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Abstract Seriation is a long-standing archaeological method for relative dating that
has proven effective in probing regional-scale patterns of inheritance, social net-
works, and cultural contact in their full spatiotemporal context. The orderings pro-
duced by seriation are produced by the continuity of class distributions and uni-
modality of class frequencies, properties that are related to social learning and trans-
mission models studied by evolutionary archaeologists. Linking seriation to social
learning and transmission enables one to consider ordering principles beyond the
classic unimodal curve. Unimodality is a highly visible property that can be used
to probe and measure the relationships between assemblages, and it was especially
useful when seriation was accomplished with simple algorithms and manual effort.
With modern algorithms and computing power, multiple ordering principles can be
employed to better understand the spatiotemporal relations between assemblages.
Ultimately, the expansion of seriation to additional ordering algorithms allows us
an ability to more thoroughly explore underlying models of cultural contact, social
networks, and modes of social learning. In this paper, we review our progress to date
in extending seriation to multiple ordering algorithms, with examples from Eastern
North America and Oceania.
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1 Introduction

Seriation is a set of methods that uses patterns in the occurrence or abundance of
historical classes to construct an ordering among otherwise unordered assemblages
or objects (Dunnell, 1970). Its early 20th century developers built seriation as a rel-
ative dating method and orders constructed by seriation were intended to be chrono-
logical (O’Brien and Lyman, 2000, 1998; Lyman and O’Brien, 2006; O’Brien and
Lyman, 1999; Lyman et al., 1997). While practitioners such as James Ford (Ford,
1938; Phillips et al., 1951; Ford, 1935) noted that seriation techniques also create
orderings which incorporate the effects of spatial variation in addition to temporal
change, the dominant use of seriation in archeology has been chronological.

As a chronological tool, seriation has been success in developing an understand-
ing the large-scale temporal structure of the archaeological record in the New World
(Beals et al., 1945; Bluhm, 1951; Evans, 1955; Ford, 1949; Kidder, 1917; Mayer-
Oakes, 1955; Meggers and Evans, 1957; Phillips et al., 1951; Rouse, 1939; Smith,
1950). Despite this success, the method has largely been ignored since the advent
of radiocarbon dating given its primary association as a relative dating method. But
seriation is only a dating method in the sense that chronology is one possible in-
ference that can be obtained by mapping the spatiotemporal pattern of change in
cultural variants. Other inferences are possible, and in particular, there is a growing
understanding that seriation is one of several methods for inferring historical and
heritable continuity and thus documenting the evolutionary history of past popula-
tions (e.g., Lipo et al., 1997; Lipo and Madsen, 2000; Lipo, 2001a; Lipo, 2001b;
Lipo, 2005; Lipo and Madsen, 1997; Lipo et al., 2015; Neiman, 1995; O’Brien and
Lyman, 1999, Ch. 3; Teltser, 1995).

Seriation is based on the notion that the frequencies of classes of artifacts reflect
heritable continuity when it arises from information being passed between popula-
tions over time; that is, from cultural transmission processes. Although the fact that
seriation, in some sense, measures cultural transmission has been implicit since the
earliest discussions of the method (e.g., Kroeber, 1923), the connection remained a
common sense generalization until the mid 1990’s. Fraser Neiman, in his disserta-
tion (Neiman, 1990) and later his seminal 1995 article (Neiman, 1995), noted that
the unimodal patterns that form the core of the traditional frequency seriation tech-
nique are regularly seen in the trajectories seen when simulating unbiased transmis-
sion. In order to make this connection both rigorous and useful in empirical work,
we began a research program aimed at exploring the connection between cultural
transmission models and seriation methods (Lipo et al., 1997). Our investigation
into seriation has resulted in numerous publications, new seriation software algo-
rithms, and many conference papers (Lipo and Eerkens, 2008; Lipo and Madsen,
2001; Lipo, 2001b, 2005; Lipo and Madsen, 1997; Lipo et al., 2015; Madsen and
Lipo, 2014, 2015; Madsen et al., 2008; O’Brien et al., 2015).

The core of the all seriation techniques are a set of “ordering principles” which
describe how the data points making up each assemblage or object are rearranged
in order to achieve a valid seriation solution. Traditionally, there are two princi-
ples: occurrence and frequency (Dunnell, 1970; Rouse, 1967; Whitlam, 1981). The
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“occurrence principle” states that a valid ordering leaves no temporal gaps in the
distribution of the historical classes used, and thus that temporal orders are continu-
ous (Dempsey and Baumhoff, 1963; Rowe, 1959). The “frequency” or “popularity”
principle states that in a valid ordering, the frequencies making up the continuous
distribution of each historical type will be unimodal, possessing a single peak of
“popularity” (Nelson, 1916).

