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Abstract When designing and developing scale selection
mechanisms for generating hypotheses about characteris-
tic scales in signals, it is essential that the selected scale
levels reflect the extent of the underlying structures in the
signal. This paper presents a theory and in-depth theoreti-
cal analysis about the scale selection properties of methods
for automatically selecting local temporal scales in time-
dependent signals based on local extrema over temporal
scales of scale-normalized temporal derivative responses.
Specifically, this paper develops a novel theoretical frame-
work for performing such temporal scale selection over a
time-causal and time-recursive temporal domain as is nec-
essary when processing continuous video or audio streams
in real time or when modelling biological perception. For
a recently developed time-causal and time-recursive scale-
space concept defined by convolution with a scale-invariant
limit kernel, we show that it is possible to transfer a large
number of the desirable scale selection properties that hold
for the Gaussian scale-space concept over a non-causal tem-
poral domain to this temporal scale-space concept over a
truly time-causal domain. Specifically, we show that for
this temporal scale-space concept, it is possible to achieve
true temporal scale invariance although the temporal scale
levels have to be discrete, which is a novel theoretical con-
struction. The analysis starts from a detailed comparison
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of different temporal scale-space concepts and their relative
advantages and disadvantages, leading the focus to a class
of recently extended time-causal and time-recursive tempo-
ral scale-space concepts based on first-order integrators or
equivalently truncated exponential kernels coupled in cas-
cade. Specifically, by the discrete nature of the temporal scale
levels in this class of time-causal scale-space concepts, we
study two special cases of distributing the intermediate tem-
poral scale levels, by using either a uniform distribution in
terms of the variance of the composed temporal scale-space
kernel or a logarithmic distribution. In the case of a uni-
form distribution of the temporal scale levels, we show that
scale selection based on local extrema of scale-normalized
derivatives over temporal scales makes it possible to esti-
mate the temporal duration of sparse local features defined
in terms of temporal extrema of first- or second-order tempo-
ral derivative responses. For dense featuresmodelled as a sine
wave, the lack of temporal scale invariance does, however,
constitute a major limitation for handling dense temporal
structures of different temporal duration in a uniform man-
ner. In the case of a logarithmic distribution of the temporal
scale levels, specifically taken to the limit of a time-causal
limit kernel with an infinitely dense distribution of the tem-
poral scale levels towards zero temporal scale, we show that
it is possible to achieve true temporal scale invariance to
handle dense features modelled as a sine wave in a uniform
manner over different temporal durations of the temporal
structures as well to achieve more general temporal scale
invariance for any signal over any temporal scaling trans-
formation with a scaling factor that is an integer power of
the distribution parameter of the time-causal limit kernel.
It is shown how these temporal scale selection properties
developed for a pure temporal domain carry over to fea-
ture detectors defined over time-causal spatio-temporal and
spectro-temporal domains.
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1 Introduction

When processing sensory data by automatic methods in
areas of signal processing such as computer vision or audio
processing or in computational modelling of biological per-
ception, the notion of receptive field constitutes an essential
concept [2,14,15,30,31,90].

For sensory data as obtained from vision or hearing, or
their counterparts in artificial perception, the measurement
froma single light sensor in a video camera or on the retina, or
the instantaneous sound pressure registered by a microphone
is hardly meaningful at all, since any such measurement is
strongly dependent on external factors such as the illumina-
tion of a visual scene regarding vision or the distance between
the sound source and the microphone regarding hearing.
Instead, the essential information is carried by the relative
relations between local measurements at different points and
temporal moments regarding vision or local measurements
over different frequencies and temporal moments regard-
ing hearing. Following this paradigm, sensorymeasurements
should be performed over local neighbourhoods over space–
time regarding vision and over local neighbourhoods in the
time–frequency domain regarding hearing, leading to the
notions of spatio-temporal and spectro-temporal receptive
fields.

Specifically, spatio-temporal receptive fields constitute a
main class of primitives for expressing methods for video
analysis [35,39,45,47,94,98,108,118–120,124], whereas
spectro-temporal receptive fields constitute a main class
of primitives for expressing methods for machine hearing
[4,18,29,40,87,96,97,103,123].

