
  Abstract
This paper presents a novel microarchitecture to exploit

trace-level speculation by means of two threads working
cooperatively in a speculative and non-speculative way
respectively. The architecture presents two main benefits: (a)
no significant penalties are introduced in presence of a
misspeculation and (b) any type of trace predictor can work
together with this proposal. In this way, aggressive trace
predictors can be incorporated since misspeculations do not
introduce significant penalties.

We describe in detail TSMA (Trace-Level Speculative
Multithreaded Architecture) and present some initial results
to show the benefits of this proposal. We show how simple
trace predictors achieve significant speed-up in the majority
of the cases. Concretely, results of a simple trace speculation
mechanism results in an average speed-up of 16%.

1. Introduction
Data dependences are one of the most important hurdles

that limit the performance of current microprocessors. Two
techniques have been proposed so far to avoid the
serialization caused by data dependences: data value
speculation and data value reuse. Speculation tries to predict
a given value as a function of the past history. Value reuse is
possible when a given computation has been done exactly in
the past. Both techniques may be considered at two levels:
instruction level and trace level. The difference is the unit of
speculation or reuse: an instruction or a dynamic sequence of
instructions.

Reusing instructions at trace level means that the
execution of a large number of instructions can be skipped in
a row. More importantly, these instructions do not need to be
fetched, and thus, they do not consume fetch bandwidth.
Unfortunately, trace reuse introduces a live-input test that it
is not easy to handle. Especially complex is the validation of
memory values. Speculation may overcome this limitation
but introduces a new problem: penalties due to a
misspeculation.

Two important issues have to be considered regarding
trace level speculation: (1) control and data speculation
techniques and (2) the microarchitecture support for trace
speculation. These two issues are completely orthogonal.
Trace predictors are in charge of control and data
speculation. Control speculation is related to the prediction
of the initial and final points of a trace. Data speculation is
related to the prediction of live-output values of a trace.
Traces can be built following different heuristics: basic
blocks, loop bodies, etc. On the other hand, once a trace is
built, the form that live outputs are predicted may vary as

well. Conventional value predictors include: last value,
stride, context-based, hybrid, etc. This work focuses on the
second issue: the way microarchitecture manages trace
speculation. We present a microarchitecture that is tolerant to
misspeculations. This architecture does not introduce
significant trace missprediction penalties and does not
impose any constraint on the approach to building or
predicting traces.

Trace level speculation may be managed in different
ways. Meanwhile trace level reuse may be static or dynamic
and it is not speculative, trace level speculation is dynamic
(although the compiler may help) and requires a live-input or
live-output test. Trace level speculation with live-output test
is supported by means of a multithreaded architecture. The
underlying concept is to have a couple of threads working
cooperatively: a speculative thread and a non-speculative
one. In this case the correctness of speculated traces is
assured by means of the verification of live-output values.
The speculative thread is in charge of trace speculation. The
non-speculative thread is in charge of validating the
speculation. This validation is performed in two stages: (1)
executing the speculated trace and (2) validating instructions
executed by the speculative thread. Communication between
threads is done by means of a buffer that contains the
executed instructions by the speculative thread. Once the
non-speculative thread executes the speculated trace,
instruction validation begins. This is done verifying that
source operands match the non-speculative state and
updating the state with the new produced result. Note that
each thread maintains its own state, but only the state of the
non-speculative thread is guaranteed to be correct. The
advantage in this approach is that only live outputs that are
used are verified. Figure 1 depicts this approach.

The microarchitecture presented in this work is focused
on the latter approach: trace level speculation with live-
output test. The rest of this paper is organized as follows.
Section 2 describes in detail the microarchitecture proposed
to exploit trace level speculation. The performance potential
and results of simulations are analyzed in Section 3. Section
4 reviews some related work. Finally, Section 5 summarizes
the main conclusions of this paper and the future.