Seriation

Deterministic

Frequency Occurrence

ProbabilisticProbabilistic Deterministic

Identity Similarity SimilarityIdentity Identity Similarity Identity Similarity

Fig. 1 Dunnell (1981) defines seriation to be a set of methods which use historical classes to
chronologically order otherwise unordered archaeological assemblages and/or objects. Historical
classes are those which display more variability through time than through space. Occurrence se-
riation uses presence/absence data for each historical class from each assemblage (Kroeber, 1916;
Petrie, 1899). Frequency seriation uses ratio level abundance information for historical classes
(Spier, 1917; Ford, 1935, 1962). Frequency and occurrence seriation techniques can take the form
of deterministic algorithms that require an exact match with the unimodal model or probabilistic
algorithms that accept departures from an exact fit. Identity approaches employ raw data (whether
frequency or occurrence) to perform the ordering. Similarity approaches transform the raw data
into a non-unique coefficient (e.g., Brainerd Robinson, squared Euclidean distance); the coeffi-
cients then form the basis for ordering.

Both the frequency and occurrence principle work to sort descriptions of assem-
blages through time. The robustness of methods built on these principles is easily
demonstrated by the continued utility of the basic chronological frameworks erected
by culture historians in the first half of the 20th century using seriation along with
stratigraphy and marker types (Lyman et al., 1997). It is intriguing to note, how-
ever, that the frequency principle remains an empirical generalization that is only
suggested by the generalized behavior of cultural transmission models, rather than
being a necessary consequence. From Neiman’s simulations (i.e., Neiman, 1995),
one can see that the results of cultural transmission are not strictly or necessarily
unimodal. This possibility suggests to us that seriation as a method requires fur-
ther methodological development, especially if it is to be one of our major tools in
tracing historical and heritable continuity in the archaeological record.1

1 Cladistics and phylogenetic methods, especially those which take into account temporal differ-
ences in the samples being studied (stratocladistics) and which are capable of yielding phyloge-
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In this paper, we explore an alternative to unimodality and the “popularity
principle” that drives classical frequency seriation: exact minimization of inter-
assemblage distance metrics, or “continuity” seriation. Although not a new prin-
ciple, it was underappreciated especially prior to the contemporary explosion of
computing power. We demonstrate that an exact form of distance minimization,
in contrast to the statistical or approximate minimization associated with multidi-
mensional scaling, generates solutions that are often identical to the application of
unimodality to the same data. Furthermore, using simulated data, we examine situ-
ations where frequency and continuity seriations may differ in minor ways, without
affecting the overall ordering of the data set. Although there is still great value in
the classical approach, the advantage of developing new seriation approaches is that
we can often apply distance minimization to classes and types which do not neces-
sarily display the classical unimodal form, which opens seriation to wider classes of
data. In addition, distance minimization can be formulated within large scale, par-
allel machine learning frameworks, and thus made applicable to contemporary data
sets which are often orders of magnitude larger than those we face in archaeological
contexts.

2 Seriation and the Frequency Principle

Seriation, in the Americanist sense, was initially developed by Alfred Kroeber
(Kroeber, 1916) in the Southwest, based on his observations of changes in the rela-
tive abundance of forms of ceramic decorations found on sherds located in assem-
blages near Zuni Pueblo. The primitive seriation proposed by Kroeber was quickly
amended by Leslie Spier, Alfred V. Kidder and Nels C. Nelson all of whom were
conducting stratigraphic excavations in the American Southwest (Kidder, 1917;
Nelson, 1916; Spier, 1917). This group of researchers all noticed that when ce-
ramics were described in a particular way – called “stylistic” by Kidder (1917) –
the temporal distribution of the types took the form of “normal curves.” Using such
types, it was apparent that a series of assemblages collected from the surface or
otherwise undated could be arranged in chronological order by rearranging them so
that all type distributions approximated “normal curves” simultaneously. The orders
constructed in this way could also be tested by finding stratified deposits and were
found to be correct. The resulting method then went on to dominate archaeological
practice for much of the next 50 years (Lyman et al., 1997).

As powerful as seriation proved to be, these early formulations were entirely in-
tuitive and based on the generalization that greater temporal differences between
assemblages caused larger differences between frequencies of decorated types,
and that properly constructed historical types displayed a clear pattern of change
(Phillips et al., 1951, p. 220):

netic networks in addition to trees, are the other major tools by which we can measure heritable
and historical continuity.
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If our pottery types are successful measuring units for a continuous stream of changing cul-
tural ideas, it follows that when the relative popularity of these types is graphed through
time, a more or less long, single-peak curve will usually result. Put in another way, a type
will first appear in very small percentages, will gradually increase to its maximum popular-
ity, and then, as it is replaced by its succeeding type, will gradually decrease and disappear.

This compactly describes the “popularity principle,” originally articulated by
Nelson (1916) and Wissler (1916). A key word in the above is “usually,” since not all
types display the unimodal distribution described, even when the attributes chosen
are explicitly stylistic and decorative. Types suitable for frequency seriation were a
subset of stylistic variation, comprising those which displayed spatial and temporal
contiguity, a long enough duration that the types overlapped in their representation
among sites and assemblages, and those whose distribution through time displayed
the characteristic unimodal form which allowed the analyst to arrange them by eye.
Culture historians also minimized the effect of chance and potential recurrence by
insisting that the classes used for measurement were constructed from multiple di-
mensions (Phillips et al., 1951; Lipo, 2001a). The overall process of constructing
and testing such types became known, after Krieger (1944), as applying the “test of
historical significance.”