A general problem when applying the notion of receptive
fields in practice, however, is that the types of responses that
are obtained in a specific situation can be strongly dependent
on the scale levels at which they are computed. A spatio-
temporal receptive field is determined by at least a spatial
scale parameter and a temporal scale parameter, whereas a
spectro-temporal receptive field is determined by at least a
spectral and a temporal scale parameter. Beyond ensuring
that local sensory measurements at different spatial, tempo-
ral and spectral scales are treated in a consistent manner,
which by itself provides strong contraints on the shapes of
the receptive fields [68,75,78,79], it is necessary for com-
puter vision or machine hearing algorithms to decide what
responseswithin the families of receptive fields over different
spatial, temporal and spectral scales they should base their
analysis on.

Over the spatial domain, theoretically well-foundedmeth-
ods have been developed for choosing spatial scale levels

among receptive field responses over multiple spatial scales
[61,62,64,70,71] leading to, e.g. robust methods for image-
based matching and recognition [5,48,85,88,114,115,117]
that are able to handle large variations of the size of the
objects in the image domain and with numerous applications
regarding object recognition, object categorization, multi-
viewgeometry, construction of 3-Dmodels fromvisual input,
human–computer interaction, biometrics and robotics.

Much less research has, however, been performed regard-
ing the topic of choosing local appropriate scales in temporal
data. While some methods for temporal scale selection have
been developed [46,60,121], these methods suffer from
either theoretical or practical limitations.

A main subject of this paper is present a theory for how
to compare filter responses in terms of temporal derivatives
that have been computed at different temporal scales, specif-
ically with a detailed theoretical analysis of the possibilities
of having temporal scale estimates as obtained from a tempo-
ral scale selectionmechanism reflect the temporal duration of
the underlying temporal structures that gave rise to the feature
responses. Another main subject of this paper is to present a
theoretical framework for temporal scale selection that leads
to temporal scale invariance and enables the computation of
scale-covariant temporal scale estimates. While these topics
can for a non-causal temporal domain be addressed by the
non-causal Gaussian scale-space concept [21,32,41,43,57,
58,66,112,122], the development of such a theory has been
missing regarding a time-causal temporal domain.

1.1 Temporal Scale Selection

When processing time-dependent signals in video or audio
or more generally any temporal signal, special attention has
to be put to the facts that:

– the physical phenomena that generate the temporal sig-
nals may occur at different speed—faster or slower, and

– the temporal signals may contain qualitatively different
types of temporal structures at different temporal scales.

In certain controlled situations where the physical system
that generates the temporal signals that is to be processed is
sufficiently well known and if the variability of the tempo-
ral scales over time in the domain is sufficiently constrained,
suitable temporal scales for processing the signals may in
some situations be chosen manually and then be verified
experimentally. If the sources that generate the temporal sig-
nals are sufficiently complex and/or if the temporal structures
in the signals vary substantially in temporal duration by the
underlying physical processes occurring significantly faster
or slower, it is on the other hand natural to (i) include a
mechanism for processing the temporal data at multiple tem-
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poral scales and (ii) try to detect in a bottom-up manner at
what temporal scales the interesting temporal phenomena are
likely to occur.

The subject of this article is to develop a theory for tem-
poral scale selection in a time-causal temporal scale space
as an extension of a previously developed theory for spatial
scale selection in a spatial scale space [61,62,64,70,71], to
generate bottom-up hypotheses about characteristic temporal
scales in time-dependent signals, intended to serve as esti-
mates of the temporal duration of local temporal structures
in time-dependent signals. Special focus will be on develop-
ing mechanisms analogous to scale selection in non-causal
Gaussian scale-space, based on local extrema over scales
of scale-normalized derivatives, while expressed within the
framework of a time-causal and time-recursive temporal
scale space inwhich the future cannot be accessed and the sig-
nal processing operations are thereby only allowed to make
use of information from the present moment and a compact
buffer of what has occurred in the past.

When designing and developing such scale selection
mechanisms, it is essential that the computed scale estimates
reflect the temporal duration of the corresponding temporal
structures that gave rise to the feature responses. To under-
stand the prerequisites for developing such temporal scale
selection methods, we will in this paper perform an in-depth
theoretical analysis of the scale selection properties that such
temporal scale selection mechanisms give rise to for differ-
ent temporal scale-space concepts and for different ways of
defining scale-normalized temporal derivatives.

