144 research outputs found

    Enhancement of the Josephson current by an exchange field in superconductor-ferromagnet structures

    Full text link
    We calculate the dc Josephson current for two superconductor-ferromagnet (S/F) bilayers separated by a thin insulating film. It is demonstrated that the critical Josephson current IcI_{c} in the junction strongly depends on the relative orientation of the effective exchange field hh of the bilayers. We found that in the case of an antiparallel orientation, IcI_{c} increases at low temperatures with increasing hh and at zero temperature has a singularity when hh equals the superconducting gap Δ\Delta . This striking behavior contrasts suppression of the critical current by the magnetic moments aligned in parallel and is an interesting new effect of the interplay between superconductors and ferromagnets.Comment: to be published in PR

    SU(3) dibaryons in the Einstein-Skyrme model

    Get PDF
    SU(3) collective coordinate quantization to the regular solution of the B=2 axially symmetric Einstein-Skyrme system is performed. For the symmetry breaking term, a perturbative treatment as well as the exact diagonalization method called Yabu-Ando approach are used. The effect of the gravity on the mass spectra of the SU(3) dibaryons and the symmetry breaking term is studied in detail. In the strong gravity limit, the symmetry breaking term significantly reduces and exact SU(3) flavor symmetry is recovered.Comment: 9 pages, 14 figure

    Unified picture of Q-balls and boson stars via catastrophe theory

    Full text link
    We make an analysis of Q-balls and boson stars using catastrophe theory, as an extension of the previous work on Q-balls in flat spacetime. We adopt the potential V3(ϕ)=m22ϕ2−Όϕ3+λϕ4V_3(\phi)={m^2\over2}\phi^2-\mu\phi^3+\lambda\phi^4 for Q-balls and that with ÎŒ=0\mu =0 for boson stars. For solutions with ∣grr−1âˆŁâˆŒ1|g^{rr}-1|\sim 1 at its peak, stability of Q-balls has been lost regardless of the potential parameters. As a result, phase relations, such as a Q-ball charge versus a total Hamiltonian energy, approach those of boson stars, which tell us an unified picture of Q-balls and boson stars.Comment: 10 pages, 13 figure

    Free boundary problems involving singular weights

    Full text link
    In this paper we initiate the investigation of free boundary minimization problems ruled by general singular operators with A2A_2 weights. We show existence and boundedness of minimizers. The key novelty is a sharp C1+ÎłC^{1+\gamma} regularity result for solutions at their singular free boundary points. We also show a corresponding non-degeneracy estimate

    Exact String Theory Instantons by Dimensional Reduction

    Full text link
    We identify exact gauge-instanton-like solutions to (super)-string theory using the method of dimensional reduction. We find in particular the Polyakov instanton of 3d QED, and a class of generalized Yang-Mills merons. We discuss their marginal deformations, and show that for the 3d3d instanton they correspond to a dissociation of vector- and axial-magnetic charges.Comment: LateX, 15pp., CERN-TH.7100/93, CPTh-A276.11.93 (Minor Errors Corrected

    Topological Symmetry Breaking on Einstein Manifolds

    Full text link
    It is known that if gauge conditions have Gribov zero modes, then topological symmetry is broken. In this paper we apply it to topological gravity in dimension n≄3n \geq 3. Our choice of the gauge condition for conformal invariance is R+α=0R+{\alpha}=0 , where RR is the Ricci scalar curvature. We find when α≠0\alpha \neq 0, topological symmetry is not broken, but when α=0\alpha =0 and solutions of the Einstein equations exist then topological symmetry is broken. This conditions connect to the Yamabe conjecture. Namely negative constant scalar curvature exist on manifolds of any topology, but existence of nonnegative constant scalar curvature is restricted by topology. This fact is easily seen in this theory. Topological symmetry breaking means that BRS symmetry breaking in cohomological field theory. But it is found that another BRS symmetry can be defined and physical states are redefined. The divergence due to the Gribov zero modes is regularized, and the theory after topological symmetry breaking become semiclassical Einstein gravitational theory under a special definition of observables.Comment: 16 pages, Late

    The semigroup structure of Gaussian channels

    Full text link
    We investigate the semigroup structure of bosonic Gaussian quantum channels. Particular focus lies on the sets of channels which are divisible, idempotent or Markovian (in the sense of either belonging to one-parameter semigroups or being infinitesimal divisible). We show that the non-compactness of the set of Gaussian channels allows for remarkable differences when comparing the semigroup structure with that of finite dimensional quantum channels. For instance, every irreversible Gaussian channel is shown to be divisible in spite of the existence of Gaussian channels which are not infinitesimal divisible. A simpler and known consequence of non-compactness is the lack of generators for certain reversible channels. Along the way we provide new representations for classes of Gaussian channels: as matrix semigroup, complex valued positive matrices or in terms of a simple form describing almost all one-parameter semigroups.Comment: 20 page

    A parabolic free boundary problem with Bernoulli type condition on the free boundary

    Full text link
    Consider the parabolic free boundary problem Δu−∂tu=0in{u>0},∣∇u∣=1on∂{u>0}. \Delta u - \partial_t u = 0 \textrm{in} \{u>0\}, |\nabla u|=1 \textrm{on} \partial\{u>0\} . For a realistic class of solutions, containing for example {\em all} limits of the singular perturbation problem Δuϔ−∂tuÏ”=ÎČÏ”(uÏ”)asϔ→0,\Delta u_\epsilon - \partial_t u_\epsilon = \beta_\epsilon(u_\epsilon) \textrm{as} \epsilon\to 0, we prove that one-sided flatness of the free boundary implies regularity. In particular, we show that the topological free boundary ∂{u>0}\partial\{u>0\} can be decomposed into an {\em open} regular set (relative to ∂{u>0}\partial\{u>0\}) which is locally a surface with H\"older-continuous space normal, and a closed singular set. Our result extends the main theorem in the paper by H.W. Alt-L.A. Caffarelli (1981) to more general solutions as well as the time-dependent case. Our proof uses methods developed in H.W. Alt-L.A. Caffarelli (1981), however we replace the core of that paper, which relies on non-positive mean curvature at singular points, by an argument based on scaling discrepancies, which promises to be applicable to more general free boundary or free discontinuity problems
    • 

    corecore