2.1 Unimodality and Cultural Transmission Processes

In most cases (such as the above quote from Phillips, Ford, and Griffin), the popular-
ity principle is simply assumed to hold in culture-historical applications. It is clear
that culture historians assumed that what generates heritable continuity, and thus
allows the tracing of chronological relations, is cultural transmission. As Lyman
(2008) documents in careful detail, early 20th century anthropology and archae-
ology understood and discussed a variety of transmission processes informally, as
generating the patterns they studied, even if they used different terms and did not
form quantitative models for it. Rouse (1939), for example, explicitly discussed the
diffusion of cultural traits, in terms that we now recognize as a spatiotemporal model
of transmission. Kroeber, the father of frequency seriation, clearly understood the
connection between his previous work and trait diffusion (Kroeber, 1937). Deetz
and Dethlefsen (1965; 1971) noted the spatial dimension to trait diffusion. There
are many more examples (Lyman, 2008).

Interest in studying cultural transmission in an explicit way has a long history
in archaeology. Since the 1970s, archaeologists have worked with models of dif-
fusion, with those models becoming increasingly quantitative, statistical, and even
explicitly mathematical (e.g., Ammerman and Cavalli-Sforza, 1971). These models
of diffusion, however, tended to be deterministic, especially those stemming from
the interdisciplinary literature on the diffusion of innovations (e.g., Rogers, 2003).
Deterministic models, however, ignore the essential historically contingent path-
ways of culture transmission that produce the patterns noted by culture historians
as historically significant. More recently archaeologists have become interested in
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developing models for individual social learning events (e.g., Mesoudi et al., 2008).
Individual social models, however, do not necessarily “add up” to produce a popu-
lation level effect, and the latter is what we need to understand in order to solidly
ground a seriation ordering algorithm in cultural transmission.

It was not until archaeologists began working with stochastic models of cultural
transmission, however, that we could easily visualize the sheer variety of patterns
that cultural transmission processes can, and do, generate. Stochastic models of
transmission allow us to easily explore the precise conditions under which unimodal
distributions occur in type frequencies, what classification methods tend to produce
it, and what dimensions of variation combine to produce mostly unimodal behavior.

Dunnell’s (1978) exposition of style as neutral variation was one key step in
the adoption of stochastic models of drift from population genetics as the main tool
for exploring cultural transmission dynamics. Neiman (1995) took this step substan-
tially further when he simulated drift in cultural variants as an unbiased transmission
process, as shown in Figure 2. Immediately apparent is the fact that some variants
do display unimodal patterns, but most variants are multimodal or display violations
of unimodality at small scales even if the macroscopic shape seems to conform to
the popularity principle.

Fig. 2 Neiman’s simulation of drift in cultural variant frequencies under unbiased cultural trans-
mission (reproduction of Figure 2a from Neiman 1995.)

The lesson of Figure 2 is that there is nothing necessary about unimodality given
cultural transmission, but that it can occur. But culture historical types used in seri-
ation were constructed to yield unimodal distributions, and a key element in such
construction is ensuring that types are composed of multiple dimensions of varia-
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tion which co-occur on artifacts identified to that type. We can imagine selecting the
traits shown in Figure 2 and intersecting combinations of them to form multidimen-
sional classes. In doing so, it is likely that unique combinations of those variants
would not recur and the role of chance in the occurrence of combinations of traits
would be minimized. Thus, such practices likely contribute to the presence unimodal
distributions. It is also likely that time averaging (ubiquitous in the archaeological
record) smooths out some of the minor variation in variant frequencies, as will the
vagaries of sampling archaeological deposits.

Taken together, these factors seem to explain why the intuitive construction of
historical types, from the continuous flow of the products of cultural transmis-
sion processes, worked to produce chronology through application of the common-
sense popularity principle, and why not all artifact classes constructed from oth-
erwise “stylistic” dimensions of variation, are suitable for frequency seriation us-
ing unimodality as the ordering criterion. From the perspective of culture histori-
ans, unimodality was a sufficient criteria for recognizing patterns that were likely
chronological from those that were likely not. While focusing on only those classes
that produced unimodal distributions in class frequencies might have ignored other
potentially historical significant classes, without any other means of identifying
chronological patterns, the culture historians were satisfied with the subset that
worked.

2.2 Continuity: An Alternative to Unimodality

There are several reasons why we should explore alternatives to unimodality as
an ordering algorithm for frequency seriation. First, from a performance perspec-
tive, searching for unimodal orders is computationally expensive, even for relatively
small data sets (Madsen and Lipo, 2014). Even with the iterative, agglomerative
method that we introduced recently (Lipo et al., 2015), the computation time can
grossly exceed computing capacity for data sets as small as 30. While 30 is a large
number of assemblages by most archaeological standards especially when adequate
sample size requirements are met, it is a serious limitation. Without good techniques
and ordering principles seriation may not scale to much larger problems, and even
be applicable to the flood of data seen in modern day life.

Second, and more importantly from a theoretical perspective, it is important to
be able to trace heritable continuity even if does not display a particular type of
temporal frequency distribution. Using traditional type construction methods and
the test of historical significance, culture historians were able to find enough con-
forming types and classes to construct regional chronologies. The goal of culture
historians was to build chronologies using the most efficient means possible to do
so, not study combinations of trait transmission through time and space. The use
of seriation as a method for tracing evolutionary relationships is a more demand-
ing task than establishing rough chronology in a region. Thus, it is worth searching
for additional ordering principles that may be useful for seriating more classes of
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cultural variants. Specifically, there is strong relationship between the number of
classes in a seriation, and our ability to map differences across space and time. We
need methods that can evaluate arbitrary sets of classes to arrive at the most detailed
understanding of cultural transmission landscapes.