Specifically, after an examination of the theoretical prop-
erties of different types of temporal scale-space concepts, we
will focus on a class of recently extended time-causal tempo-
ral scale-space concepts obtained by convolution with trun-
cated exponential kernels coupled in cascade [53,73,75,77].
For two natural ways of distributing the discrete temporal
scale levels in such a representation, in terms of either a uni-
form distribution over the scale parameter τ corresponding to
the variance of the composed scale-space kernel or a logarith-
mic distribution, we will study the scale selection properties
that result from detecting local temporal scale levels from
local extremaover scale of scale-normalized temporal deriva-
tives. The motivation for studying a logarithmic distribution
of the temporal scale levels, is that it corresponds to a uniform
distribution in units of effective scale τeff = A + B log τ for
some constants A and B, which has been shown to constitute
the natural metric for measuring the scale levels in a spatial
scale space [41,55].

As we shall see from the detailed theoretical analysis that
will follow, this will imply certain differences in scale selec-
tion properties of a temporally asymmetric time-causal scale
space compared to scale selection in a spatially mirror sym-
metric Gaussian scale space. These differences in theoretical
properties are in turn essential to take into explicit account

when formulating algorithms for temporal scale selection, in
e.g. video analysis or audio analysis applications.

For the temporal scale-space concept based on a uniform
distribution of the temporal scale levels in units of the vari-
ance of the composed scale-space kernel, it will be shown
that temporal scale selection from local extrema over tem-
poral scales will make it possible to estimate the temporal
duration of local temporal structures modelled as local tem-
poral peaks and local temporal ramps. For a dense temporal
structure modelled as a temporal sine wave, the lack of true
scale invariance for this concept will, however, imply that the
temporal scale estimates will not be directly proportional to
the wavelength of the temporal sine wave. Instead, the scale
estimates are affected by a bias, which is not a desirable
property.

For the temporal scale-space concept based on a logarith-
mic distribution of the temporal scale levels, and taken to the
limit to scale-invariant time-causal limit kernel [75] corre-
sponding to an infinite number of temporal scale levels that
cluster infinitely close near the temporal scale level zero,
it will on the other hand be shown that the temporal scale
estimates of a dense temporal sine wave will be truly propor-
tional to the wavelength of the signal. By a general proof, it
will be shown this scale-invariant property of temporal scale
estimates can also be extended to any sufficiently regular
signal, which constitutes a general foundation for expressing
scale invariant temporal scale selectionmechanisms for time-
dependent video and audio and more generally also other
classes of time-dependent measurement signals.

As complement to this proposed overall framework for
temporal scale selection, we will also present a set of general
theoretical results regarding time-causal scale-space rep-
resentations: (i) showing that previous application of the
assumption of a semi-group property for time-causal scale-
space concepts leads to undesirable temporal dynamics,
which however can be remedied by replacing the assump-
tion of a semi-group structure be a weaker assumption of
a cascade property in turn based on a transitivity property,
(ii) formulations of scale-normalized temporal derivatives
for Koenderink’s time-causal scale-time model [42], and
(iii) ways of translating the temporal scale estimates from
local extrema over temporal scales in the temporal scale-
space representation based on the scale-invariant time-causal
limit kernel into quantitative measures of the temporal dura-
tion of the corresponding underlying temporal structures and
in turn based on a scale-time approximation of the limit ker-
nel.

In these ways, this paper is intended to provide a theo-
retical foundation for expressing theoretically well-founded
temporal scale selection methods for selecting local tempo-
ral scales over time-causal temporal domains, such as video
and audio with specific focus on real-time image or sound
streams. Applications of this scale selectionmethodology for
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detecting both sparse and dense spatio-temporal features in
video are presented in a companion paper [74].

1.2 Structure of this Article

As a conceptual background to the theoretical developments
that will be performed, we will start in Sect. 2 with an
overview of different approaches to handling temporal data
within the scale-space framework including a comparison of
relative advantages and disadvantages of different types of
temporal scale-space concepts.

As a theoretical baseline for the later developments of
methods for temporal scale selection in a time-causal scale
space, we shall then in Sect. 3 give an overall description
of basic temporal scale selection properties that will hold if
the non-causal Gaussian scale-space concept with its corre-
sponding selection methodology for a spatial image domain
is applied to a one-dimensional non-causal temporal domain,
e.g. for the purpose of handling the temporal domain when
analysing pre-recorded video or audio in an offline setting.