BUFFER
FIFO

Figure 1. Trace level speculation with live-output test

Live-Output Actualization &
Trace Speculation

Non-Speculative
Thread

Speculative
Thread instruction execution

not executed

live-output validation

Miss Trace Speculation Detection &
 Recovery Actions

BUFFER
FIFO

ψ Dept. d’Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili

Paisos Catalans s/n, 43007 Tarragona, Spain
e-mail: cmolina@etse.urv.es

φ Department d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

Jordi Girona, 1-3, 08034 Barcelona, Spain
e-mail: {antonio,jordit}@ac.upc.es

Carlos Molinaψ, Antonio Gonzálezφ and Jordi Tubellaφ

Trace-Level Speculative Multithreaded Architecture

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 



2. Trace-Level Speculative Multithreaded
Microarchitecture
This section outlines the main characteristics of the Trace-

Level Speculative Multithreaded Microarchitecture. First, an
overview is presented. Following subsections describe the
main components of the proposed microarchitecture in more
detail. The last subsection presents a working example.
2.1. Overview

The underlying concept of our proposal is based on a
couple of threads working cooperatively as shown in Figure
1. One thread, called speculative thread, executes
instructions and speculates on the result of whole traces. The
second thread executes speculated traces and verifies
instructions that are executed by the speculative thread. This
second thread is called non-speculative thread. In the rest of
the paper we use the terms ST to refer to the speculative
thread and NST to refer to the non-speculative one. Note that
ST runs ahead of NST.

Each thread maintains its own architectural state by
means of their associated architectural register file and a
memory hierarchy with some special features (described
below). NST provides the correct and non-speculative
architectural state. Meanwhile, ST works on a speculative
architectural state. Additionally, ST stores their committed
instructions to a special first-input first-output queue called
Look Ahead Buffer. NST executes the skipped instructions
and verifies instructions in the look ahead buffer executed by
ST. Note that verifying instructions is faster than executing
them since instructions always have their operands ready. In
this way, NST catches ST up quickly.

Additional hardware is required for each thread. ST
speculates traces with the support of a Trace Speculation
Engine. This engine is responsible for building traces and
predicting their live-output values. The study of alternative
designs of the speculation engine is beyond the scope of this
paper. On the other hand, NST is supported by means of a
special hardware called Verification Engine.

Instruction verification is straightforward. NST takes
instructions from the look ahead buffer and validates values
of source operands. If source operand values match the non-
speculative architectural state values, it determines that the
instruction was correctly executed by ST. In this way, the
non-speculative architectural state is updated with the
destination value. On the other hand, if there is not a match
between the values, a recovery action is initiated. A critical
part of the microarchitecture is to implement this recovery
with minor performance penalties. This is one of the main
foci of this paper.

Figure 2 shows the proposed microarchitecture with the
additional hardware requirements highlighted over a baseline
superscalar architecture. The hardware can be divided in
three categories:

• Local: each thread maintains a logical register file, an
instruction window, a load store queue and a reorder
buffer. All this hardware is replicated for both threads.
(light gray color in Figure 2)

• Shared: not replicated hardware shared by both threads.
These resources are an instruction cache, a fetch engine,
a branch predictor, a decode and rename logic,
functional units, a modified data value cache and logical
control. (medium gray color in Figure 2)

• Additional: hardware requirements to provide trace level
speculation. This resources are the look ahead buffer, the
verification engine and the trace speculation engine.
(dark grey color in Figure 2).

The main parts of the Trace Level Speculative
Multithreaded Microarchitecture are described below in
more detail.
2.2. Trace Speculation Engine

The trace speculation engine (TSE) is in charge of two
issues: (1) to implement a trace level predictor and (2) to
communicate a trace speculation opportunity to the fetch
engine. We assume in this work that the trace predictor
maintains a simple PC-indexed table with N entries. Each
entry contains live-output values and the final program
counter of the trace. TSE receives from NST and the
verification engine the information required to build traces
and to determine live-output values. This information comes
from correctly executed instructions at commit time.

