission, 1971.

[68] L. Arnaboldi, D. Aspinall, Towards interdependent safety security assessments
using bowties, in: M. Trapp, E. Schoitsch, J. Guiochet, F. Bitsch (Eds.), Computer
Safety, Reliability, and Security. SAFECOMP 2022 Workshops - DECSoS, DepDe-
vOps, SASSUR, SENSEI, USDAI, and WAISE, Munich, Germany, September 6-9,
2022, Proceedings, in: Lecture Notes in Computer Science, vol. 13415, Springer,
2022, pp. 211–229, http://dx.doi.org/10.1007/978-3-031-14862-0_16.

[69] M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn, The marriage
between safety and cybersecurity: Still practicing, in: A. Laarman, A. Sokolova
(Eds.), Model Checking Software - 27th International Symposium, SPIN 2021,
Virtual Event, July 12, 2021, Proceedings, in: Lecture Notes in Computer Science,
Vol. 12864, Springer, 2021, pp. 3–21, http://dx.doi.org/10.1007/978-3-030-
84629-9_1.

[70] S. Montani, L. Portinale, A. Bobbio, Dynamic Bayesian networks for modeling
advanced fault tree features in dependability analysis, in: Proceedings of the
Sixteenth European Conference on Safety and Reliability, 2005, pp. 1415–1422.

[71] N. Leveson, A new accident model for engineering safer systems, Saf. Sci. 42 (4)
(2004) 237–270.

[72] C. Schmittner, Z. Ma, P. Puschner, Limitation and improvement of STPA-sec for
safety and security co-analysis, in: International Conference on Computer Safety,
Reliability, and Security, Springer, 2016, pp. 195–209.

[73] S. Procter, E.Y. Vasserman, J. Hatcliff, SAFE and secure: Deeply integrating
security in a new hazard analysis, in: Proceedings of the 12th International
Conference on Availability, Reliability and Security, 2017, pp. 1–10.

http://refhub.elsevier.com/S1574-0137(23)00064-3/sb13
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb13
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb13
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb13
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb13
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb14
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb15
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb15
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb15
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb15
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb15
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb16
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb16
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb16
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb16
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb16
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb17
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb17
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb17
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb17
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb17
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb18
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb18
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb18
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb19
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb19
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb19
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb19
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb19
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb20
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb20
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb20
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb20
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb20
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb21
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb21
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb21
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb21
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb21
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb22
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb22
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb22
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb23
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb23
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb23
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb24
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb24
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb24
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb24
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb24
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb25
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb25
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb25
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb25
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb25
https://hal.archives-ouvertes.fr/hal-01521762
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb27
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb27
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb27
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb27
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb27
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb28
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb28
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb28
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb29
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb29
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb29
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb30
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb30
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb30
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb30
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb30
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb31
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb31
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb31
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb32
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb32
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb32
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb32
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb32
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb33
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb33
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb33
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb34
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb34
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb34
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb35
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb36
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb36
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb36
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb37
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb37
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb37
http://arxiv.org/abs/2004.08471
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb39
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb39
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb39
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb39
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb39
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb40
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb40
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb40
http://arxiv.org/abs/2004.08471
https://arxiv.org/abs/2004.08471
https://arxiv.org/abs/2004.08471
https://arxiv.org/abs/2004.08471
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://dx.doi.org/10.1016/j.jss.2012.12.002
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb43
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb43
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb43
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb43
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb43
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb44
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb44
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb44
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb45
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb45
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb45
https://microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://microsoft.com/en-us/securityengineering/sdl/threatmodeling
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb47
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb47
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb47
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb48
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb48
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb48
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb48
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb48
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb49
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb49
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb49
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb49
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb49
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb50
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb51
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb51
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb51
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb52
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb53
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb53
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb53
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb54
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb55
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb55
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb55
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb55
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb55
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb56
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb56
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb56
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb57
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb57
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb57
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb57
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb57
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb58
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb58
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb58
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb59
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb59
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb59
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb60
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb60
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb60
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb61
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb61
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb61
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb62
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb62
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb62
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb63
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb63
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb63
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb64
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb64
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb64
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb64
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb64
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb65
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb65
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb65
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb66
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb66
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb66
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb66
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb66
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb67
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb67
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb67
http://dx.doi.org/10.1007/978-3-031-14862-0_16
http://dx.doi.org/10.1007/978-3-030-84629-9_1
http://dx.doi.org/10.1007/978-3-030-84629-9_1
http://dx.doi.org/10.1007/978-3-030-84629-9_1
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb70
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb70
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb70
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb70
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb70
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb71
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb71
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb71
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb72
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb72
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb72
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb72
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb72
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb73
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb73
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb73
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb73
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb73

Computer Science Review 50 (2023) 100597S.M. Nicoletti et al.
[74] D. Pereira, C. Hirata, R. Pagliares, S. Nadjm-Tehrani, Towards combined safety
and security constraints analysis, in: International Conference on Computer
Safety, Reliability, and Security, Springer, 2017, pp. 70–80.

[75] W. Young, N.G. Leveson, An integrated approach to safety and security based
on systems theory, Commun. ACM 57 (2) (2014) 31–35, http://dx.doi.org/10.
1145/2556938.