In Sects. 4, 5 we will then continue with a theoreti-
cal analysis of the consequences of performing temporal
scale selection in the time-causal scale space obtained by
convolution with truncated exponential kernels coupled in
cascade [53,73,75,77]. By selecting local temporal scales
from the scales at which scale-normalized temporal deriva-
tives assume local extrema over temporal scales, we will
analyse the resulting temporal scale selection properties for
two ways of defining scale-normalized temporal derivatives,
by either variance-based normalization as determined by a
scale normalization parameter γ or L p-normalization for dif-
ferent values of the scale normalization power p.

With the temporal scale levels required to be discrete
because of the very nature of this temporal scale-space con-
cept, we will specifically study two ways of distributing
the temporal scale levels over scale, using either a uni-
form distribution relative to the temporal scale parameter
τ corresponding to the variance of the composed temporal
scale-space kernel in Sect. 4 or a logarithmic distribution of
the temporal scale levels in Sect. 5.

Because of the analytically simpler form for the time-
causal scale-space kernels corresponding to a uniform dis-
tribution of the temporal scale levels, some theoretical
scale-space properties will turn out to be easier to study in
closed form for this temporal scale-space concept. We will
specifically show that for a temporal peak modelled as the
impulse response to a set of truncated exponential kernels
coupled in cascade, the selected temporal scale level will
serve as a good approximation of the temporal duration of
the peak or be proportional to this measure depending on the
value of the scale normalization parameter γ used for scale-
normalized temporal derivatives based on variance-based
normalization or the scale normalization power p for scale-

normalized temporal derivatives based on L p-normalization.
For a temporal onset ramp, the selected temporal scale level
will on the other hand be either a good approximation of the
time constant of the onset ramp or proportional to this mea-
sure of the temporal duration of the ramp. For a temporal sine
wave, the selected temporal scale level will, however, not
be directly proportional to the wavelength of the signal, but
instead affected by a systematic bias. Furthermore, the corre-
sponding scale-normalized magnitude measures will not be
independent of the wavelength of the sine wave but instead
show systematic wavelength-dependent deviations. A main
reason for this is that this temporal scale-space concept does
not guarantee temporal scale invariance if the temporal scale
levels are distributed uniformly in terms of the temporal scale
parameter τ corresponding to the temporal variance of the
temporal scale-space kernel.

With a logarithmic distribution of the temporal scale lev-
els, we will on the other hand show that for the temporal
scale-space concept defined by convolution with the time-
causal limit kernel [75] corresponding to an infinitely dense
distribution of the temporal scale levels towards zero tem-
poral scale, the temporal scale estimates will be perfectly
proportional to the wavelength of a sine wave for this tem-
poral scale-space concept. It will also be shown that this
temporal scale-space concept leads to perfect scale invari-
ance in the sense that (i) local extrema over temporal scales
are preserved under temporal scaling factors correspond-
ing to integer powers of the distribution parameter c of the
time-causal limit kernel underlying this temporal scale-space
concept and are transformed in a scale-covariant way for
any temporal input signal and (ii) if the scale normalization
parameter γ = 1 or equivalently if the scale normalization
power p = 1, the magnitude values at the local extrema over
scale will be equal under corresponding temporal scaling
transformations. For this temporal scale-space concept, we
can therefore fulfil basic requirements to achieve temporal
scale invariance also over a time-causal and time-recursive
temporal domain.

To simplify the theoretical analysis, we will in some
cases temporarily extend the definitions of temporal scale-
space representations over discrete temporal scale levels to
a continuous scale variable, to make it possible to compute
local extrema over temporal scales from differentiation with
respect to the temporal scale parameter. Section6 discusses
the influence that this approximation has on the overall the-
oretical analysis.

Section7 then illustrates how the proposed theory for tem-
poral scale selection can be used for computing local scale
estimates from 1-D signals with substantial variabilities in
the characteristic temporal duration of the underlying struc-
tures in the temporal signal.

In Sect. 8, we analyse how the derived scale selection
properties carry over to a set of spatio-temporal feature detec-
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tors defined over both multiple spatial scales and multiple
temporal scales in a time-causal spatio-temporal scale-space
representation for video analysis. Section9 then outlines how
corresponding selection of local temporal and logspectral
scales can be expressed for audio analysis operations over a
time-causal spectro-temporal domain. Finally, Sect. 10 con-
cludes with a summary and discussion.

