31,027 research outputs found

    Periodic Pattern Mining a Algorithms and Applications

    Get PDF
    Owing to a large number of applications periodic pattern mining has been extensively studied for over a decade Periodic pattern is a pattern that repeats itself with a specific period in a give sequence Periodic patterns can be mined from datasets like biological sequences continuous and discrete time series data spatiotemporal data and social networks Periodic patterns are classified based on different criteria Periodic patterns are categorized as frequent periodic patterns and statistically significant patterns based on the frequency of occurrence Frequent periodic patterns are in turn classified as perfect and imperfect periodic patterns full and partial periodic patterns synchronous and asynchronous periodic patterns dense periodic patterns approximate periodic patterns This paper presents a survey of the state of art research on periodic pattern mining algorithms and their application areas A discussion of merits and demerits of these algorithms was given The paper also presents a brief overview of algorithms that can be applied for specific types of datasets like spatiotemporal data and social network

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks

    Measuring Cultural Relatedness Using Multiple Seriation Ordering Algorithms

    Get PDF
    Seriation is a long-standing archaeological method for relative dating that has proven effective in probing regional-scale patterns of inheritance, social networks , and cultural contact in their full spatiotemporal context. The orderings produced by seriation are produced by the continuity of class distributions and uni-modality of class frequencies, properties that are related to social learning and transmission models studied by evolutionary archaeologists. Linking seriation to social learning and transmission enables one to consider ordering principles beyond the classic unimodal curve. Unimodality is a highly visible property that can be used to probe and measure the relationships between assemblages, and it was especially useful when seriation was accomplished with simple algorithms and manual effort. With modern algorithms and computing power, multiple ordering principles can be employed to better understand the spatiotemporal relations between assemblages. Ultimately, the expansion of seriation to additional ordering algorithms allows us an ability to more thoroughly explore underlying models of cultural contact, social networks, and modes of social learning. In this paper, we review our progress to date in extending seriation to multiple ordering algorithms, with examples from Eastern North America and Oceania

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information

    Perspective: network-guided pattern formation of neural dynamics

    Full text link
    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs, or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings, lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatiotemporal pattern formation and propose a novel perspective for analyzing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics
    • …
    corecore