106 research outputs found

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel

    Motion compensation and very low bit rate video coding

    Get PDF
    Recently, many activities of the International Telecommunication Union (ITU) and the International Standard Organization (ISO) are leading to define new standards for very low bit-rate video coding, such as H.263 and MPEG-4 after successful applications of the international standards H.261 and MPEG-1/2 for video coding above 64kbps. However, at very low bit-rate the classic block matching based DCT video coding scheme suffers seriously from blocking artifacts which degrade the quality of reconstructed video frames considerably. To solve this problem, a new technique in which motion compensation is based on dense motion field is presented in this dissertation. Four efficient new video coding algorithms based on this new technique for very low bit-rate are proposed. (1) After studying model-based video coding algorithms, we propose an optical flow based video coding algorithm with thresh-olding techniques. A statistic model is established for distribution of intensity difference between two successive frames, and four thresholds are used to control the bit-rate and the quality of reconstructed frames. It outperforms the typical model-based techniques in terms of complexity and quality of reconstructed frames. (2) An efficient algorithm using DCT coded optical flow. It is found that dense motion fields can be modeled as the first order auto-regressive model, and efficiently compressed with DCT technique, hence achieving very low bit-rate and higher visual quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video coding algorithm. This algorithm implements dense motion field and regions are segmented according to their content significance. The DWT is applied to residual images region by region, and bits are adaptively allocated to regions. It improves the visual quality and PSNR of significant regions while maintaining low bit-rate. (4) A segmentation-based video coding algorithm for stereo sequence. A correlation-feedback algorithm with Kalman filter is utilized to improve the accuracy of optical flow fields. Three criteria, which are associated with 3-D information, 2-D connectivity and motion vector fields, respectively, are defined for object segmentation. A chain code is utilized to code the shapes of the segmented objects. it can achieve very high compression ratio up to several thousands

    DCT Video Compositing with Embedded Zerotree Coding for Multi-Point Video Conferencing

    Get PDF
    In this thesis, DCT domain video compositing with embedded zerotree coding for multi-point video conferencing is considered. In a typical video compositing system, video sequences coming from different sources are composited into one video stream and sent using a single channel to the receiver points. There are mainly three stages of video compositing: decoding of incoming video streams, decimation of video frames, andencoding of the composited video. Conventional spatial domain video compositing requires transformations between the DCT and the spatial domains increasing the complexity of computations. The advantage of the DCT domain video compositing is that the decoding, decimation and encoding remain fully in the DCT domain resulting in faster processing time and better quality of the composited videos. The composited videos are encoded via a DCT based embedded zerotree coder which was originally developed for wavelet coding. An adaptive arithmetic coder is used to encode the symbols obtained from the DCT based zerotree codingresulting in embedded bit stream. By using the embedded zerotree coder the quality of the composited videos is improved when compared to a conventional encoder. An advanced versionof zerotree coder is also used to increase the performance of the compositing system. Another improvement is due to the use of local cosine transform to decrease the blocking effect at low bit rates. We also apply the proposed DCT decimation/interpolation for single stream video coding achieving better quality than regular encoding process at low bit rates. The bit rate control problem is easily solved by taking the advantage the embedded property of zerotree coding since the coding control parameter is the bit rate itself. We also achieve the optimum bit rate allocation among the composited frames in a GOP without using subframe layer bit rate allocation, since zerotree coding uses successive approximation quantization allowing DCT coefficients to be encoded in descending significance order

    Block-classified bidirectional motion compensation scheme for wavelet-decomposed digital video

    Full text link

    A common framework for rate and distortion based scaling of highly scalable compressed video

    Full text link

    A zerotree wavelet video coder

    Full text link
    • …
    corecore