For example, Madsen (2015) is presently working on classifying regional inter-
action models by the structural properties they leave behind when cultural trans-
mission is simulated on such regional models and then seriated. Doing this kind
of detailed analysis requires many types and frequently, many assemblages to be
successful. Even if unimodality suffices for rough chronology, additional ordering
principles will be highly useful for studying regional interaction and the evolution-
ary history of technology.

A theoretically sound ordering principle for seriation should be derivable from
characteristics of the underlying cultural transmission processes that we believe
drive the spatiotemporal variation seriation measures. Formal models of cultural
transmission, such as those formulated by Boyd and Richerson, Cavalli-Sforza
and Feldman, and borrowed from population genetics (Boyd and Richerson, 1985;
Cavalli-Sforza and Feldman, 1981; Neiman, 1995) provide a good starting place.
Their models incorporate stochastic autoregressive processes in which the probabil-
ity distribution of outcomes at a given time are dependent upon the outcomes from
the immediate past. Mathematically, then we can treat cultural transmission mod-
els as Markov processes, usually of first order (i.e., without dependencies on states
previous to the immediate past state). Such models are certainly capable of making
large changes in state over short time intervals, but large jumps are rare compared
to small changes in state, especially in large populations. This is the reason why we
(and culture historians) often have an expectation that cultural transmission has a
“gradual” character to it.

The probabilistic gradualism of change over small time periods in our cultural
transmission processes explains the “continuity” principle that is embedded in tra-
ditional forms of seriation. Continuity is strongly related to notions of continuous
functions in mathematics: samples which originate close together in time, space, or
both will be close in type frequency and the presence/absence of types, especially
compared to samples which are further apart. This continuity principle immediately
leads to considering ordering algorithms based upon minimizing a suitable distance
metric, with assemblages represented by points in a multidimensional space of type
frequencies or counts.

2.3 Statistical Seriation Methods

The earliest statistical techniques for seriation were also built upon using in-
terassemblage distance metrics. Brainerd and Robinson (Brainerd, 1951; Robinson,
1951) pioneered a method for seriation based upon the similarity between assem-
blages, measured as a scaled version of the Manhattan (or city-block) distance be-
tween assemblage frequencies. When these scaled distances (which became known
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as Brainerd-Robinson coefficients) are arranged in a matrix with the largest values
nearest the diagonal and the lowest values in the corners and away from the diago-
nal, the order of assemblages by row or column provides the seriation solution. In
practice, most real data matrices cannot be put in perfect Robinson form without
violations from the assumptions of the seriation model.

Brainerd and Robinson’s pioneering work became the basis of a minor industry
that developed methods for matrix ordering in the face of the practical difficulties in
coercing most data sets into a perfect linear ordering (e.g., Dempsey and Baumhoff,
1963; Kendall, 1963; Matthews, 1963; Bordaz and Bordaz, 1970; Gardin, 1970;
Kendall, 1970, 1971). As access to computers by researchers in the social sciences
increased, computerized algorithms for examining permutations quickly prolifer-
ated (Ascher and Ascher, 1963; Craytor and Johnson, 1968; Kuzara et al., 1966).
Kendall (1969) and others attacked the ordering problem through the use of mul-
tidimensional scaling. For a detailed review of the many variants on this type of
probabilistic seriation solution through the late 1970s, see (Marquardt, 1978). Most
recently correspondence analysis has been used with success in determining proba-
bilistic seriation orders, and just as importantly, quantifying the degree of departure
from the ideal seriation model (Smith and Neiman, 2005).

Not all of the similarity measures used in this literature are true distance met-
rics, but many are, and there have been calls to simplify the problem by directly
minimizing inter-assemblage distance, and thus the total “path length” of a candi-
date seriation solution. Kadane (1971) describes this approach, and it was adopted
later by Shepardson (2006) in his construction of the “Optipath” seriation algorithm,
which has distance minimization at its core.

Where existing distance/similarity methods encounter a problem is the assump-
tion that a seriation solution must be a single linear order. In an earlier paper, we
describe a seriation algorithm (iterative deterministic seriation solutions, or IDSS)
that finds all of the possible orders in a set of data that conform to an ordering prin-
ciple, and where those orders have overlap in assemblages (Lipo et al., 2015). Using
this ordering principle, IDSS constructs a graph with branches that recognizes that
the best solutions may not be linear. In probabilistic approaches to seriation such
as MDS or correspondence analysis, departures from linear solutions have always
been treated as “stress” or “error.” Practitioners usually recognize that such depar-
tures arise from coercing data which naturally sit in a larger number of dimensions
– because of spatial variation and other factors – into a one-dimensional order. In
essence, methods which attempt to coerce a complex spatiotemporal pattern into a
linear ordering tend to treat departures from linearity as noise, which is then ignored.

