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Abstract

Register windows is an architectural technique that re-

duces memory operations required to save and restore reg-

isters across procedure calls. Its effectiveness depends on

the size of the register file. Such register requirements are

normally increased for out-of-order execution because it re-

quires registers for the in-flight instructions, in addition to

the architectural ones. However, a large register file has an

important cost in terms of area and power and may even

affect the cycle time. In this paper we propose two early

register release techniques that leverages register windows

to drastically reduce the register requirements, and hence

reduce the register file cost. Contrary to the common belief

that out-of-order processors with register windows would

need a large physical register file, this paper shows that the

physical register file size may be reduced to the bare mini-

mum by using this novel microarchitecture. Moreover, our

proposal has much lower hardware complexity than previ-

ous approaches, and requires minimal changes to a conven-

tional register window scheme. Performance studies show

that the proposed technique can reduce the number of phys-

ical registers to the same number as logical registers plus

one (minimum number to guarantee forward progress) and

still achieve almost the same performance as un unbounded

register file.

1 Introduction

Register windows is an architectural technique that re-

duces the loads and stores required to save and restore reg-

isters across procedure calls by storing the local variables

of multiple procedure contexts in a large architectural reg-

ister file. When a procedure is called, it maps its context

to a set of consecutive new architected registers, called a

register window. Through a simple runtime mechanism, the

compiler-defined local variables are then renamed to these

windowed registers.

If there are not enough architectural registers to allo-

cate new contexts, local variables from caller procedures

are saved to memory and their associated registers are freed

for the new contexts. When the saved contexts are needed

they are restored in the register file. These operations are

typically referred to as spill and fill. SPARC [4] and Ita-

nium [8] are two commercial architectures that use register

windows.

The effectiveness of the register windows technique de-

pends on the size of the architectural register file because

the more registers it has, the less number of spills and fills

are required [18]. Analogously, in an out-of-order proces-

sor, the effectiveness of the register windows depends on

the size of the map table, which in turn determines the min-

imum number of physical registers.

To extract high levels of parallelism, out-of-order proces-

sors require many more physical registers than architected

ones, to store the uncommitted values of a large number of

instructions in flight [6]. Therefore, an out-of-order proces-

sor with register windows requires a large amount of phys-

ical registers because of a twofold reason: to hold multiple

contexts and to support a large instruction window. Unfor-

tunately, the size of the register file has a strong impact on

its access time [6], which may stay in the critical path that

sets the cycle time. It has also an important cost in terms

of area and power. There exist many proposals that address
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this problem through different approaches.

One approach consists of pipelining the register file ac-

cess [9]. However, a multi-cycle register file requires a

complex multiple-level bypassing, and increases the branch

misprediction penalty. Other approaches improve the reg-

ister file access time, area and power by modifying the in-

ternal organization, through register caching [20] or register

banking [3]. Alternative approaches have focused on reduc-

ing the physical register file size by reducing the register

requirements through more aggressive reservation policies:

late allocation [7] and early release [13] [15] [2].

In this paper we propose a novel early register release

technique for out-of-order processors that builds upon the

information provided by a register windows mechanism to

achieve an impressive level of register savings. On conven-

tional processors, a physical register remains allocated until

the next instruction writing the same architectural register

commits. However, the procedure call and return semantics

enables more aggressive conditions for register release:

1. When a procedure finishes and its closing return in-

struction commits, all physical registers defined by this

procedure can be safely released. The values defined

in the closed context are dead values that will never be

used again.

2. When the rename stage runs out of physical regis-

ters, mappings defined by instructions that are not in-

flight, which belong to caller procedures, can also be

released. However, unlike the previous case, these val-

ues may be used in the future, after returning from the

procedure, so they must be saved to memory before

they are released.

By exploiting these early release opportunities, the pro-

posed scheme achieves a drastic reduction in physical reg-

ister requirements. It reduces the number of physical reg-

isters to the same number of architectural plus one (128 in

our experiments for IPF binaries) and still achieves almost

the same performance as an unbounded register file.