To simplify the presentation, we have put some deriva-
tions and theoretical analysis in the appendix. “Appendix 1”
presents a general theoretical argument of why a requirement
about a semi-group property over temporal scales will lead to
undesirable temporal dynamics for a time-causal scale space
and argue that the essential structure of non-creation of new
image structures from any finer to any coarser temporal scale
can instead nevertheless be achieved with the less restrictive
assumption about a cascade smoothing property over tempo-
ral scales, which then allows for better temporal dynamics in
terms of shorter temporal delays.

In relation to Koenderink’s scale-time model [42],
“Appendix 2” shows how corresponding notions of scale-
normalized temporal derivatives based on either variance-
based normalization or L p-normalization can be defined also
for this time-causal temporal scale-space concept.

“Appendix 3” shows how the temporal duration of the
time-causal limit kernel proposed in [75] can be estimated
by a scale-time approximation of the limit kernel via Koen-
derink’s scale-time model leading to estimates of how a
selected temporal scale level τ̂ from local extrema over tem-
poral scale can be translated into a estimates of the temporal
duration of temporal structures in the temporal scale-space
representation obtained by convolution with the time-causal
limit kernel. Specifically, explicit expressions are given for
such temporal duration estimates based on first- and second-
order temporal derivatives.

2 Theoretical Background and Related Work

2.1 Temporal Scale-Space Concepts

For processing temporal signals at multiple temporal scales,
different types of temporal scale-space concepts have been
developed in the computer vision literature (see Fig. 1).

For offline processing of pre-recorded signals, a non-
causal Gaussian temporal scale-space concept may in many
situations be sufficient. A Gaussian temporal scale-space
concept is constructed over the 1-D temporal domain in a sim-
ilar manner as a Gaussian spatial scale-space concept is con-
structed over a D-dimensional spatial domain (Florack [21];
Iijima [32]; Koenderink [41]; Koenderink and van Doorn
[43]; Lindeberg [57,58,66]; ter Haar Romeny [112]; Witkin
[122]), with or without the difference that a model for tem-
poral delays may or may not be additionally included [66].

When processing temporal signals in real time, or when
modelling sensory processes in biological perception com-
putationally, it is on the other hand necessary to base the
temporal analysis on time-causal operations.

The first time-causal temporal scale-space concept was
developed byKoenderink [42], who proposed to apply Gaus-
sian smoothing on a logarithmically transformed time axis
with the present moment mapped to the unreachable infinity.
This temporal scale-space concept does, however, not have
any known time-recursive formulation. Formally, it requires
an infinite memory of the past and has therefore not been
extensively applied in computational applications.

Lindeberg [53,73,75] and Lindeberg and Fagerström [77]
proposed a time-causal temporal scale-space concept based
on truncated exponential kernels or equivalently first-order
integrators coupled in cascade, based on theoretical results
by Schoenberg [104] (see also Karlin [38] and Schoenberg
[105]) implying that such kernels are the only variation-
diminishing kernels over a 1-D temporal domain that guar-
antee non-creation of new local extrema or equivalently
zero-crossings with increasing temporal scale. This tempo-
ral scale-space concept is additionally time-recursive and
can be implemented in terms of computationally highly effi-
cient first-order integrators or recursive filters over time. This
theory has been recently extended into a scale-invariant time-
causal limit kernel [75], which allows for scale invariance
over the temporal scaling transformations that correspond
to exact mappings between the temporal scale levels in the
temporal scale-space representation based on a discrete set
of logarithmically distributed temporal scale levels.

Based on semi-groups that guarantee either self-similarity
over temporal scales or non-enhancement of local extrema
with increasing temporal scales, Fagerström [19] and Linde-
berg [66] have derived time-causal semi-groups that allow
for a continuous temporal scale parameter and studied theo-
retical properties of these kernels.

Concerning temporal processing over discrete time, Fleet
and Langley [20] performed temporal filtering for optic flow
computations based on recursive filters over time. Lindeberg
[53,73,75] and Lindeberg and Fagerström [77] showed that
first-order recursive filters coupled in cascade constitutes a
natural time-causal scale-space concept over discrete time,
based on the requirement that the temporal filtering over a
1-D temporal signal must not increase the number of local
extrema or equivalently the number of zero-crossings in the
signal. In the specific case when all the time constants in
this model are equal and tend to zero while simultaneously
increasing the number of temporal smoothing steps in such
a way that the composed temporal variance is held constant,
these kernels can be shown to approach the temporal Pois-
son kernel [77]. If on the other hand the time constants of
the first-order integrators are chosen so that the temporal
scale levels become logarithmically distributed, these tem-
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Fig. 1 Temporal scale-space kernelswith composed temporal variance
τ = 1 for the main types of temporal scale-space concepts considered
in this paper and with their first- and second-order temporal deriva-
tives: (top row) the non-causal Gaussian kernel g(t; τ), (second row)
the composition h(t; μ, K = 10) of K = 10 truncated exponen-
tial kernels with equal time constants, (third row) the composition
h(t; K = 10, c = √

