9 research outputs found

    Spatio-temporal Primitive Extraction Using Hermite and Laguerre Filters for Early Vision Video Indexing

    No full text
    International audienceIn this paper we integrate spatial and temporal information, which are extracted separately from a video sequence, for indexing and retrieval purposes. We focus on two filter families that are suitable models of the human visual system for spatial and temporal information encoding. They are special cases of polynomial transforms that perform local decompositions of a signal. Spatial primitives are extracted using Hermite filters, which agree with the Gaussian derivative model of receptive field profiles. Temporal events are characterized by Laguerre filters, which preserve the causality constraint in the temporal domain. Integration of both models gives a spatio-temporal feature extractor based on early vision. They are efficiently implemented as two independent sets of discrete channels, Krawtchouk and Meixner, whose outputs are combined for indexing a video sequence. Results encourage our model for video indexing and retrieval

    Spatio-temporal Primitive Extraction Using Hermite and Laguerre Filters for Early Vision Video Indexing

    No full text
    International audienceIn this paper we integrate spatial and temporal information, which are extracted separately from a video sequence, for indexing and retrieval purposes. We focus on two filter families that are suitable models of the human visual system for spatial and temporal information encoding. They are special cases of polynomial transforms that perform local decompositions of a signal. Spatial primitives are extracted using Hermite filters, which agree with the Gaussian derivative model of receptive field profiles. Temporal events are characterized by Laguerre filters, which preserve the causality constraint in the temporal domain. Integration of both models gives a spatio-temporal feature extractor based on early vision. They are efficiently implemented as two independent sets of discrete channels, Krawtchouk and Meixner, whose outputs are combined for indexing a video sequence. Results encourage our model for video indexing and retrieval

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    corecore