Contrary to the common belief that out-of-order proces-

sors with register windows would need a large physical reg-

ister file, this paper shows that register windows, together

with the proposed techniques, can significantly reduce the

physical register file pressure to the bare minimum. In other

words, we show that our proposed scheme achieves a syn-

ergistic effect between register windows and out-of-order

execution, resulting in an extremely cost-effective imple-

mentation.

Besides, our scheme requires much lower hardware com-

plexity than previous related approaches [15], and it re-

quires minimal changes to a conventional register windows

scheme.

As state above, a register windows mechanism works by

translating compiler-defined local variables to architected

registers prior to renaming them to physical registers. The

information required for this translation is kept as a part of

the processor state and must be recovered in case of branch

misprediction or exception. Our scheme also provides an

effective recovery mechanism for window information that

is suitable for out-of-order execution.

The rest of this paper is organized as follows. Section 2

discusses the state of the art on early register release tech-

niques. Section 3 describes our proposal in detail. Section 4

presents and discusses the experimental results. Section 5

analyze several cost and complexity issues of the proposed

solution and previous approaches. Finally, the main conclu-

sions are summarized in section 6.

2 Related Work

In this section we will shortly review techniques that

make early releasing of physical registers, to reduce the av-

erage number of required registers.

Jones et al [11] uses the compiler to identify registers

that will only be read once and rename them to different

logical registers. Upon issuing and instruction with one of

these logical registers as a source, the processor can release

the register through checkpointing.

Moudgrill et al [14] suggested releasing physical reg-

isters eagerly, as soon as the last instruction that uses a

physical register commits. The last-use tracking is based

on counters which record the number of pending reads for

every physical register. This initial proposal did not sup-

port precise exceptions since counters were not correctly

recovered when instructions were squashed. More recently,

Akkary et al. [2] proposed to improve the Moudgrill scheme

by adding an unmapped flag for each physical register,

which is set when a subsequent instruction redefines the log-

ical register it has associated. Then, a physical register can

be released once its usage counter is 0 and its unmapped

flag is set. Moreover, for proper exception recovery of the

reference counters, when a checkpoint is created the coun-

ters of all physical register belonging to the checkpoint are

incremented. Similarly, when a checkpoint is released, the

counters of all physical registers belonging to the check-

point are decremented.

Monreal et.al. [13] proposed a scheme where registers

are released as soon as the processor knows that there will

be no further use of them. Conventional renaming forces a

physical register to be idle from the commit of its Last-Use

(LU) instruction until the commit of the first Next-Version

(NV) instruction. The idea is to shift the responsibility from

NV instruction to LU instruction. Each time a NV instruc-

tion is renamed, its corresponding LU instruction pair is

marked. Marked LU instructions reaching the commit stage

will release registers instead of keeping them idle until the

commit of the NV instruction.
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Ergin et al. [5] introduced the checkpointed register file

to implement early register release. This scheme can re-

lease a physical register before the redefining instruction is

known to be non-speculative. This is done by copying its

value into the shadow bit-cells of the register where it can

be accessed easily if a branch misprediction occur.

Oehmke et.al. [15] have recently proposed the virtual

context architecture(VCA), which maps logical registers

holding local variables to a large memory address space and

manages the physical register file as a cache that keeps the

most recently used values. Logical register identifiers are

converted to memory addresses and then mapped to physi-

cal registers by using a tagged set-associative rename map

table. Unlike the conventional renaming approach, the VCA

rename table look up may miss, i.e. there may be no phys-

ical register mapped to a given logical register. When the

renaming of a source register causes a table miss, the value

is restored from memory and a free physical register is al-

located and mapped onto the table. If there are no free

physical registers or table entries for a new mapping, then a

replacement occurs: a valid entry is chosen by LRU, the

value is saved to memory and its physical register is re-

leased. Although the VCA scheme does not properly define

register windows as such, in practice it produces similar ef-

fects: multiple procedure contexts are maintained in regis-

ters, and the available register space is transparently man-

aged without explicit saves and restores. However, unlike

our approach, their tagged set-associative map table adds

substantial complexity to the rename stage, which might

have implications on the cycle time. Furthermore, when

a map table entry is replaced, its associated value is always

saved to memory, regardless of whether it is actually a dead

value. This occurs because VCA is not able to distinguish

dead values from live values.