To determine trace speculation opportunities, TSE scans
the current program counter of ST. This value is provided by
the fetch engine. If TSE determines that the current PC is the
beginning of a potentially predictable trace, it provides some
trace information to the fetch engine. This information
consists of a special INI_TRACE instruction and some MOV
instructions. The INI_TRACE instruction contains the final
program counter of the trace and the number of times that
this PC is repeated inside the trace (this allows the TSE to
construct traces that consists of multiple loop iterations).
Additional MOV instructions inserted into the ST pipeline
update live-output values of a trace. Afterwards, ST
continues with normal instruction fetch from the final point
of the speculated trace. Next cycle, NST wakes-up and
begins to fetch and execute instructions of the speculated
trace.
2.3. Look Ahead Buffer

The objective of this structure is to store instructions
executed by ST. Later on, NST will validate them. The look
ahead buffer is just a first-input first-output queue. Thus, a
huge look ahead buffer can be managed easily. ST introduces
instructions at commit time whereas the verification engine
takes these instructions and test their correctness. The fields
of each entry of the look ahead buffer are the following:

• Program counter
• Operation type: indicates memory operation
• Source register ID 1 & Source value 1
• Source register ID 2 & Source value 2
• Destination register ID & Destination value
• Memory address

NST Arch.
Register File

ST Arch.
Register File

Fetch
Engine

Decode
&

 Rename

ST I Window

ST Ld/St Queue

NST Ld/St Queue

ST Reorder Buffer
NST Reorder Buffer

Functional
Units

Verification
Engine

Trace
Speculation

Branch
Predictor

L1SDC

L1NSDC L2NSDC

Look Ahead Buffer

I Cache

Figure 2. Trace level speculative multithreaded
microarchitecture

Data
 Cache

ST I Window

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 



2.4. Verification Engine
The verification engine (VE) is in charge of validating

speculated instructions and, together with NST, it maintains
the speculative architectural state. Instructions to be
validated are stored in the look ahead buffer. The verification
consists of testing source values of the instruction with the
non-speculative architectural state. If they match, destination
value of the instruction can be updated in the non-speculative
architectural state (register file or memory). Memory
operations require special considerations. First, the effective
address is verified. After this validation, store instructions
update memory with the destination value. On the other
hand, loads check whether the value of the destination
register matches the non-speculative memory state. If so, the
destination value is committed to the register file.

This engine is independent of both threads but works
cooperatively with NST to maintain the correct architectural
state.The verification engine is replicated for each thread
because any of them can take the role of speculative or non-
speculative thread. Anyway, the hardware required to
perform the verification is minimal.
2.5. Thread Synchronization

Thread synchronization is required when a trace
misspeculation is detected by the verification engine.
Basically, this implies to flush the ST pipeline and go back to
a safe point of the program. The recovery actions involved by
a synchronization are simple:

• Instruction execution is stopped.
• ST structures are emptied (instruction window, load

store queue, reorder buffer and look ahead buffer).
• Speculative data cache and logical register file

associated to ST are invalidated.
NST executes traces speculated by ST and the verification

engine validates ST executed instructions once ST puts them
in the look ahead buffer. NST keeps on execution beyond the
final point of the speculated trace but commit of these
instructions is disabled. This is done to significantly reduce
the penalties caused by synchronization. In this way, two
types of synchronizations may occur: total and partial.