But the departure from linearity is not “noise,” in the statistical sense. Especially
if one accounts for sampling error in constructing seriation orders (as we do in
IDSS by using the bootstrap to construct confidence intervals around the empiri-
cal frequencies), then departures from a linear ordering are signal, not noise. Such
solutions reflect the fact that an assemblage at time T1, for example, may be the
closest match to two different assemblages at later times T2 and T3 for example,
given slightly different areas of overlap in their type frequencies. This pattern can
occur because the seriation method is inherently spatiotemporal, instead of simply
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measuring time (as culture historians have always known), and it can also reflect the
splitting of populations into separate lineages (or their merger).

2.4 Exact Distance Minimization Ordering: “Continuity” Seriation

Instead of the “approximate” distance minimization algorithms employed in multi-
dimensional scaling, we explore exact solutions using our IDSS algorithm. For sim-
plicity in the configuration of the software, we summarize our approach by calling
it “continuity” seriation, to distinguish it from unimodal-based frequency seriation
and to emphasize that we want solutions that have the smoothest, most continuous
transition of type frequencies when we consider pairs of assemblages. We achieve
this by locally minimizing the inter-assemblage distance within the solution graph,
which automatically yields the minimum total “path length” for a seriation solution.

Our algorithm makes no use of the unimodality criterion, and produces equiva-
lent results in almost all cases, as we show in the next section. The algorithm cur-
rently employs the Euclidean distance between assemblage counts or frequencies,
although it can use any distance metric. The Euclidean distance has the advantage
of treating each class as equivalent measures, a property consistent with the use
of paradigmatic classification (sensu ?) for generating measurement classes. Given
a table of inter-assemblage distance metrics, we first construct pairs of two-vertex
graphs which represent the “closest” assemblage for each assemblage in the data set
(mirrored pairs are filtered out since they are isomorphic). The edge weight given
to each edge is the Euclidean distance between the assemblages represented by ver-
tices. For each of the minimal graphs in this initial set, we then find the assemblage
with the shortest distance to each of the two ends, and continue iterating. Crucially,
if there are equal-distance options, both possible solutions are retained. The result
of this iteration is a collection of graphs which represent partial minimum-distance
paths through the set of assemblages. This collection of partial graphs are then over-
laid to form a single solution using a “minmax” approach as described in our paper
on the IDSS algorithm in general (Lipo et al., 2015).

The general approach is the same one we take to frequency seriation; what dif-
fers here with “continuity” seriation is how we form the set of candidate partial
solutions. Instead of enforcing unimodality within each partial solution, we min-
imize Euclidean inter-assemblage distance. The resulting minmax graph is linear
only if all of the candidate partial solutions perfectly overlay themselves into a lin-
ear solution, and otherwise will have a tree structure with branches. The possibility
of branching is what allows a seriation solution to express both spatial and temporal
structure simultaneously. The ability to inform on both allows investigation of social
network structure, and interaction and social learning patterns in past populations,
at scales more detailed than entire cultural manifestations or phases. We believe that
seriation, augmented in this way, sits between the microevolutionary level where we
investigate evolution in single populations, and the macroevolutionary level, best ex-
plored using the tools of phylogenetic analysis and cladistic techniques.
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3 Comparing Frequency and Continuity Seriation

In this section we compare the results of our IDSS frequency seriation algorithm,
described in a recent paper (Lipo et al., 2015), and our exact distance-minimization
or “continuity” algorithm. It is difficult to compare the algorithms on a very large
set of empirical data sets, so we begin by examining a large sample of data sets
generated by sampling simulated cultural transmission, within a regional metapop-
ulation model of multiple communities. We described the overall model, called “Se-
riationCT,” in a conference paper last year, but we review the essentials here.2

Seriation of artifact assemblages is inherently a regional-scale problem, whether
for chronology or tracking interaction and social learning processes. Thus, the fun-
damental abstraction for modeling is a graph or network which (a) represents the
intensity of contact, migration, and interaction between communities of people at
any given point in time, (b) allows the set of communities to evolve, with some
communities going away and others originating over time, and (c) representing how
both the pattern and intensity of inter-community contacts evolves over time. Social
network or graph models, especially weighted graphs, form an essential ingredient
for this type of modeling, but need to be extended to the temporal dimension.

Extending networks for modeling time-transgressive change employs so-called
“temporal network models,” which record the changing structure a network or graph
over a series of time points (Holme and Saramäki, 2012). For our purposes, “inter-
val” temporal networks are the right abstraction. Such graphs represent interactions
that occur and persist over a measurable duration as edges that carry time indices.
Interval graphs can be modeled mathematically in a number of ways, but in an al-
gorithmic setting the most convenient is to define a sequence of separate graphs,
where each graph Gt in the sequence represents one or more change events within
the network between times t and t +δ t (where δ t = t +1− t). In a fully continuous
temporal representation, each graph in the sequence specifies a single change event,
and thus is equivalent to the way that a continuous-time stochastic process repre-
sents events. In situations where our observations are coarse grained due to time
averaging or recovery methods (or both), each graph in the sequence may represent
a number of change events which occur over the duration assigned to that graph in
the sequence.