Some current commercial architectures implement reg-

ister windows to reduce procedure call/return overhead:

SPARC [4] and Itanium [8]. In the former case, where reg-

ister windows are of fixed sized, overflows and underflows

are handled by trapping to the operative system. In the latter

case, where register windows are of variable size, overflows

and underflows are solved by a hardware mechanism called

Register Stack Engine.

3 Early Register Release with Register Win-

dows

This section describes our early release register tech-

nique base on register windows. Our scheme assumes an

ISA with full register window support, such as IA64 [10].

Along this paper we assume a conventional out-of-order

processor with a typical register renaming mechanism that

uses a Map Table to associate architected to physical regis-

ters. In IA64, the 128 architected integer registers are di-

Figure 1. Dynamic translation from virtual regis-

ter r3 to its corresponding architectural windowed

register.

vided into two groups: 32 static registers and 96 windowed

registers. The static registers are available to all procedures

while the windowed registers are allocated on demand to

each procedure. Our technique is only applied to windowed

registers. Both, static and windowed architected registers

map to a unified physical register file.

A basic out-of-order register window mechanism is ex-

plained first. Then, we expose two early register release

opportunities and a mechanism to exploit them.

3.1 Baseline Register Window

Register windows is a technique that helps to reduce the

loads and stores required to save registers across procedure

calls by storing the local variables of multiple procedure

contexts in a large register file [18]. Throughout this pa-

per we will use also the term procedure context to refer to

register windows.

From the the ISA’s perspective, all procedure contexts

use the same ’virtual’ register name space. However, when

a procedure is called, it is responsible for dynamically al-

locating a separate set of consecutive architected registers,

a register window, by specifying a context base pointer and

a window size. Each virtual register name is then dynami-

cally translated to an architected register by simply adding

the base pointer to it (see Figure 1). Notice that register

windows grow towards higher register indices.

Every register window is divided into two regions: the

local region, which include both input parameters and lo-

cal variables, and the out region, where it passes parameters

to its callee procedures. By overlapping register windows,

parameters are passed through procedures, so that registers

holding the output parameters of the caller procedure be-

come the local parameters of the callee. The overlap is il-
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Figure 2. Overlapping Register Windows.

lustrated in Figure 2.

Hence, every register window is fully defined by a con-

text descriptor having three parameters: the context base

pointer, which sets the beginning of the register window;

the context size, which includes the local and out regions;

and the output parameters, which defines the size of the out

region.

The register windows are managed by software, with

three specific instructions: br.call, alloc and br.ret. Br.call

creates a new context, by setting a context descriptor with

its base pointing to the first register in the out region of

the caller context, and its context size equal to the out re-

gion’s size. Alloc modifies the current context descriptor

by setting a new context size and output parameters. Fi-

nally, br.ret returns to the caller procedure and makes its

context the current context. The compiler is responsible for

saving, on each procedure call, the caller context descriptor

in a local register and restoring it later on return.

It may happen that an alloc instruction increases the win-

dow size but there is no room available to allocate the new

context size in the architected registers, i.e. at the top of the

map table. In such case, the contents of some physical reg-

isters at the bottom of the map table (which belong to callers

procedure contexts) are sent to a special region of memory

called backing store, and then they are released. Such op-

eration is called a spill. Note that spills produce both free

physical registers and free entries in the map table. These

entries can then be assigned to new contexts to create the

illusion of an infinite-sized register stack 1.

When a procedure returns, it expects to find its context

in the map table, and the corresponding values stored in

physical registers. However, if some of these registers were

previously spilled to memory, the context is not completely

present. For each missing context register, a physical reg-

1Each mapping has a unique associated backing store address.