Total synchronization occurs when a misspeculation is
detected by the verification engine and NST it is not
executing instructions after the end of the trace. This implies
squashing ST and paying the penalty of starting to fill its
pipeline from the point it detected the misspeculation. On the
other hand, partial synchronization occurs when a
misspeculation is detected and NST is already executing
instructions. In this way, ST pipeline does not need to be
refilled. NST takes the role of ST enabling the commit of the
already executed instructions after the end of the speculated
trace. Meanwhile recovery actions are taken to initialize ST
with a correct architectural state at the failure point. After
this synchronization, roles of threads are interchanged.
This partial synchronization avoids the pipeline refill penalty
at the expense of the constraint that whereas NST is
executing instructions beyond the end of a speculated trace,
ST cannot speculate on a new trace. So, this number of
additional executed instructions should not be very large. On
the other hand, it is important to minimize the number of
total synchronizations without losing speculation
opportunities. Empirically we have observed that trace
misspeculations are detected relatively early. The processor
dynamically determines the number of instructions to be
executed after an speculated trace, based on the number of
verified instructions before a misspeculation is detected.

2.6. Memory Subsystem
A new first level data cache architecture is proposed (see

Figure 3). This cache architecture is responsible for
maintaining the speculative memory state of ST. The first
level of the memory hierarchy is composed of two modules:
the level 1 speculative data cache (L1SDC) and the level 1
non-speculative data cache (L1NSDC). The second level just
contains non-speculative data and will be referred to as level
2 non-speculative data cache (L2NSDC).

This new organization is guided by the following rules:
1. ST store instructions update values in L1SDC only.
2. ST load instructions get values from L1SDC. If a value

is not in L1SDC, it is obtained from L1NSDC or
L2NSDC in a traditional way. The accesses to L1SDC
and L1NSDC are done in parallel. No line from L1SDC
is copied back to L2NSDC.

3. NST store instructions (executed by NST or verified by
the verification engine) update values and allocate
space just in the non-speculative caches.

4. NST load instructions (executed by NST or verified by
the verification engine) get values and allocate space
just in the non-speculative caches.

5. A line replaced in L1NSDC is copied back to L2NSDC.
Note that rules 3 to 5 correspond to the normal

management of traditional caches, while rules 1 and 2
describe the behavior of the new speculative cache.
Simulations show that a very small L1SDC may suffice to
provide good performance.

The following figure presents different scenarios
corresponding to different orderings of the actions involved
in the speculation, execution and verification of a trace. Note
that this example considers a correct trace speculation.
Figure 4 shows ST performing a trace speculation which
includes a store instruction (1). After speculation, ST
executes a load which refers to the memory location of the
speculated store (2). On the other hand NST executes the
speculated store (3) and later on, the load instruction is
verified (4). A complete set of working examples of the
memory system under different scenarios (incorrect and
correct speculated traces) is presented in [12].

Figure 3. Memory subsystem

L1SDC

L1NSDC L2NSDC

Figure 4. Example: correct trace speculation

ST

NST
(4) LD(@10)

5@10

L1SDC

@10

L1NSDC

@10

L2NSDC

BUFFER

1
5@10

L1SDC

5@10

L1NSDC

@10

L2NSDC

3
5@10

L1SDC

@10

L1NSDC

@10

L2NSDC

2
5@10

L1SDC

5@10

L1NSDC

@10

L2NSDC

4

5@10

L1SDC

@10

L1NSDC

@10

L2NSDC

1
5@10

L1SDC

5@10

L1NSDC

@10

L2NSDC

2
5@10

L1SDC

5@10

L1NSDC

@10

L2NSDC

3
5@10

L1SDC

5@10

L1NSDC

@10

L2NSDC

4

1st Case

2on Case

instruction execution

not executed
live-output validation

(3) ST(@10)=5

(1) ST(@10)=5
(2) LD(@10)

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 



2.7. Register File
The proposed microarchitecture assumes a register

renaming mechanism in which speculative register values are
kept in the reorder buffer. The register map table contains for
each entry the following fields:

• Committed Value: it contains the last committed value
of the register.

• ROB Tag: it points to the ROB entry that has (or will
have) the latest value of the register.

• Counter: it determines the number of instructions in ST
that are using this register after a trace speculation.