Change events encompass anything that modifies the graph. Vertices may be
added or removed, and edges may be added or removed. In addition to addition and
removal, if the graphs in the sequence are weighted, slices may record events where
the strength of an edge changes, without other topological changes to the graph. If
other attributes are present on vertices or edges (e.g., labeling edges for a type of in-
teraction), changes to those labelled attributes would also constitute a change event
and would be recorded by a graph in the sequence with changed attribute values.
An interval temporal network is thus defined as an ordered set of graph “slices,”

2 The SeriationCT software is open source, and is located at Github. Experiments using it to gen-
erate the data analyzed here, and more network models, are described and linked on Madsen’s
website and lab notebook.

https://github.com/mmadsen/seriationct
http://notebook.madsenlab.org
http://notebook.madsenlab.org
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each slice associated with a time index. The changes themselves can be found by
“subtracting” two graph slices and obtaining lists of vertex and edge changes.

Constructing a time-transgressive regional metapopulation from an interval tem-
poral network occurs by giving interpretations to vertices, edges, and other attributes
of the graph. In our research, vertices represent communities of individuals, with
population sizes which may change or not over time. Edges represent the presence
of interaction between two communities, which could represent learning between
individuals, or migration of individuals bringing portions of a cultural repertoire be-
tween communities. The weight given to an edge is typically a relative measure of
interaction betweeh communities, normalized by the rest of the communities, since
there is no good way in a simple structure like this to model the absolute intensity
of such interaction. When communities come into existence, by members of an ex-
isting community founding a new settlement, a vertex is added to the network and
it acquires connections to other communities (according to the class of model we
are constructing). Similarly, communities may go away over time, and the vertex is
then removed. Interaction patterns may change as well, resulting in the addition or
removal of edges over time, or change in the edge weights.

For example, we can create a model whereby two clusters of communities are
tightly interconnected internally, and have some sparser relationship between the
clusters, and slowly lose that interconnection to become separate, non communicat-
ing lineages, using a model similar to that shown in Figure 3.
The third and fourth columns in the figure describe the change events. The third de-
scribes changes to the network structure in each time slice, and the fourth describes
the interpretation of those structural changes in terms of a regional metapopulation
model.

Interval temporal networks, interpreted as regional metapopulation models, thus
form a basic tool for modeling many classes of regional histories and interaction pat-
terns. For purposes of comparing frequency and our continuity seriation algorithms,
we focus on a regional model of the type depicted in Figure 3, but with a larger
number of communities than shown. In that model, four clusters of communities
start out at the beginning of the time period under consideration being tightly inter-
connected within each cluster, and more loosely connected among the four clusters.
At any given time, each cluster has 8 communities spread over a geographic area, so
with four clusters, there are 32 communities in the region under consideration. At
a late point in the time interval under consideration, the connections between pairs
of clusters is removed, creating two non-interacting sets of community clusters, to
model the origin of separate “lineages” of cultural transmission in a region.3

Given this model of interaction between communities, we then simulate the stan-
dard unbiased cultural transmission model across this network. The changes spec-
ified by the temporal network guide the addition of new subpopulations or their
demise in the model, and the edge weight pattern defines migration of individu-

3 This model is available for inspection as a set of GML network files in experiment “sc-2” in the
experiment-seriation-classification repository maintained by Madsen. That experiment focused on
differentiating different classes of lineage-splitting or coalescence models through their seriation
solutions, and here I focus only on the data resulting the “early lineage splitting” model.

https://github.com/mmadsen/experiment-seriation-classification
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Fig. 3 Example of an interval temporal network interpreted as a regional metapopulation model,
with vertices representing communities, weighted edges representing intensity of interaction and
migration, and changes in each representing their respective evolution over time.

als between communities, and thus the possibility of cultural variants flowing be-
tween communities. Simulation of transmission occurs for 12,000 time steps, with
the change events occurring regularly over that interval, creating change in interac-
tion over time as social learning proceeds.

During the evolution of the model, we record the frequencies of individual vari-
ants, and their co-occurrence to mimic archaeological classes or types which are de-
fined by multiple dimensions of variation. Recording of frequencies occurs within
each of the 32 communities present at any given point in time, so we can measure
spatial and temporal variation in cultural variants. For purposes of the experiments
reported here, we sample innovation rates from a prior distribution which allows
any given simulation run to have a very low innovation rate, through relatively high
innovation rates.4

Following simulation and data recording, the raw data are processed in ways that
mimic the time averaging that occurs in archaeological deposits, and the sampling
that archaeologists do when taking surface collections from such aggregated de-
posits. This chain of processing is depicted in Figure 4. First, recorded cultural vari-
ants are aggregated for each community across the simulated time that community

4 The details of the prior parameter distributions are relatively unimportant for purposes of compar-
ing seriation algorithms, but are found in the experiment-seriation-classification repository under
experiment SC-2 in the file “seriationct-priors.json”.

https://github.com/mmadsen/experiment-seriation-classification
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Seriation Output
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Spatiotemporal 
Network Model

Seriation of 
Simulated 
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Fig. 4 Processing steps in simulating cultural transmission on a regional metapopulation model of
lineage splitting, to compare seriation ordering algorithms.

existed, so that all variant frequencies are time averaged in the manner described
and modeled by Premo (2014) and Madsen (2012). Then, from the time averaged
data for each community, an assemblage of 500 simulated artifacts is drawn from
the raw data. This has a tendency to represent common variants well, and capture
some but not all rare variants. From this sampled data, we then take a sample of the
available communities, since seriations are always performed on a sample of archae-
ological deposits selected by the archaeologist (whether in rigorous or ad hoc ways).
Finally, we filter the types present in each group of assemblages, to remove those
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types which are present only in one assemblage (as one would do in a manually
constructed seriation), since those types do not contribute to ordering.