Figure 3. Relationship between Map Table and

Backing Store memory.

ister is allocated and renamed in the map table. Then, the

value it had before spilling is reloaded from the backing

store. Such operation is called a fill. Subsequent instruc-

tions that use this value are made data dependent on the

result of the fill so they are not stalled at renaming until the

fill completion.

The relationship between map table and backing store is

shown in Figure 3. Notice that the map table is managed as

a circular buffer. Spill and fill operations will be discussed

in more detail in section 3.5.

3.2 Early Register Release Techniques

On a conventional out-of-order processor, a physical reg-

ister is release when the instruction that redefines it com-

mits. To help reducing physical register pressure, we have

identified two opportunities for early releasing registers,

and we propose two techniques to exploit them: Context

Release and Register Release Spill. Our techniques are mo-

tivated by the observation that if none of the instructions of

a procedure are currently in-flight, not all mappings of the

procedure context need to stay in the map table. We refer to

those mappings as not-active. Not-active mappings can be

released as well as their associated physical registers. Some

examples will be given below.

The Context Release technique is illustrated in Figure 4.

As shown in Figure 4a, when br.ret commits, there are not

in-flight instructions whose operands belong to context 1,

so context 1 mappings that do not overlap with context 2

are not-active and can be released. In fact, none of these

registers will never be used, so they can be released without

having to wait until a subsequent redefinition commits 2.

2Note that the alloc instruction can either enlarge or shrink the size of a

context, thus it may allocate or release registers. If a context size is shrunk,
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Figure 4. Context-Release technique. (a) Context

1 mappings are not-active so they can be released.

(b) Context 1 mappings are active (they have been

redefined by context 3) so they can not be released.

However, the Context Release technique is not always

possible when a br.ret commits. As shown in Figure 4b,

although context 1 is not active, its mappings can not be

released because the map table entries have been reassigned

to context 3. Since there are in-flight instructions that use

context 3, their mappings are active.

The second early register release technique, the Register

Release Spill, is illustrated in Figure 5. As shown in Fig-

ure 5a, when br.call commits, context 1 mappings become

not-active. This is not the case in Figure 5b, where the con-

text 1 procedure has already returned before br.call com-

mits, so their mappings have become active. Hence, only

not-active mappings from Figure 5a can be early released.

However, since such mappings belong to caller procedures,

they must first spill the content of their associated physical

registers. We will refer to this operation as Register Release

Spill.

Though beneficial for register pressure, this technique

increases the amount of spill/fill operations. Our experi-

ments have shown that a blind application of the Register

Release Spill to the baseline register window scheme in-

creases the amount of spill/fill operations from 1% to 7% of

the total number of commited instructions. Since spilling

registers has an associated cost, it could reduce the bene-

fits brought by register windows. Hence, Register Release

Spill is only triggered when the released registers are ac-

tually required for the execution of the current context, i.e.

if the renaming runs out of physical registers. Our exper-

iments have show that this policy increases only spill/fill

the Context Release technique can be also applied when the alloc commits.

Figure 5. Register-Release Spill technique (a)

Context 1 mappings are not-active so they can be

early released. (b) Context 1 mappings are active

(after returning from the procedure) so they can

not be released.

operations to 2% of the total number of commited instruc-

tions, and it outperforms a blind Register Release Spill by

3%. These experiments apply only Register Release Spill

techniques and not Context Release techniques.

Notice that there is a slight difference between the Regis-

ter Release Spill and the conventional spill used in the base-

line (see section 3.1). A conventional spill is triggered by a

lack of mappings when the window size is enlarged. What

Register Release spill actually does is ”to steal” physical

registers from callers procedures to ensure an optimum ex-

ecution of the current active zone.

3.3 Implementation

To implement register windows in an out-of-order pro-

cessor, we propose the Active Context Descriptor Table

(ACDT). The ACDT tracks all uncommitted context states

to accomplish two main purposes: to identify the active

mappings at any one point in time, which is required by

our early register techniques; and to allow precise state re-

covery of context descriptor information in case of branch

mispredictions and other exceptions.