Note that the difference with respect to traditional
structures is the new counter field. This field is used to
provide NST the ability of beginning the execution of
speculated traces as soon as possible. In particular, once ST
speculates a trace, NST begins the execution of that trace
immediately. Note that there may be instructions from ST
before the speculation point that still have not been executed.
It is possible that these instructions produce values to be
consumed by NST instructions. In this way, these dependent
NST instructions have to wait for ST completion. For this
reason, NST needs to know whether its instructions have
source operands that are still not ready because ST has not
finished their execution.

The counter field is maintained as follows:
1. When a ST instruction enters the instruction window,

the counter associated to its destination register is
increased.

2. When an instruction is committed to the look ahead
buffer by ST, the destination register counter is
decreased.

3. After a trace speculation, the counter is no longer
increased. It is just decreased until it reaches the value
zero. If an instruction decoded by the NST encounters a
source operand with a counter field equal to zero, this
indicates that the instruction is younger than the
speculation point.

ST passes a copy of the counters to NST when the special
INI_TRACE instruction that determines trace speculation is
renamed. The other fields of the register map table, i.e., the
committed values and ROB tags do not need to be
communicated. Then, the verification engine decreases the
counters as it validates instructions. This is done until a
special mark in the look ahead buffer that determines the
start of a trace speculation is reached. In this way, a counter
greater than zero indicates that the register value is not ready
since it has not been verified by the verification engine. This
does not prevent NST from executing instructions that do not
depend on this value. On the other hand, to guarantee
correctness of memory state, memory instructions are stalled
until the verification engine reaches the starting point of the
trace speculation.

Note that there may be speculated traces in a path that is
incorrectly speculated by a branch. In this case, NST begins
execution but when ST determines an incorrect path and
recovers, it stops and empties its thread private structures
2.8. Working Example

In order to understand the behavior of the
microarchitecture, a detailed working example is presented.
Figure 5 shows the key steps of a trace speculation. Below, a
detailed explanation of each step is presented.

1. ST begins the execution of the program and commits

the instructions to the look ahead buffer.
2. The trace speculation engine identifies a trace

speculation opportunity, notifies the fetch engine, and
provides ST with the information required through a
special INI_TRACE instruction. At this point the
program counter is modified and additional instructions
to update live-output values are provided. When the
INI_TRACE instruction is renamed, NST receives a
copy of the ST mapping table. Now ST maintains a
speculative architectural state using its mapping table
and the memory hierarchy in a speculative way.

3. NST begins to execute the ST skipped instructions
immediately. This prompt execution is done through
the support of the special mapping table as described
above.

4. VE consumes instructions from the look ahead buffer
and updates the architectural register file shared with
NST. It decreases the register map counters, and stores
the committed value in the mapping table. This is done
until an INI_TRACE instruction is reached, and it
guarantees that NST does not execute instructions with
values that are still not produced by ST.

5. NST executes instructions normally. It commits
instructions and maintains the correct state.

6. NST detects the final point of the speculated trace. The
verification engine begins to validate instructions and
to update the architectural state. NST continues
executing instructions but commit is disabled. Memory
instructions are stalled.

7. The verification engine validates ST executed
instructions after the trace speculation. The verification
engine guarantees the correct state and verifies N
instructions from the look ahead buffer. This number is
set dynamically to be a bit larger than the average
number of verified instructions that precede a
misspeculation detection. If verification fails, recovery
actions are taken. If NST is still executing instructions,
it takes the role of ST. This is known as partial
synchronization. At this point the state is safe so the
verification engine becomes idle.

8. If there is no a misspeculation among the N verified
instructions the NST structures are flushed and it
becomes idle. The verification engine continues
verifying instructions and maintaining the correct
architectural state. If the verification engine finds a
misspeculation when NST is idle, a total
synchronization occurs. ST is squashed and refilled
starting from the incorrect instruction.

9. ST may speculate on a new trace when the look ahead
buffer is empty. This ensures the correctness of the
architectural state. In this way, it is guaranteed that
NST receives a correct copy of the mapping table.

