3,137 research outputs found

    The Anatomy and Facets of Dynamic Policies

    Full text link
    Information flow policies are often dynamic; the security concerns of a program will typically change during execution to reflect security-relevant events. A key challenge is how to best specify, and give proper meaning to, such dynamic policies. A large number of approaches exist that tackle that challenge, each yielding some important, but unconnected, insight. In this work we synthesise existing knowledge on dynamic policies, with an aim to establish a common terminology, best practices, and frameworks for reasoning about them. We introduce the concept of facets to illuminate subtleties in the semantics of policies, and closely examine the anatomy of policies and the expressiveness of policy specification mechanisms. We further explore the relation between dynamic policies and the concept of declassification.Comment: Technical Report of publication under the same name in Computer Security Foundations (CSF) 201

    Temporal and contextual knowledge in model-based expert systems

    Get PDF
    A basic paradigm that allows representation of physical systems with a focus on context and time is presented. Paragon provides the capability to quickly capture an expert's knowledge in a cognitively resonant manner. From that description, Paragon creates a simulation model in LISP, which when executed, verifies that the domain expert did not make any mistakes. The Achille's heel of rule-based systems has been the lack of a systematic methodology for testing, and Paragon's developers are certain that the model-based approach overcomes that problem. The reason this testing is now possible is that software, which is very difficult to test, has in essence been transformed into hardware

    An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions

    Get PDF
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality

    Carbon capture in the cement industry: technologies, progress, and retrofitting

    Get PDF
    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4–5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be “carbon-capture ready” for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money

    Enhanced surface interaction of water confined in hierarchical porous polymers induced by hydrogen bonding

    Get PDF
    Hierarchical porous polymer systems are increasingly applied to catalysis, bioengineering, or separation technology because of the versatility provided by the connection of mesopores with percolating macroporous structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can detect signals stemming from the confined liquid and translate this information into pore size, molecular mobility, and liquid−surface interactions. We focus on the properties of water confined in macroporous polymers of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly- (EGDMA-co-HEMA)] with different amounts of cross-linkers, in which a substantial variation of hydroxyl groups is achieved. As soft polymer scaffolds may swell upon saturation with determined liquids, the use of NMR is particularly important as it measures the system in its operational state. This study combines different NMR techniques to obtain information on surface interactions of water with hydrophilic polymer chains. A transition from a surface-induced relaxation in which relaxivity depends on the pore size to a regime where the organic pore surface strongly restricts water diffusion is observed. Surface affinities are defined through the molecular residence times near the network surface.Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Stapf, Siegfried. Technische Universität Ilmenau; AlemaniaFil: Mattea, Carlos. Technische Universität Ilmenau; AlemaniaFil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Acosta, Rodolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Design, development and construction of an ATEX compliant ISO 9001:2008 magnetic ink manufacturing facility

    Get PDF
    This Thesis charts the cradle-to-grave development of a chemical processing plant suitable for the manufacture of 160 tonnes per annum of magnetic ink, and the associated, in-line process, quality control and assurance methodologies, developing innovations for the printing industry. The work was undertaken through Knowledge Transfer Partnership number 9576 between BemroseBooth Paragon, Ltd. and The University of Hull.First, the formulation of magnetic inks is described and characterized through a variety of physical and chemical measurements. The magnetic properties of the development inks are presented. Thirteen different ink formulations were developed during the course of this work, all of which are currently now available on the global market, being sold in four continents to, amongst others, the Rail Delivery Group (RDG, formerly ATOC), Régie-Autonome des Transports Parisiens (RATP), all operators for the French motorway tolls (Sanef, Vinci, ASF, etc.), New York Metropolitan and Casa da Moeda do Brasil (CMB).The design of the manufacturing process, including safety, health and environment consideration, are outlined, with their realization within an ISO 9001:2008 quality management system. The process economics are rationalized and pre-project estimations are contrasted with actual costs.Fast moving manufacturing environments always require the development of innovations to expand product ranges and resolve issues associated with limited reverse supply chains and complications in the use of manufactured product. A variety of problems are presented, with realized and pragmatic pathways to their solution given. In keeping with the spirit of environmental responsibility, innovations in the development of water-based magnetic inks are presented, and routes to their low cost, in situ process monitoring, presented.Last, an entirely new electrochemical approach to the detection of security threats in a mass transit environment is illustrated to a proof-of-concept

    Vienna FORTRAN: A FORTRAN language extension for distributed memory multiprocessors

    Get PDF
    Exploiting the performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna FORTRAN is a language extension of FORTRAN which provides the user with a wide range of facilities for such mapping of data structures. However, programs in Vienna FORTRAN are written using global data references. Thus, the user has the advantage of a shared memory programming paradigm while explicitly controlling the placement of data. The basic features of Vienna FORTRAN are presented along with a set of examples illustrating the use of these features

    WEST-3 wind turbine simulator development

    Get PDF
    The software developed for WEST-3, a new, all digital, and fully programmable wind turbine simulator is given. The process of wind turbine simulation on WEST-3 is described in detail. The major steps are, the processing of the mathematical models, the preparation of the constant data, and the use of system software generated executable code for running on WEST-3. The mechanics of reformulation, normalization, and scaling of the mathematical models is discussed in detail, in particulr, the significance of reformulation which leads to accurate simulations. Descriptions for the preprocessor computer programs which are used to prepare the constant data needed in the simulation are given. These programs, in addition to scaling and normalizing all the constants, relieve the user from having to generate a large number of constants used in the simulation. Also given are brief descriptions of the components of the WEST-3 system software: Translator, Assembler, Linker, and Loader. Also included are: details of the aeroelastic rotor analysis, which is the center of a wind turbine simulation model, analysis of the gimbal subsystem; and listings of the variables, constants, and equations used in the simulation
    corecore