The ACDT acts as a checkpoint repository that buffers

in a fifo way, the successive states of the current context de-

scriptor. As such, a new entry is queued for each context

modification (at rename stage in program order), and it is

removed when the instruction that has inserted the check-

point is committed. Hence, ACDT maintains only active

context descriptors. With these information, the ACDT al-

lows precise state recovery of context descriptor informa-
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Figure 6. The pointers upper active, lower active

and dirty divide the map table in three regions:

free, active and dirty. Upper active and lower ac-

tive pointers are computed using ACDT informa-

tion. Dirty pointer points to the first non-spilled

mapping.

tion: in case of branch mispredictions and other exceptions,

when all younger instructions are squashed, the subsequent

context states are removed from the ACDT, too.

As they are define, active mappings stay in a continu-

ous region on the map table, called active region. The ac-

tive region is bounded by two pointers that are maintained

within the ACDT: the lower active and the upper active.

Both pointers are updated at each context modification us-

ing the information present in the ACDT: the lower active

equals to the minimum context base pointer present in the

ACDT, and the upper active equals to the maximum of the

top pointers (actually the sum of base + size) present in the

ACDT.

The mappings staying below the lower active pointer be-

long to not-active contexts of callers procedures. These

mappings may eventually become free if their values are

spilled to memory, or may become active again if a br.ret

restores that context. They form the so called dirty region of

the map table, and it lays between the lower active pointer

and a third pointer called dirty. The dirty pointer equals to

the first mapping that will be spilled if the renaming engine

requires it. Actually, the associated backing store address of

the dirty pointer corresponds to the top of the backing store.

Finally, the free-region lays between the upper active

pointer and the dirty pointer (note that the map table is man-

aged as a circular buffer), and it contains invalid mappings.

The three regions are shown in Figure 6.

In conclusion, when a procedure finishes and its closing

br.ret commits, we can apply the Context Release technique

which frees the not-active mappings of the closed context by

adjusting the upper active pointer and releasing the physi-

cal registers associated to the mappings that fall above the

new upper active pointer. These mappings contain dead val-

ues and become part of the free region. Furthermore, when

the renaming runs out of physical registers, a Register Re-

lease Spill technique is triggered and it frees as many not-

active mappings as needed from the dirty region starting at

the dirty pointer.

3.4 Delayed Spill/Fill Operations

A closer look to the register window scheme for out-of-

order processors described in the previous sections, reveals

that there is still some room for improvement.

First, when an alloc is executed and there is not enough

space int the map table, spill operations are generated to free

the required mappings. Assuming a realistic scenario, there

may exist a limit on the number of spills generated per cy-

cle. So a massive spill generation may stall the renaming for

several cycles. Hence, we propose to defer each spill until

the map table entry is actually reassigned by a subsequent

instruction.

Second, when a br.ret instruction is executed and the re-

stored context is not present in the map table, fill operations

are generated until all its mappings are restored. As it hap-

pens with the previous case, a massive fill generation may

stall the renaming for several cycles. Moreover, it may hap-

pen that some of these mappings will never be used. Ac-

tually, it is quite often that a br.ret is followed by another

br.ret, so none of the restored mappings are used. Hence,

we propose to defer each fill and its corresponding phys-

ical register allocation until the mapping is actually used

by a subsequent instruction. By delaying fill operations we

achieve a lower memory traffic and we reduce the physical

register pressure.

Hence, when an alloc is executed and there is not enough

space for the new context, the required mappings from the

dirty region are appended to the active region, and marked

with a pending spill bit, so the alloc is not stalled. When an

subsequent instruction redefines a mapping with its pend-

ing spill bit set, the current mapping is first spilled to the

backing store. In a similar way, when a br.ret is executed

and the restored context is not present in the map table, the

required mappings from the free region are appended to the

active region, and marked with a pending fill bit, so the br.ret

instruction is not stalled. When a subsequent dependent in-

struction wants to use a mapping with the pending fill bit

set, a fill operation is generated and a new physical register

is reserved.