The resulting set of assemblage-level type frequencies were then fed into our
IDSS seriation program, asking it to produce both a frequency seriation using uni-
modality as the ordering criterion, and a continuity seriation, using exact distance
minimization as the ordering criterion. We did this for 50 simulation runs with dif-
ferent parameters across the “lineage splitting” regional model described above, and
compared the resulting seriation solutions. We measure whether frequency and con-
tinuity solutions are identical by testing whether the solution graphs are isomorphic,
which means that the same vertices are connected to the same neighbors by the
same edges. Of the 50 simulation runs examined here, in 80% of cases the conti-
nuity and frequency seriations give an exactly identical solution. Of the remaining
non-identical solutions, we find that the differences nearly always involve the repo-
sitioning of a single assemblage. In the next section, we examine such a case in
detail to understand what drives such differences when they occur.

3.1 Examining a Solution Which Differs

Fig. 5 Frequency seriation solution for simulation run f8a6f378 on the ”lineage splitting” regional
interaction model.
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Of the differing solutions, we selected one (f8a6f378) at random to show the
details of how frequency and continuity solutions differ. Figures 5 and 6 depict
the frequency and continuity seriations, respectively, in the form of graphs which
connect assemblages which are “adjacent” in the seriation solution. This makes it
easier to see where an assemblage is really part of several solutions, which can
indicate lineage splitting or differentiation occurring over space. We introduced this
format for seriation solutions in our recent article on IDSS seriation (Lipo et al.,
2015).

Fig. 6 Continuity seriation solution for simulation run f8a6f378 on the ”lineage splitting” regional
interaction model.

Although the graphs are laid out slightly differently (as a function of an auto-
mated graph layout algorithm), it is apparent that most of the seriation ordering is
the same. Simulated assemblage 954-864 anchors one end of the ordering, while
assemblage 112-482 anchors the other.5 Both solutions also show a branch for as-
semblage 402-995, which belongs to one of the two lineages after the connections
between two sets of communities is lost. It is a single assemblage branch because
of the vagaries of sampling assemblages out of the total set of communities in this
example. The main difference between the solutions comes in assemblage 618-780
and where it connects. In the frequency solution it occurs “inline” while in the con-

5 Simulated assemblage names here reflect geographic coordinates, since regional interaction mod-
els often bias interaction and migration by location or neighborhood.
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tinuity solution, interassemblage distance is minimized by removing it to a small
branch of its own.

Assemblage Name 6022-0-1767 36526 36557 7005-0-1767 7628-0-1767 0-9222-3 1-0-1767 3771 6996-4-3

assemblage-954-864 10 160 0 49 92 0 0 0 9
assemblage-970-448 0 155 0 74 128 0 0 0 14
assemblage-618-780 123 50 0 164 121 0 13 0 14
assemblage-506-308 107 58 0 199 114 0 9 0 13
assemblage-874-851 81 66 0 165 0 0 162 6 17

assemblage-874-851 81 66 0 165 0 0 162 6 17
assemblage-655-312 0 52 16 111 0 20 269 6 26
assemblage-1005-552 0 53 32 72 0 61 182 41 8
assemblage-823-113 0 145 81 0 0 64 132 10 14
assemblage-112-482 0 24 151 0 0 157 81 49 9

assemblage-874-851 81 66 0 165 0 0 162 6 17
assemblage-402-995 106 65 0 29 0 0 192 0 7

Table 1 Raw data for frequency seriation for simulation run f8a6f378, grouped into blocks corre-
sponding to the branches of the solution graph

Viewed in traditional tabular view of the type counts in Tables 1 and 2 or as tra-
ditional centered bar charts in Figures 7 and 8, several features are apparent. First,
there are apparent violations of unimodality in the frequency seriation. But given
our IDSS algorithm, we calculate a 95% confidence interval around each type count
given the total sample size, and thus there are small differences (compared to the
larger values) which are not statistically significant. Second, we can see that conti-
nuity solutions allow violations of unimodality (e.g., assemblage 823-113) but come
up with the same overall structure. To us, this shows that unimodality is sufficient
but not necessary for using a seriation method to track the spatiotemporal structure
of cultural transmission.