10.NST executes the trace as described in point 2.

ST

Figure 5. TSMA behavior

NST

VE

1 2

3

4

5 6

7

8

9

Live-Output Actualization
& Trace Speculation

Live-Output Actualization
& Trace Speculation

inst. execution

not executed
live-out validation

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 



3. Performance Evaluation
3.1. Experimental Framework

The simulation environment is built on top of the
Simplescalar [4] Alpha toolkit. Simplescalar models an out
of order machine and it has been modified to support trace
level speculative multithreading. Table 1 shows the
parameters of the baseline microarchitecture. The Trace
Level Speculative Multithreaded Architecture does not
modify sizes of baseline structures. It just replicates for each
thread unit the instruction window, reorder buffer and logical
register mapping table. It also adds some new structures as
shown in Table 2.

The following Spec95 benchmarks have been considered:
compress, gcc, go, li, ijpeg, m88ksim, perl and vortex from
the integer suite; and applu, mgrid and turb3d from the FP
suite. The programs have been compiled with the DEC C and
F77 compilers with -non_shared -O5 optimization flags
(i.e, maximum optimization level). Each program was run
with the test input set and statistics were collected for 125
million of instructions after skipping an initial part of 250
million of instructions.
3.2. Analysis of Results

A main objective of this section is to show that trace
misspeculations cause minor penalties in the
microarchitecture. We propose a simple mechanism for
building traces and determining live outputs. Traces are built
following a simple rule: a trace starts at a backward branch
and terminates at the next backward branch. Traces are also

terminated at calls and returns, and have a minimum and
maximum size (8 and 64 instructions respectively). On the
other hand, live-output values are predicted by means of a
hybrid scheme composed of a stride predictor and a context-
based predictor. This mechanism maintains in each entry of
the history table and in an ordered way, the last 9 dynamic
instances of a trace. At prediction time, if the last instance of
the trace appears among the previous 8 instances, next trace
is predicted. In other case, stride prediction is performed.
Figure 6 presents the percentage of misspeculations of the
mechanism described above. As shown in Table 2 capacity of
prediction tables is relatively small. Note that this
mechanism produces a huge percentage of misspeculations,
which is close to 70% on average.

Figure 7 shows the percentage of speculated instructions.
It represents on average close to 40%, so speculation is
relatively frequent. Note that the ideal scenario is when the
percentage of speculated instructions is around 50% since
the microarchitecture has two threads.

Figure 8 presents the speed-up obtained over the baseline
model. Notice that no slow-down is presented in any of the
analyzed benchmarks although is huge the percentage of
misspeculations. In fact, significant speed-ups are obtained
for most of them. Results show that an average speed-up of
16% is obtained in spite of speculating a small percentage of
instructions correctly and, misspeculating on average close to
70% of the traces. These results demonstrate the tolerance of
the proposed microarchitecture to misspeculations.
Furthermore, it encourage further work on developing more
accurate trace prediction mechanisms. Some previous works
[8], [9], [10], [14] have shown that there is a significant
potential for trace repeatability/predictability, which suggests
that there may be effective schemes to significantly increase
the accuracy of trace predictors. Additional results and
further details of the microarchitecture are provided in [12].

Instruction fetch 4 instructions per cycle.
Branch predictor 2048-entry bimodal predictor
Instruction issue/

commit
ooo issue, 4 insts committed/cycle, 64-entry reorder buffer, loads

execute after all preceding stores are known, st-ld forwarding
Arch. registers 32 integer and 32 FP

Functional units 4 int ALUs, 4 ld/st units, 4 FP ALUs, 2 int mult/div, 2 FP mult/div
FU latency/
repeat rate

int ALU 1/1, load/store 1/1, int mult 3/1, int div 20/19, FP adder
2/1, FP mult 4/1, FP div 12/12