It might happen that a mapping with the pending spill

bit set is not redefined until a subsequent nested procedure,

and the map table has wrapped around several times. In that

case, it would be costly to determine its associated backing

store address. Thus, it is less complex to have an engine

that autonomously clear the pending spills that were left be-

hind. This problem does not occur with pending fills be-
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cause these are actually invalid mappings that may be safely

reused.

3.5 Spill-Fills operations

This section explains some implementation considera-

tions about the spill and fill operations.

A naive implementation of spills and fills could insert

them into the pipeline as standard store and load instruc-

tions. However, spills and fills have simpler requirements

that enable more efficient implementations. First, their ef-

fective addresses are known at rename time, and the data

that the spills store to memory are committed values. Since

all their source operands are ready at renaming, they can

be scheduled on a simpler hardware. Second, a given im-

plementation could be further optimized by making that

the system guarantees that spills and fills do not require

memory disambiguation with respect to program stores and

loads. In this case, spill and fill operations could be sched-

uled independently from all other program instructions by

using a simple fifo buffer [15].

4 Evaluation

This section evaluates the two early register release tech-

niques, Context Release and Register Release Spill, and the

Delay Spill/Fill technique presented in previous sections.

4.1 Experimental Setup

All the experiments presented in this paper use a cycle-

accurate, execution-driven simulator that runs IA64 ISA bi-

naries. It has been built from scratch using the Liberty Sim-

ulation Environment (LSE) [19]. LSE is a simulator con-

struction system, based on module definitions and module

communications, that also provides a complete IA64 func-

tional emulator that maintains the correct machine state.

We have simulated eleven integer benchmark programs

from Spec2000 [1] using the Minne Spec [12] input set.

Floating-point benchmarks have not been evaluated because

the IPF register window mechanism is only implemented on

integer registers. All benchmarks have been compiled with

IA64 Intel’s compiler (Electron v.8.1) using maximum op-

timization levels and profile information. For each bench-

mark, 100 million committed instructions are simulated. To

obtain representative portions of code to simulate, we have

used the Pinpoint tool [16].

The simulator models in detail an eight-stage out-of-

order processor. It pays special attention to the implemen-

tation of the rename stage and models many IA64 peculiar-

ities that are involved in the renaming, such as the register

rotation and the application registers. The register stack en-

gine have been replaced by our scheme. The microarchitec-

Architectural Parameters

Fetch Width Up to 2 bundles (6 instructions)

Issue Queues Integer Issue Queue: 80 entries

Floating-point Issue Queue: 80 entries

Branch Issue Queue: 32 entries

Load-Store Queue: 2 queues 64 entries

Reorder Buffer 256 entries

L1D 64KB, 4way, 64B block, 2 cycle latency

Non-blocking, 12 primary misses,

4 secondary misses, 16 write-buffer entries

2 load, 2 store ports

L1I 32KB, 4 way, 64B block, 1 cycle latency

L2 unified 1MB, 16 way, 128B block, 8 cycle latency

Non-blocking, 12 primary misses

8 write-buffer entries

DTLB 512 entries. 10 cycles miss penalty

ITLB 512 entries. 10 cycles miss penalty

Main Memory 120 cycles of latency

Multilevel Branch Predictor First-level: Gshare 14-bit GHR

Total size: 4 KB. 1-cycle access

Sec-level: Perceptron. 30b GHR, 10b LHR

Total size :148 KB. 3-cycle access

10 cycles for misprediction recovery

Predicate Predictor Perceptron. 30b GHR. 10b LHR

Total size :148 KB. 3-cycle access

10 cycles for misprediction recovery

Integer Map Table 96 local entries, 32 global entries

Integer Physical Register File 129 physical registers

Table 1. Main architectural parameters used.

ture features predicate prediction [17]. Load-store queues,

as well as the data and control speculation mechanisms de-

fined in IA64, are also modeled and integrated in the mem-

ory disambiguation subsystem. The main architectural pa-

rameters are shown in Table 1.