3.2 Multiple Seriations for Phillips, Ford and Griffin (1951) data

Simulations of cultural transmission may give us the ability to probe the conse-
quences of altering a model, and simulations are very useful for developing large
samples of seriation solutions and understanding their properties. But simulations
do not replace seriations of real data. To that end, we extend the Lower Mississippi
River Valley example from our recent work (Lipo et al., 2015) by comparing fre-
quency and continuity seriation algorithms on the same set of assemblages.6 The

6 We are archiving seriation datasets, with supporting information, licenses if available, and often
with accompanying geographic information, and scripts to perform seriations on the data using
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Assemblage Name 6022-0-1767 36526 36557 7005-0-1767 7628-0-1767 0-9222-3 1-0-1767 3771 6996-4-3

assemblage-954-864 10 160 0 49 92 0 0 0 9
assemblage-970-448 0 155 0 74 128 0 0 0 14
assemblage-506-308 107 58 0 199 114 0 9 0 13
assemblage-874-851 81 66 0 165 0 0 162 6 17
assemblage-655-312 0 52 16 111 0 20 269 6 26
assemblage-1005-552 0 53 32 72 0 61 182 41 8
assemblage-823-113 0 145 81 0 0 64 132 10 14
assemblage-112-482 0 24 151 0 0 157 81 49 9

assemblage-874-851 81 66 0 165 0 0 162 6 17
assemblage-402-995 106 65 0 29 0 0 192 0 7

assemblage-506-308 107 58 0 199 114 0 9 0 13
assemblage-618-780 123 50 0 164 121 0 13 0 14

Table 2 Raw data for continuity seriation for simulation run f8a6f378, grouped into blocks corre-
sponding to the branches of the solution graph

result is depicted in Figure 9. The result is identical – the two solutions are isomor-
phic.

4 Discussion

The fact that distance minimization can function as a seriation ordering algorithm
is not a new idea. Not only has there been development of the idea within archaeo-
logical circles in the work of Kadane, Shepherdson, and others, but distance mini-
mization of one type or another underpins most classical multivariate statistics and
nearly all of contemporary machine learning. Our principal contributions here have
been to explicate the relationship between different seriation ordering algorithms,
and to reintroduce distance minimization in an “exact” rather than statistical form.

Exact distance minimization as a means of tracing patterns of cultural transmis-
sion is only possible if we do not coerce the data into a single linear ordering, as has
been the practice in all previous work. In these previous applications, the departures
from linearity have been considered statistical noise or “stress,” and disregarded.
From a culture transmission model, however, noise only enters the seriation prob-
lem as sampling error of counts or frequencies given the size of sample taken by
the analyst. We can control this type of noise by using bootstrap confidence inter-
vals around the empirical frequencies when we make ordering decisions. Our IDSS
software system does so by default. Thus, once the effects of sampling are con-
trolled departures from linearity cannot be noise, but are telling us something else
about our data. In our judgment, those departures from perfect linearity are telling

our IDSS program, in the seriation-datasets repository in Github. If you would like to contribute a
dataset, please contact Mark Madsen or send a pull request.

https://github.com/mmadsen/seriation-datasets
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Fig. 7 Centered bar chart representation of the relative frequencies of type for simulation run
f8a6f378 built with the IDSS frequency seriation algorithm. The groups correspond to the branches
of the solution graph.

us about the simultaneous effects of spatial variation, temporal order, and the struc-
ture of the social networks of interaction within which past cultural transmission
occurred.

Thus, our approach to both frequency and continuity seriation allows partial so-
lutions (each of which is a valid linear ordering) to agglomerate to form graphs
or networks of solutions, given vertices (assemblages) which overlap between the
sub-solutions. The resulting seriation graphs give us a more complete picture of
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Fig. 8 Centered bar chart representation of the relative frequencies of type for simulation run
f8a6f378 built with the IDSS continuity seriation algorithm. The groups correspond to the branches
of the solution graph.

the multiple causes that drive seriations than do traditional linear orders, whether
perfect or coerced by a statistical method.

The search for additional ordering methods led us to reconsider distance min-
imization methods, and although it is not unexpected that such methods work, it
is a happy result. Continuity techniques have a much lower computational burden
than searching for unimodality, especially as the number of assemblages gets large.
For the Phillips, Ford and Griffin assemblages discussed here, the frequency solu-
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Fig. 9 Seriation solution with frequency and continuity seriation for PFG (1951) ceramic assem-
blages in the Lower Mississippi River Valley, as analyzed by Lipo (2001b) and re-analyzed by
Lipo et al. (2015). There are no differences between frequency and continuity ordering algorithms
in analyzing this set of assemblages, and thus only one graph is shown.

tion took 25.2 seconds on an 8 core system, while continuity analysis took 0.955
seconds, for a speedup of 26x. This performance difference should be taken as a
minimum on the difference between algorithms, because our current algorithm for
unimodality analysis is parallelized for a critical section across all of those cores,
while continuity is still a serial algorithm and only uses a single core. Realistically,
we should see a much larger speedup with further development, especially given the
wealth of parallel algorithms for distance metric computations in contemporary ma-
chine learning. The latter will allow continuity methods to be fruitfully used even for
“big” datasets of the type easily gathered in online settings. This method effectively
has no limit as to the number of assemblages that can be analyzed.

Seriation is among the oldest of the purely archaeological methods for determin-
ing both chronology and cultural relatedness, but we find that it continues to repay
detailed exploration by archaeologists and students of cultural evolution. It is fully
complementary to phylogenetic methods and cladistics in many ways, especially in
its ability to use detailed information about trait abundances and the spatial pattern
of those abundances instead of largely presence/absence data on character states.
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This makes seriation, in our view, the method of choice for “mesoscale” problems
and questions.
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