Instruction cache 16 KB, direct-mapped, 32-byte block, 6-cycle miss latency
Data cache 16 KB, 2-way set-associative, 32-byte block, 6-cycle miss latency

Second Level
Cache

Shared instruction & data cache, 256 KB, 4-way set-associative,
32-byte block, 100-cycle miss latency

Table 1: Parameters of the baseline microarchitecture

Speculative data cache 1 KB, direct-mapped, 8-byte block
Verification engine Up to 8 insts verified per cycle. Memory instructions

block verification if fail in L1.Number of additional
insts verified after average number to find an error is 8

Trace speculation engine History Table: 64 entries, 2-way set, 9 instances/entry
Look ahead buffer 128 entries

Table 2. Parameters of TSMA additional structures

APPLU

COMPRESS
GCC GO

IJP
EG LI

M88
KSIM

MGRID
PERL

TURB3D

VORTEX

A_M
EAN

0

10

20

30

40

50

60

70

80

90

100

Figure 6. Percentage of misspeculations

APPLU

COMPRESS
GCC GO

IJP
EG LI

M88
KSIM

MGRID
PERL

TURB3D

VORTEX

A_M
EAN

0

10

20

30

40

50

Figure 7. Percentage of predicted instructions

APPLU

COMPRESS
GCC GO

IJP
EG LI

M88
KSIM

MGRID
PERL

TURB3D

VORTEX

A_M
EAN

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Figure 8. Speedup

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 



4. Related Work
The performance potential of data value prediction and

data value reuse, has been deeply investigated [16]. Trace
level reuse [8], [9], [10] has been shown to be able to boost
performance in superscalar processors. Unfortunately,
checking the correctness of a trace reuse introduces a
significant complexity that limits performance and decreases
reuse opportunities.

The idea of dynamic verification was introduced in [14].
The AR_SMT processor proposed employs a time
redundant technique that it permits to tolerate some transient
errors. Slipstream processors [13] dynamically avoid the
execution of non essential computations of a program. They
propose to create a shorter version of the original program
removing ineffectual computation. The use of dynamic
verification to reduce the burden of verification in complex
microprocessor designs is covered in [6].

Speculative multithreading [2], [11] is a well known
technique based on the concurrent execution of speculative
threads. Several works have studied the impact of different
value predictors to alleviate dependence constraints and
enable look ahead execution of speculative threads.
Simultaneous Multithreading [17] allows independent
threads to issue instructions to multiple functional units in a
single cycle. Multiple Path Execution [1], [18] permits the
speculative execution of multiples paths in parallel.
Simultaneous Subordinate Microthreading [5] was proposed
to execute subordinate threads that perform optimizations on
the single primary thread.

Recent studies have focused on speculative threads. Pre-
execution of critical instructions as standalone speculative
threads is proposed in [7], [15], [19]. Critical instructions,
such as misspredicted branches or loads that miss in cache,
are used to construct traces called slices that contain the
subset of the program that relates to that instruction. A novel
microarchitecture that dynamically allocates processor
resources between a primary and a future thread was
proposed in [3]. The future thread executes instructions
when the primary thread is limited by resource availability,
warming up certain microarchitectural structures.

5. Conclusions and Future Work
This paper has presented TSMA (Trace-Level

Speculative Multithreaded Architecture). This novel
microarchitecture is designed to exploit trace-level
speculation with special emphasis on minimizing
misspeculation penalties. Simulations presented in this
paper based on a simple mechanism to build traces and to
predict its live outputs show that the microarchitecture is
very tolerant to trace misspeculations. In fact, significant
speed-up is presented in the majority of the analyzed
benchmarks in spite of the relatively poor accuracy of the
assumed trace predictor. On average, a speed-up of 16% is
achieved with a trace predictor that misses in 70% of the
cases.

