2,101 research outputs found

    Frontend frequency-voltage adaptation for optimal energy-delay/sup 2/

    Get PDF
    In this paper, we present a clustered, multiple-clock domain (CMCD) microarchitecture that combines the benefits of both clustering and globally asynchronous locally synchronous (GALS) designs. We also present a mechanism for dynamically adapting the frequency and voltage of the frontend of the CMCD with the goal to optimize the energy-delay/sup 2/ product (ED2P). Our mechanism has minimal hardware cost, is entirely self-adjustable, does not depend on any thresholds, and achieves results close to optimal. We evaluate it on 16 SPEC 2000 applications and report 17.5% ED2P reduction on average (80% of the upper bound).Peer ReviewedPostprint (published version

    Trace-level speculative multithreaded architecture

    Get PDF
    This paper presents a novel microarchitecture to exploit trace-level speculation by means of two threads working cooperatively in a speculative and non-speculative way respectively. The architecture presents two main benefits: (a) no significant penalties are introduced in the presence of a misspeculation and (b) any type of trace predictor can work together with this proposal. In this way, aggressive trace predictors can be incorporated since misspeculations do not introduce significant penalties. We describe in detail TSMA (trace-level speculative multithreaded architecture) and present initial results to show the benefits of this proposal. We show how simple trace predictors achieve significant speed-up in the majority of cases. Results of a simple trace speculation mechanism show an average speed-up of 16%.Peer ReviewedPostprint (published version

    Early register release for out-of-order processors with register windows

    Get PDF
    Register windows is an architectural technique that reduces memory operations required to save and restore registers across procedure calls. Its effectiveness depends on the size of the register file. Such register requirements are normally increased for out-of-order execution because it requires registers for the in-flight instructions, in addition to the architectural ones. However, a large register file has an important cost in terms of area and power and may even affect the cycle time. In this paper we propose two early register release techniques that leverages register windows to drastically reduce the register requirements, and hence reduce the register file cost. Contrary to the common belief that out-of-order processors with register windows would need a large physical register file, this paper shows that the physical register file size may be reduced to the bare minimum by using this novel microarchitecture. Moreover, our proposal has much lower hardware complexity than previous approaches, and requires minimal changes to a conventional register window scheme. Performance studies show that the proposed technique can reduce the number of physical registers to the same number as logical registers plus one (minimum number to guarantee forward progress) and still achieve almost the same performance as an unbounded register file.Peer ReviewedPostprint (published version

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Verification of integer multipliers on the arithmetic bit level

    Get PDF
    One of the most severe short-comings of currently available equivalence checkers is their inability to verify integer multipliers. In this paper, we present a bit level reverse-engineering technique that can be integrated into standard equivalence checking flows. We propose a Boolean mapping algorithm that extracts a network of half adders from the gate netlist of an addition circuit. Once the arithmetic bit level representation of the circuit is obtained, equivalence checking can be performed using simple arithmetic operations. Experimental results show the promise of our approach

    Realizing arbitrary-precision modular multiplication with a fixed-precision multiplier datapath

    Get PDF
    Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying data path or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (nxn->2n)-bit multiplication is then used as a “sub-routine” to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes n cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area
    corecore