61,512 research outputs found

    Phonetic aware techniques for Speaker Verification

    Get PDF
    The goal of this thesis is to improve current state-of-the-art techniques in speaker verification (SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using various techniques such as automatic speech recognition (ASR). Different speakers span different subspaces within a universal acoustic space, usually modelled by âuniversal background modelâ. The speaker-specific subspace depends on the speakerâs voice characteristics, but also on the verbalised text of a speaker. In current state-of-the-art SV systems, i-vectors are extracted by applying a factor analysis technique to obtain low dimensional speaker-specific representation. Furthermore, DNN output is also employed in a conventional i-vector framework to model phonetic information embedded in the speech signal. This thesis proposes various techniques to exploit phonetic knowledge of speech to further enrich speaker characteristics. More specifically, the techniques proposed in this thesis are applied to various SV tasks, namely, text-independent and text-dependent SV. For text-independent SV task, several ASR systems are developed and applied to compute phonetic posterior probabilities, subsequently exploited to enhance the speaker-specific information included in i-vectors. These approaches are then extended for text-dependent SV task, exploiting temporal information in a principled way, i.e., by using dynamic time warping applied on speaker informative vectors. Finally, as opposed to train DNN with phonetic information, DNN is trained in an end-to-end fashion to directly discriminate speakers. The baseline end-to-end SV approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by estimating the mean of hidden representations in DNN structure. We improve upon this technique by computing a distance function between two utterances which takes into account common phonetic units. The whole network is optimized by employing a triplet-loss objective function. The proposed approaches are evaluated on commonly used datasets such as NIST SRE 2010 and RSR2015. Significant improvements are observed over the baseline systems on both the text-dependent and text-independent SV tasks by applying phonetic knowledge

    A segmental framework for fully-unsupervised large-vocabulary speech recognition

    Get PDF
    Zero-resource speech technology is a growing research area that aims to develop methods for speech processing in the absence of transcriptions, lexicons, or language modelling text. Early term discovery systems focused on identifying isolated recurring patterns in a corpus, while more recent full-coverage systems attempt to completely segment and cluster the audio into word-like units---effectively performing unsupervised speech recognition. This article presents the first attempt we are aware of to apply such a system to large-vocabulary multi-speaker data. Our system uses a Bayesian modelling framework with segmental word representations: each word segment is represented as a fixed-dimensional acoustic embedding obtained by mapping the sequence of feature frames to a single embedding vector. We compare our system on English and Xitsonga datasets to state-of-the-art baselines, using a variety of measures including word error rate (obtained by mapping the unsupervised output to ground truth transcriptions). Very high word error rates are reported---in the order of 70--80% for speaker-dependent and 80--95% for speaker-independent systems---highlighting the difficulty of this task. Nevertheless, in terms of cluster quality and word segmentation metrics, we show that by imposing a consistent top-down segmentation while also using bottom-up knowledge from detected syllable boundaries, both single-speaker and multi-speaker versions of our system outperform a purely bottom-up single-speaker syllable-based approach. We also show that the discovered clusters can be made less speaker- and gender-specific by using an unsupervised autoencoder-like feature extractor to learn better frame-level features (prior to embedding). Our system's discovered clusters are still less pure than those of unsupervised term discovery systems, but provide far greater coverage.Comment: 15 pages, 6 figures, 8 table

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Language Identification Using Visual Features

    Get PDF
    Automatic visual language identification (VLID) is the technology of using information derived from the visual appearance and movement of the speech articulators to iden- tify the language being spoken, without the use of any audio information. This technique for language identification (LID) is useful in situations in which conventional audio processing is ineffective (very noisy environments), or impossible (no audio signal is available). Research in this field is also beneficial in the related field of automatic lip-reading. This paper introduces several methods for visual language identification (VLID). They are based upon audio LID techniques, which exploit language phonology and phonotactics to discriminate languages. We show that VLID is possible in a speaker-dependent mode by discrimi- nating different languages spoken by an individual, and we then extend the technique to speaker-independent operation, taking pains to ensure that discrimination is not due to artefacts, either visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although the low accuracy of visual speech recognition currently limits the performance of VLID, we can obtain an error-rate of < 10% in discriminating between Arabic and English on 19 speakers and using about 30s of visual speech
    corecore