212,060 research outputs found

    Systemic approach to the new production research challenges

    Get PDF
    This virtual special issue highlights emerging production research challenges alongside a systemic approach in forms of novel contributions in literature review, thematic analyses, and methodological advances. The selected articles provide insights on how new production research challenges bring about opportunities for growth in sub-fields of supply chain networks, new product development, environmental and economically viable issues, service value chain, and machine learning among others. In this article, an overview of key organizational characteristics as well as significant theoretical ideas and practical applications to production research issues are presented. Future directions in the production research domain are also provided

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments

    Next steps in implementing Kaput's research programme

    Get PDF
    We explore some key constructs and research themes initiated by Jim Kaput, and attempt to illuminate them further with reference to our own research. These 'design principles' focus on the evolution of digital representations since the early nineties, and we attempt to take forward our collective understanding of the cognitive and cultural affordances they offer. There are two main organising ideas for the paper. The first centres around Kaput's notion of outsourcing of processing power, and explores the implications of this for mathematical learning. We argue that a key component for design is to create visible, transparent views of outsourcing, a transparency without which there may be as many pitfalls as opportunities for mathematical learning. The second organising idea is that of communication, a key notion for Kaput, and the importance of designing for communication in ways that recognise the mutual influence of tools for communication and for mathematical expression
    • …
    corecore