2) of K = 10 truncated exponential kernels with
logarithmic distribution of the temporal scale levels for c = √

2, (fourth

row) corresponding kernels h(t; K = 10, c = 2) for c = 2, (fifth
row) Koenderink’s scale-time kernels hKoe(t; c = √

2) corresponding
to Gaussian convolution over a logarithmically transformed temporal
axis with the parameters determined to match the time-causal limit
kernel corresponding to truncated exponential kernels with an infinite
number of logarithmically distributed temporal scale levels according
to (186) for c = √

2, (bottom row) corresponding scale-time kernels
hKoe(t; c = 2) for c = 2 (horizontal axis time t)
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poral smoothing kernels approach a discrete approximation
of the time-causal limit kernel [75].

Applications of using these linear temporal scale-space
concepts for modelling the temporal smoothing step in visual
and auditory receptive fields have been presented by Linde-
berg [59,65,66,68,69,73,75], ter Haar Romeny et al. [113],
Lindeberg and Friberg [78,79] and Mahmoudi [86]. Nonlin-
ear spatio-temporal scale-space concepts have been proposed
by Guichard [24]. Applications of the non-causal Gaussian
temporal scale-space concept for computing spatio-temporal
features have been presented by Laptev and Lindeberg [45–
47], Klaser et al. [39],Willems et al. [121],Wang et al. [118],
Shao and Mattivi [108] and others, see specifically Poppe
[98] for a survey of early approaches to vision-based human
action recognition, Jhuang et al. [35] and Niebles et al. [94]
for conceptually related non-causal Gabor approaches, Adel-
son and Bergen [1] and Derpanis andWildes [16] for closely
related spatio-temporal orientationmodels andHan et al. [26]
for a related mid-level temporal representation termed the
video primal sketch.

Applications of the temporal scale-space model based on
truncated exponential kernels with equal time constants cou-
pled in cascade and corresponding to Laguerre functions
(Laguerre polynomials multiplied by a truncated exponential
kernel) for computing spatio-temporal features have pre-
sented byRivero-Moreno andBres [100], Shabani et al. [107]
and Berg et al. [116] as well as for handling time scales
in video surveillance (Jacob and Pless [33]), for perform-
ing edge preserving smoothing in video streams (Paris [95])
and is closely related to Tikhonov regularization as used for
image restoration by Surya et al. [111]. A general framework
for performing spatio-temporal feature detection basedon the
temporal scale-space model based on truncated exponential
kernels coupled in cascadewith specifically the both theoreti-
cal and practical advantages of using logarithmic distribution
of the intermediated temporal scale levels in terms of tem-
poral scale invariance and better temporal dynamics (shorter
temporal delays) has been presented in Lindeberg [75].

2.2 Relative Advantages of Different Temporal Scale
Spaces

When developing a temporal scale selectionmechanism over
a time-causal temporal domain, a first problem concerns
what time-causal scale-space concept to base the multi-scale
temporal analysis upon. The above reviewed temporal scale-
space concepts have different relative advantages from a
theoretical and computational viewpoint. In this section, we
will perform an in-depth examination of the different tem-
poral scale-space concepts that have been developed in the
literature, which will lead us to a class of time-causal scale-
space concepts that we argue is particularly suitable with
respect to the set of desirable properties we aim at.

The non-causal Gaussian temporal scale space is in many
cases the conceptually easiest temporal scale-space concept
to handle and to study analytically [66]. The corresponding
temporal kernels are scale invariant, have compact closed-
form expressions over both the temporal and frequency
domains and obey a semi-group property over temporal
scales. When applied to pre-recorded signals, temporal
delays can if desirable be disregarded, which eliminates any
need for temporal delay compensation. This scale-space con-
cept is, however, not time-causal and not time-recursive,
which implies fundamental limitations with regard to real-
time applications and realistic modelling of biological per-
ception.

