15,603 research outputs found

    Efficient Monitoring of Parametric Context Free Patterns

    Get PDF
    Recent developments in runtime verification and monitoring show that parametric regular and temporal logic specifications can be efficiently monitored against large programs. However, these logics reduce to ordinary finite automata, limiting their expressivity. For example, neither can specify structured properties that refer to the call stack of the program. While context-free grammars (CFGs) are expressive and well-understood, existing techniques of monitoring CFGs generate massive runtime overhead in real-life applications. This paper shows for the first time that monitoring parametric CFGs is practical (on the order of 10% or lower for average cases, several times faster than the state-of-the-art). We present a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified with stack cloning to account for good prefix matching. In addition, a logic-independent mechanism is introduced to support partial matching, allowing patterns to be checked against fragments of execution traces

    Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach

    Full text link
    Goals are first-class entities in a self-adaptive system (SAS) as they guide the self-adaptation. A SAS often operates in dynamic and partially unknown environments, which cause uncertainty that the SAS has to address to achieve its goals. Moreover, besides the environment, other classes of uncertainty have been identified. However, these various classes and their sources are not systematically addressed by current approaches throughout the life cycle of the SAS. In general, uncertainty typically makes the assurance provision of SAS goals exclusively at design time not viable. This calls for an assurance process that spans the whole life cycle of the SAS. In this work, we propose a goal-oriented assurance process that supports taming different sources (within different classes) of uncertainty from defining the goals at design time to performing self-adaptation at runtime. Based on a goal model augmented with uncertainty annotations, we automatically generate parametric symbolic formulae with parameterized uncertainties at design time using symbolic model checking. These formulae and the goal model guide the synthesis of adaptation policies by engineers. At runtime, the generated formulae are evaluated to resolve the uncertainty and to steer the self-adaptation using the policies. In this paper, we focus on reliability and cost properties, for which we evaluate our approach on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the validation are promising and show that our approach is able to systematically tame multiple classes of uncertainty, and that it is effective and efficient in providing assurances for the goals of self-adaptive systems

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies
    • …
    corecore