The simulator models in detail the baseline register win-

dows, as well as our early register release techniques and

the ACDT mechanism, as described in the previous section.

The simulator also models the VCA register windows tech-

nique, featuring a four-way set associative cache for logical-

physical register mapping, with 11-bit tags, as described

in [15], although it was adapted to the IA64 ISA.

4.2 Early Register Release Performance

This section evaluates the performance of our propos-

als (the Context Release, the Register Release Spill and the

Delayed Spill/Fill techniques), and compares it to a config-

uration that uses the VCA register windows scheme. For

each configuration, performance speedups are normalized

IPCs relative to a configuration that uses the baseline regis-

ter windows scheme with 160 physical registers. Although

this gives an advantage of 32 registers to the baseline, we
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Figure 7. Performance evaluation of Delayed

Spill/Fill technique. Speedups normalized to the

baseline register window scheme with 160 physi-

cal registers.

believe that it is a more reasonable design point for such

an out-of-order processor with 128 logical registers. We

will show that, although our scheme has much less regis-

ters, not only it outperforms the 160-registers baseline, but

it still performs within a 1% of a 192-registers baseline. At

the end of the section we provide a more complete perfor-

mance comparison of both schemes, for a wide range of 128

to 256 physical registers.

Figure 7 compares the performance of a configura-

tion that uses only the Context Release and Register

Release Spill techniques (labelled Early Release in the

graph), and another configuration that also applies the De-

layed Spill/Fill technique (labelled Delayed Spill/Fill in

the graph). With only one exception (gzip), the Delayed

Spill/Fill configuration outperforms the basic Early Release

configuration, with average speedups over the baseline of

6% and 4% respectively. Adding the Delayed Spill/Fill

technique to the Early Release configuration has an special

performance impact on vortex and twolf, where the num-

ber of fill operations drastically drop from 7% to 1% of the

total numer of committed instructions. Such a reduction

produces notable performance improvements because it not

only reduces memory traffic but also the amount of physical

registers allocated by fill operations. On average, by using

the Delayed Spill/fill tehcnique fill operations drop from 4%

to 1% in comparison to the Early Release configuration.

The graph also shows a slight performance loss (1%) for

gzip when applying the Delayed Spill/Fill technique. Al-

though initiating spills and fills on demand avoids unneces-

sary operations, with a positive effect on register presure, it

also reduces the distance in time between fill operations and

their dependent instructions. Therefore, it reduces the tol-

erance of these instructions to memory latency, which may

degrade performance if cache misses are frequent. This is

the case with gzip, which has the highest cache miss rate

Figure 8. Performance evaluation of VCA

scheme, our Delayed Spill/Fill technique and the

baseline register window scheme with 192 physi-

cal registers. Speedups normalized to the baseline

register window scheme with 160 physical regis-

ters.

(14%) for fill operations, in contrast with the average 2.5%

of all benchmarks. For gzip, the average waiting time spent

by instructions that depend on fill operations increases fom

15 cycles to 30 cycles when applying the Delayed Spill/Fill

technique.

Figure 8 compares the performance of our proposal,

with Early Release and Delayed Spill/Fill techniques, to the

VCA scheme. Our scheme slightly outperforms the VCA

on all benchmarks, except in twolf (where it loses by 1%).

Notice that the VCA experiences a similar slowdown for

gzip, because it also generates fills on demand, as discussed

above. On average, our scheme achieves a performance ad-

vantage of 2% over VCA. The graph also shows the perfor-

mance of a scheme configured as the baseline but giving it

the advantage of a large 192 physical register file and as-

suming no increase on its access latency. Except for one

benchmark (crafty) our 128-registers scheme achieves al-

most the same performance as the optimistic 192-registers

scheme.