[76] Y. Roudier, L. Apvrille, SysML-Sec: A model driven approach for designing safe
and secure systems, in: MODELSWARD, IEEE, 2015, pp. 655–664.

[77] R. Ameur-Boulifa, F. Lugou, L. Apvrille, SysML model transformation for safety
and security analysis, in: CSITS, Springer, 2018, pp. 35–49.

[78] L. Apvrille, TTool: SysML-Sec Tutorial, Sophia-Antipolis, France, 2020, at https:
//ttool.telecom-paris.fr/docs/sysmlsec_documentation.pdf.

[79] J. Brunel, D. Chemouil, L. Rioux, M. Bakkali, F. Vallée, A viewpoint-based
approach for formal safety & security assessment of system architectures, in:
11th Workshop on Model-Driven Engineering, Verification and Validation, Vol.
1235, 2014, pp. 39–48.

[80] J. Brunel, D. Chemouil, Safety and security assessment of behavioral properties
using alloy, in: International Conference on Computer Safety, Reliability, and
Security, Springer, 2014, pp. 251–263.

[81] J.-R. Abrial, Event driven system construction, Rapport Tech. Clearsy 15 (1999).
[82] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge

University Press, 2010.
[83] D. Cansell, D. Méry, Event B, in: H. Habrias, M. Frappier (Eds.), Software

Specification Methods, HERMES, 2006, https://hal.inria.fr/inria-00096696.
[84] C. Snook, M. Butler, A. Edmunds, I. Johnson, Rigorous development of reusable,

domain-specific components, for complex applications, 2004.
16
[85] E. Troubitsyna, L. Laibinis, I. Pereverzeva, T. Kuismin, D. Ilic, T. Latvala, Towards
security-explicit formal modelling of safety-critical systems, in: International
Conference on Computer Safety, Reliability, and Security, Springer, 2016, pp.
213–225.

[86] AADL, AADL: Architecture analysis and design language, 2021, http://www.aadl.
info, [Accessed 1 July 2021].

[87] A. Cimatti, R. DeLong, D. Marcantonio, S. Tonetta, Combining MILS with
contract-based design for safety and security requirements, in: International
Conference on Computer Safety, Reliability, and Security, Springer, 2014, pp.
264–276.

[88] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, M. Roveri, Safety,
dependability and performance analysis of extended AADL models, Comput. J.
54 (5) (2011) 754–775.

[89] C. von Essen, D. Giannakopoulou, Analyzing the next generation airborne
collision avoidance system, in: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer, 2014, pp. 620–635.

[90] M. Bozzano, A. Cimatti, M. Gario, D. Jones, C. Mattarei, Model-based safety
assessment of a triple modular generator with xSAP, Formal Aspects Comput. 33
(2) (2021) 251–295.

[91] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar, M. Stoelinga, R. Trujillo-Rasua,
Using attack-defense trees to analyze threats and countermeasures in an ATM: a
case study, in: IFIP Working Conference on the Practice of Enterprise Modeling,
Springer, 2016, pp. 326–334.

[92] S. Baloglu, S. Bursuc, S. Mauw, J. Pang, Election verifiability revisited: Auto-
mated security proofs and attacks on helios and belenios, in: 2021 IEEE 34th
Computer Security Foundations Symposium (CSF), IEEE, 2021, pp. 1–15.

http://refhub.elsevier.com/S1574-0137(23)00064-3/sb74
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb74
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb74
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb74
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb74
http://dx.doi.org/10.1145/2556938
http://dx.doi.org/10.1145/2556938
http://dx.doi.org/10.1145/2556938
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb76
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb76
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb76
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb77
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb77
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb77
https://ttool.telecom-paris.fr/docs/sysmlsec_documentation.pdf
https://ttool.telecom-paris.fr/docs/sysmlsec_documentation.pdf
https://ttool.telecom-paris.fr/docs/sysmlsec_documentation.pdf
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb79
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb80
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb80
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb80
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb80
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb80
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb81
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb82
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb82
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb82
https://hal.inria.fr/inria-00096696
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb84
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb84
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb84
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb85
http://www.aadl.info
http://www.aadl.info
http://www.aadl.info
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb87
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb88
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb88
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb88
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb88
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb88
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb89
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb89
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb89
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb89
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb89
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb90
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb90
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb90
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb90
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb90
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb91
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb92
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb92
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb92
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb92
http://refhub.elsevier.com/S1574-0137(23)00064-3/sb92

	Model-based joint analysis of safety and security:Survey and identification of gaps
	Introduction
	Methodology
	Background on Attack Trees and Fault Trees
	Category 1: formalisms combining Fault Trees and Attack Trees
	Fault Tree-Attack Trees
	Component Fault Trees
	Attack-Fault Trees

	Category 2: formalisms extending Fault Trees and/or Attack Trees
	State/Event Fault Trees
	Failure-Attack-CounTermeasure (FACT) Graphs
	Boolean Driven Markov Processes
	Attack Tree Bow-ties

	Dependencies in ATs and FTs Combinations
	Category 3: Mathematical Formalisms
	Bayesian Networks
	Threads-Hazards-Opportunities Framework

	Category 4: Architectural Formalisms
	STAMP
	SysML
	ALLOY
	Event-B
	The Architectural Analysis and Design Language

	Expressiveness
	Findings and Reflection
	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	References

