116,870 research outputs found

    Multi-agent simulations for emergency situations in an airport scenario

    Get PDF
    This paper presents a multi-agent framework using Net- Logo to simulate humanand collective behaviors during emergency evacuations. Emergency situationappears when an unexpected event occurs. In indoor emergency situation, evacuation plans defined by facility manager explain procedure and safety ways tofollow in an emergency situation. A critical and public scenario is an airportwhere there is an everyday transit of thousands of people. In this scenario theimportance is related with incidents statistics regarding overcrowding andcrushing in public buildings. Simulation has the objective of evaluating buildinglayouts considering several possible configurations. Agents could be based onreactive behavior like avoid danger or follow other agent, or in deliberative behaviorbased on BDI model. This tool provides decision support in a real emergencyscenario like an airport, analyzing alternative solutions to the evacuationprocess.Publicad

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    Principles for Consciousness in Integrated Cognitive Control

    Get PDF
    In this article we will argue that given certain conditions for the evolution of bi- \ud ological controllers, these will necessarily evolve in the direction of incorporating \ud consciousness capabilities. We will also see what are the necessary mechanics for \ud the provision of these capabilities and extrapolate this vision to the world of artifi- \ud cial systems postulating seven design principles for conscious systems. This article \ud was published in the journal Neural Networks special issue on brain and conscious- \ud ness

    Voltage Stabilization in Microgrids via Quadratic Droop Control

    Full text link
    We consider the problem of voltage stability and reactive power balancing in islanded small-scale electrical networks outfitted with DC/AC inverters ("microgrids"). A droop-like voltage feedback controller is proposed which is quadratic in the local voltage magnitude, allowing for the application of circuit-theoretic analysis techniques to the closed-loop system. The operating points of the closed-loop microgrid are in exact correspondence with the solutions of a reduced power flow equation, and we provide explicit solutions and small-signal stability analyses under several static and dynamic load models. Controller optimality is characterized as follows: we show a one-to-one correspondence between the high-voltage equilibrium of the microgrid under quadratic droop control, and the solution of an optimization problem which minimizes a trade-off between reactive power dissipation and voltage deviations. Power sharing performance of the controller is characterized as a function of the controller gains, network topology, and parameters. Perhaps surprisingly, proportional sharing of the total load between inverters is achieved in the low-gain limit, independent of the circuit topology or reactances. All results hold for arbitrary grid topologies, with arbitrary numbers of inverters and loads. Numerical results confirm the robustness of the controller to unmodeled dynamics.Comment: 14 pages, 8 figure

    Agent based modeling of energy networks

    Get PDF
    Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

    Epigenetic Information-Body Interaction and Information-Assisted Evolution from the Perspective of the Informational Model of Consciousness

    Get PDF
    Introduction: the objective of this investigation is to analyses the advances of understanding in the epigenetic processes and to extract conclusions concerning the information-based evolution from the perspective of the Informational Model of Consciousness (IMC). Analysis of epigenetic mechanisms: it is shown that the study of the epigenetic mechanisms are of increasing interest not only to discover the responsible mechanisms of some diseases, but also to observe the acquisition and transmission mechanisms of some traits to the next generation/ transgenerations, without affecting the DNA sequences. These advances were especially supported by the spectacular progresses in the high technological tools like digital microfluidic techniques and semiconductor-based detection systems, allowing to apply sequencing methods of DNA and to observe its structural modifications. The specific typical steps of the epigenetic mechanisms are analysed, showing that these mechanisms could be fully described in terms of information, as signal transmission agents embodying or disembodying information in three different stages and under specific conditions, including especially the signal persistence as a main conditional epigenetic factor. Results concerning the information-assisted evolution from the perspective of IMC: the epigenetic mechanisms are discussed as a function of each component of the informational system of the organism, consisting in memory, decisional operability, emotional reactivity, metabolic driving processes, genetic transmission, genetic info-generator and the info-connection explaining the special extra-power properties of the mind. It is shown that the epigenetic mechanisms could be related to the specific functions of each informational component, mainly exhibiting five levels of integration of information as matter-related information, culminating with the stable integration in the procreation cells and transmission to the next generation. The results were extended to explain the transgenerational adaptive processes of isolated population groups. Conclusion: the epigenetic mechanisms discussed within IMC allow to understand the transgenerational adaptation as an information-assisted proces

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement
    corecore