Koenderink’s scale-time kernels [42] are truly time-
causal, allow for a continuous temporal scale parameter,
have good temporal dynamics and have a compact explicit
expression over the temporal domain. These kernels are,
however, not time-recursive, which implies that they in prin-
ciple require an infinite memory of the past (or at least
extended temporal buffers corresponding to the temporal
extent to which the infinite support temporal kernels are trun-
cated at the tail). Thereby, the application of Koenderink’s
scale-time model to video analysis implies that substantial
temporal buffers are needed when implementing this non-
recursive temporal scale-space in practice. Similar problems
with substantial need for extended temporal buffers arise
when applying the non-causalGaussian temporal scale-space
concept to offline analysis of extended video sequences.
The algebraic expressions for the temporal kernels in the
scale-time model are furthermore not always straightfor-
ward to handle and there is no known simple expression
for the Fourier transform of these kernels or no known sim-
ple explicit cascade smoothing property over temporal scales
with respect to the regular (untransformed) temporal domain.
Thereby, certain algebraic calculations with the scale-time
kernels may become quite complicated.

The temporal scale-space kernels obtained by coupling
truncated exponential kernels or equivalently first-order inte-
grators in cascade are both truly time-causal and truly
time-recursive [53,73,75,77]. The temporal scale levels are
on the other hand required to be discrete. If the goal is to
construct a real-time signal processing system that analyses
continuous streams of signal data in real time, one can how-
ever argue that a restriction of the theory to a discrete set
of temporal scale levels is less of a constraint, since the sig-
nal processing system anyway has to be based on a finite
amount of sensors and hardware/wetware for sampling and
processing the continuous stream of signal data.

In the special case when all the time constants are equal,
the corresponding temporal kernels in the temporal scale-
space model based on truncated exponential kernels coupled
in cascade have compact explicit expressions that are easy
to handle both in the temporal domain and in the frequency
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domain, which simplifies theoretical analysis. These kernels
obey a semi-group property over temporal scales, but are not
scale invariant and lead to slower temporal dynamics when
a larger number of primitive temporal filters are coupled in
cascade [73,75].

In the special case when the temporal scale levels in this
scale-space model are logarithmically distributed, these ker-
nels have a manageable explicit expression over the Fourier
domain that enables some closed-form theoretical calcu-
lations. Deriving an explicit expression over the temporal
domain is, however, harder, since the explicit expression then
corresponds to a linear combination of truncated exponential
filters for all the time constants, with the coefficients deter-
mined from a partial fraction expansion of the Fourier trans-
form, which may lead to rather complex closed-form expres-
sions. Thereby certain analytical calculations may become
harder to handle. As shown in [75] and “Appendix 3”, some
such calculations can on the other hand bewell approximated
via a scale-time approximation of the time-causal temporal
scale-space kernels.When using a logarithmic distribution of
the temporal scales, the composed temporal kernels do how-
ever have very good temporal dynamics andmuch better tem-
poral dynamics compared to corresponding kernels obtained
by using truncated exponential kernels with equal time con-
stants coupled in cascade. Moreover, these kernels lead to
a computationally very efficient numerical implementation.
Specifically, these kernels allow for the formulation of a time-
causal limit kernel that obeys scale invariance under temporal
scaling transformations, which cannot be achieved if using a
uniform distribution of the temporal scale levels [73,75].

The temporal scale-space representations obtained from
the self-similar time-causal semi-groups have a continu-
ous scale parameter and obey temporal scale invariance
[19,66]. These kernels do, however, have less desirable tem-
poral dynamics (see “Appendix 1” for a general theoretical
argument about undesirable consequences of imposing a
temporal semi-group property on temporal kernels with tem-
poral delays) and/or lead to pseudodifferential equations that
are harder to handle both theoretically and in terms of compu-
tational implementation. For these reasons, we shall not con-
sider those time-causal semi-groups further in this treatment.

2.3 Previous Work on Methods for Scale Selection

A general framework for performing scale selection for
local differential operations was proposed in Lindeberg
[56,57] based on the detection of local extrema over scale
of scale-normalized derivative expressions and then refined
in Lindeberg [61,62]—see Lindeberg [64,71] for tutorial
overviews.

