11,020 research outputs found

    Spin-Dependent Quantum Emission in Hexagonal Boron Nitride at Room Temperature

    Get PDF
    Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions facilitate optical spin initialization and readout. Recently, the van der Waals material hexagonal boron nitride (h-BN) has emerged as a robust host for quantum emitters (QEs), but spin-related effects have yet to be observed. Here, we report room-temperature observations of strongly anisotropic photoluminescence (PL) patterns as a function of applied magnetic field for select QEs in h-BN. Field-dependent variations in the steady-state PL and photon emission statistics are consistent with an electronic model featuring a spin-dependent ISC between triplet and singlet manifolds, indicating that optically-addressable spin defects are present in h-BN −- a versatile two-dimensional material promising efficient photon extraction, atom-scale engineering, and the realization of spin-based quantum technologies using van der Waals heterostructures.Comment: 38 pages, 34 figure

    Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under Rayleigh Fading Conditions

    Full text link
    The Internet of Things (IoT) is a collection of Internet connected devices capable of interacting with the physical world and computer systems. It is estimated that the IoT will consist of approximately fifty billion devices by the year 2020. In addition to the sheer numbers, the need for IoT security is exacerbated by the fact that many of the edge devices employ weak to no encryption of the communication link. It has been estimated that almost 70% of IoT devices use no form of encryption. Previous research has suggested the use of Specific Emitter Identification (SEI), a physical layer technique, as a means of augmenting bit-level security mechanism such as encryption. The work presented here integrates a Nelder-Mead based approach for estimating the Rayleigh fading channel coefficients prior to the SEI approach known as RF-DNA fingerprinting. The performance of this estimator is assessed for degrading signal-to-noise ratio and compared with least square and minimum mean squared error channel estimators. Additionally, this work presents classification results using RF-DNA fingerprints that were extracted from received signals that have undergone Rayleigh fading channel correction using Minimum Mean Squared Error (MMSE) equalization. This work also performs radio discrimination using RF-DNA fingerprints generated from the normalized magnitude-squared and phase response of Gabor coefficients as well as two classifiers. Discrimination of four 802.11a Wi-Fi radios achieves an average percent correct classification of 90% or better for signal-to-noise ratios of 18 and 21 dB or greater using a Rayleigh fading channel comprised of two and five paths, respectively.Comment: 13 pages, 14 total figures/images, Currently under review by the IEEE Transactions on Information Forensics and Securit

    Signatures of exciton coupling in paired nanoemitters

    Get PDF
    An exciton formed by the delocalized electronic excitation of paired nanoemitters is interpreted in terms of the electromagnetic emission of the pair and their mutual coupling with a photodetector. A formulation directly tailored for fluorescence detection is identified, giving results which are strongly dependent on geometry and selection rules. Signature symmetric and antisymmetric combinations are analyzed and their distinctive features identified

    Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates

    Get PDF
    Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was give

    Quantum Chaos in Quantum Wells

    Full text link
    We develop a quantitative semiclassical theory for the resosnant tunneling through a quantum well in a tilted magnetic field. It is shown, that in the leading semiclassical approximation the tunneling current depends only on periodic orbits within the quantum well. Further corrections (due to e.g. "ghost" effect) can be expressed in terms of closed, but non-periodic orbits, started at the "injection point". The results of the semiclassical theory are shown to be in good agreement with both the experimental data and numerical calculations.Comment: 25 pages, 15 figures, accepted for publication in Physica

    Non-Markovianity of a quantum emitter in front of a mirror

    Get PDF
    We consider a quantum emitter ("atom") radiating in a one-dimensional (1D) photonic waveguide in the presence of a single mirror, resulting in a delay differential equation for the atomic amplitude. We carry out a systematic analysis of the non-Markovian (NM) character of the atomic dynamics in terms of refined, recently developed notions of quantum non-Markovianity such as indivisibility and information back-flow. NM effects are quantified as a function of the round-trip time and phase shift associated with the atom-mirror optical path. We find, in particular, that unless an atom-photon bound state is formed a finite time delay is always required in order for NM effects to be exhibited. This identifies a finite threshold in the parameter space, which separates the Markovian and non-Markovian regimes.Comment: 7 pages, 4 figures. Fig. 3 featured in Phys. Rev. A Kaleidoscope Images: July 201
    • …
    corecore