Figure 9 compares the performance of our proposal,

with Early Release and Delayed Spill/Fill techniques, to the

baseline, when the number of physical registers varies be-

tween 128 and 256. As expected (similar results have been

published elsewhere), the baseline improves performance

by increasing the number of registers, up to a saturation

point around 192, beyond which it only gets marginal ad-

ditional improvements. As shown in the graph, our scheme

consistently outperforms the baseline. However, the most

remarkable result is that the baseline curve drastically de-

grades as the number of registers decreases (up to a 37%

IPC), while our proposal suffers just a very small perfor-

mance loss (less than 4% IPC). On average, our scheme
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Figure 9. Performance evaluation of our Delayed

Spill/fill technique and the baseline register win-

dow scheme in terms of IPC, with different num-

ber of physical registers.

is capable to achieve the performance of the 192-registers

baseline with only the minimum number of physical regis-

ters (i.e. the number of architected registers plus one).

5 Cost and Complexity Issues

The previous section evaluates our proposal only in

terms of performance. However, it is also interesting to an-

alyze it in terms of cost and hardware complexity.

We have proposed a low cost implementation of the re-

name logic to support register windows on out-of-order pro-

cessors. Compared to an in-order processor with register

windows, our scheme only adds the ACDT and three map

table pointers. We have experimentally found that a simple

8-entry ACDT table achieves near-optimal performance.

Compared to the VCA approach, our scheme is substan-

tially less complex, since our proposal uses a conventional,

direct-mapped table whereas the VCA requires a larger set-

associative map table to hold memory address tags. Fitting

the rename delay into the processor cycle time is typically

a challenging problem because of its inherent complexity.

Hence, adding complexity to the rename stage increases

its latency, which may have implications on cycle time and

power.

Moreover, the effectiveness of the register windows tech-

nique depends on the size of the architectural register

file [18] so future implementations may take advantage of

increasing the map table size, which emphasizes the impor-

tance of a simple scheme for scalability.

Finally, our proposal produces a lower number of spill

operations than the VCA, which not only affects to perfor-

mance, but also reduces the power requirements. In com-

parison to the baseline, which generates a 0,5% of spill op-

erations from the total number of commited instructions,

the VCA generated up to 3% from the total number of com-

mited instructions, whereas our scheme generates only up

to 1% from the total number of commited instructions.

6 Summary and Conclusions

In this paper we proposed two early register release tech-

niques for out-of-order processors that, by using the infor-

mation provided by register windows, achieve a drastic re-

duction in the size of the physical register file. These tech-

niques, called Context Release and Register Release Spill,

are based on the observation that if none of the instructions

of a procedure are currently in-flight, not all mappings of

the procedure context need to stay in the map table. These

mappings, called not-active, can be released, as well as their

associated physical registers.

The Context Release technique releases mappings de-

fined by a procedure whose closing return instruction has

committed. The values of these mappings are dead values

that will never be used again, so their associated physical

registers can be safely released.

The Register Release Spill technique is automatically

triggered when the rename stage runs out of physical regis-

ters and it releases not-active mappings that belong to caller

procedures. However, unlike the previous technique, the

values contained in these mappings are live values that may

be used in the future, after returning from the procedure, so

they must be spilled before releasing them.

We introduce the Active Context Descriptor Table

(ACDT), that tracks all uncommitted context states to ac-

complish two main purposes: identify the active mappings

at any point in time, which is required by our early register

techniques; and implement precise state recovery of context

descriptor information in case of branch mispredictions and

other exceptions.

Moreover, in order to avoid unnecessary rename stalls

caused by the spills and fills generated by alloc and br.ret

instructions respectively, we propose to defer spills and

fills operations until the corresponding registers are used.

Hence, a fill is generated and its corresponding physical

register is allocated when the mapping is actually used by a

subsequent instruction. In the same way, a spill is generated

when the mapping is actually reassigned by a subsequent

instruction.

Applying these techniques, a processor fitted with only

the minimum required number of physical registers, i.e.

the number of architected registers plus one (which is 128

in our experiments with IPF binaries), achieves almost the

same performance as a baseline scheme with an unbounded

register file. Moreover, in comparison to previous tech-

niques, our proposal has much lower hardware complex-

ity and requires minimal changes to a conventional register
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window scheme.
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