Due to the misspeculation tolerance aggressive trace
level predictors can be incorporated to the processor. This
opens an interesting area of research on the design of better
trace level predictors. Another area for future investigation
is the generalization of the architecture to multiple threads.
With multiple threads, the execution of a speculated trace
may be done in a cascade way. The idea is to perform sub-
trace speculation inside a given trace.

6.  Acknowledgments
This work has been supported by projects CYCIT 511/98

and ESPRIT 24942. The research described in this paper has
been developed using the resources of the European Center
for Parallelism of Barcelona (CEPBA).

7.  References
[1] P. S. Ahuja, K. Skadron, M. Martonosi and D. W. Clark. “Multipath
Execution: Opportunities and Limits”. In Proceedings of the International
Symposium on Supercomputing, 1998.
[2] H. Akkary and M. Driscoll. “A Dynamic Multithreaded Processor”. In
Proceedings of the 31st Annual International Symposium on
Microarchitecture, 1998.
[3] R. Balasubramonian, S. Dwarkadas and D. Albonesi. “Dynamically
Allocating Processor Resources between Nearby and Distant ILP”. In
Proceedings of the 28th International Symposium on Computer
Architecture, 2001.
[4] D. Burger, T.M. Austin and S. Bennet, “Evaluating Future
Microprocessors: The SimpleScalar Tool Set”. Technical Report CS-TR-
96-1308. University of Wisconsin, July 1996
[5] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt.
"Simultaneous Subordinate Microthreading (SSMT)". In Proceedings of
the 26th International Symposium on Computer Architecture, 1999.
[6] S.Chaterjee, C. Weaver and T. Austin. “Efficient Checker Processor
Design”. In Proceedings of the 33rd Annual International Symposium on
Microarchitecture, 2000.
[7] J.Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery and J.
Shen. “Speculative Precomputation: Long-range Prefetching of Delinquent
Loads”. In Proceedings of the 28th International Symposium on Computer
Architecture, 2001.
[8] D. A. Connors and W. M. Hwu. “Compiler-Directed Dynamic
Computation Reuse: Rationale and Initial Results”. In Proceedings of the
32th Annual International Symposium on Microarchitecture, 1999.
[9] A. González, J. Tubella and C. Molina, “Trace Level Reuse”. In
Proceedings of the International Conference on Parallel Processing, 1999.
[10] J. Huang and D. Lilja. “Exploiting Basic Block Value Locality with
Block Reuse”. In Proceedings of the 5th International Symposium on
High-Performance Computer Architecture, 1999.
[11] P. Marcuello, J. Tubella and A. González. “Value Prediction for
Speculative Multithreaded Architectures". In Proceedings of the 32th
Annual International Symposium on Microarchitecture, 1999.
[12] C.Molina, A. González and J. Tubella. “Trace-Level Speculative
Multithreaded Architecture”. Technical Report UPC-DAC-2001-35, 2001.
[13] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. "A Study of
Slipstream Processors". In Proceedings of the 33rd International
Symposium on Microarchitecture, 2000.
[14] E. Rotenberg. “AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors”. In Proceedings of the 29th Fault-Tolerant
Computing Symposium, 1999.
[15] A. Roth and G. Sohi. “Speculative Data-Driven Multithreading”. In
Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, 2001.
[16] Y. Sazeides and J. Smith. “The Predictability of Data Values”. In
Proceedings of the 33rd Annual International Symposium on
Microarchitecture, 1997.
[17] D. M. Tullsen, S. J. Eggers and H. M. Levy. “Simultaneous
Multithreading: Maximizing on-chip Parallelism”. In Proceedings of the
22th Annual International Symposium on Computer Architecture, 1995.
[18] S. Wallace, B. Calder and D. Tullsen. “Threaded Multiple Path
Execution”. In Proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998.
[19] C. Zilles and G. Sohi. “Execution-based Prediction Using Speculative
Slices”. In Proceedings of the 28th International Symposium on Computer
Architecture, 2001.

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02) 
1063-6404/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


