17,964 research outputs found

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Autonomous Capabilities for Small Unmanned Aerial Systems Conducting Radiological Response: Findings from a High-fidelity Discovery Experiment

    Get PDF
    This article presents a preliminary work domain theory and identifies autonomous vehicle, navigational, and mission capabilities and challenges for small unmanned aerial systems (SUASs) responding to a radiological disaster. Radiological events are representative of applications that involve flying at low altitudes and close proximities to structures. To more formally understand the guidance and control demands, the environment in which the SUAS has to function, and the expected missions, tasks, and strategies to respond to an incident, a discovery experiment was performed in 2013. The experiment placed a radiological source emitting at 10 times background radiation in the simulated collapse of a multistory hospital. Two SUASs, an AirRobot 100B and a Leptron Avenger, were inserted with subject matter experts into the response, providing high operational fidelity. The SUASs were expected by the responders to fly at altitudes between 0.3 and 30 m, and hover at 1.5 m from urban structures. The proximity to a building introduced a decrease in GPS satellite coverage, challenging existing vehicle autonomy. Five new navigational capabilities were identified: scan, obstacle avoidance, contour following, environment-aware return to home, andreturn to highest reading. Furthermore, the data-to-decision process could be improved with autonomous data digestion and visualization capabilities. This article is expected to contribute to a better understanding of autonomy in a SUAS, serve as a requirement document for advanced autonomy, and illustrate how discovery experimentation serves as a design tool for autonomous vehicles

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    • …
    corecore