This scale selection approach has been applied to a large
number of feature detection tasks over spatial image domains
including detection of scale-invariant interest points (Linde-

berg [62,70]; Mikolajczyk and Schmid [88]; Tuytelaars and
Mikolajczyk [115]), performing feature tracking (Bretzner
and Lindeberg [9]), computing shape from texture and dis-
parity gradients (Gårding and Lindeberg [23]; Lindeberg and
Gårding [80]), detecting 2-D and 3-D ridges (Frangi et al.
[22]; Krissian et al. [44]; Lindeberg [61]; Sato et al. [102]),
computing receptive field responses for object recognition
(Chomat et al. [12], Hall et al. [25]), performing hand track-
ing and hand gesture recognition (Bretzner et al. [8]) and
computing time-to-collision (Negre et al. [93]).

Specifically, very successful applications have been
achieved in the area of image-based matching and recogni-
tion (Bay et al. [5]; Lindeberg [67,72]; Lowe [85]). The com-
bination of local scale selection from local extrema of scale-
normalized derivatives over scales (Lindeberg [57,62]) with
affine shape adaptation (Lindeberg and Gårding [81]) has
made it possible to performmulti-view image matching over
large variations in viewing distances and viewing directions
(Lazebnik et al. [49]; Mikolajczyk and Schmid [88]; Mikola-
jczyk et al. [89]; Rothganger et al. [101]; Tuytelaars and van
Gool [114]). The combination of interest point detection from
scale-space extrema of scale-normalized differential invari-
ants (Lindeberg [57,62]) with local image descriptors (Bay
et al. [5]; Lowe [85]) has made it possible to design robust
methods for performing object recognition of natural objects
in natural environmentswith numerous applications to object
recognition (Bay et al. [5]; Lowe [85]), object category clas-
sification (Bosch et al. [7];Mutch andLowe [92]),multi-view
geometry (Hartley and Zisserman [27]), panorama stitch-
ing (Brown and Lowe [11]), automated construction of 3-D
object and scenemodels fromvisual input (Agarwal et al. [3];
Brown and Lowe [10]), synthesis of novel views from previ-
ous views of the same object (Liu et al. [82]), visual search in
image databases (Datta et al. [13]; Lew et al. [50]), human–
computer interaction based on visual input (Jaimes and Sebe
[34]; Porta [99]), biometrics (Bicego et al. [6]; Li [51]) and
robotics (Se et al. [106]; Siciliano and Khatib [109]).

Alternative approaches for performing scale selection
over spatial image domains have also been proposed in terms
of (i) detecting peaks of weighted entropy measures (Kadir
and Brady [36]) or Lyaponov functionals (Sporring et al.
[110]) over scales, (ii)minimizing normalized errormeasures
over scale (Lindeberg [63]), (iii) determining minimum reli-
able scales for edge detection based on a noise suppression
model (Elder andZucker [17]), (iv) determining at what scale
levels to stop in nonlinear diffusion-based image restora-
tion methods based on similarity measurements relative to
the original image data (Mrazek and Navara [91]), (v) by
comparing reliability measures from statistical classifiers for
texture analysis at multiple scales (Kang et al. [37]), (vi) by
computing image segmentations from the scales at which
a supervised classifier delivers class labels with the high-
est reliability measure (Li et al. [52]; Loog et al. [84]), (vii)
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selecting scales for edge detection by estimating the saliency
of elongated edge segments (Liu et al. [83]) or (viii) consider-
ing subspaces generated by local imagedescriptors computed
over multiple scales (Hassner et al. [28]).

More generally, spatial scale selection can be seen as a spe-
cific instance of computing invariant receptivefield responses
under natural image transformations, to (i) handle objects in
the world of different physical size and to account for scal-
ing transformations caused by the perspective mapping, and
with extensions to (ii) affine image deformations to account
for variations in the viewing direction and (iii) Galilean trans-
formations to account for relative motions between objects
in the world and the observer as well as to (iv) illumination
variations [69].

Early theoretical work on temporal scale selection in a
time-causal scale spacewas presented in Lindeberg [60] with
primary focus on the temporal Poisson scale-space, which
possesses a temporal semi-group structure over a discrete
time-causal temporal domain while leading to long tem-
poral delays (see “Appendix 1” for a general theoretical
argument). Temporal scale selection in non-causal Gaus-
sian spatio-temporal scale space has been used by Laptev
and Lindeberg [46] and Willems et al. [121] for computing
spatio-temporal interest points, however, with certain theo-
retical limitations that are explained in a companion paper
[74].1 The purpose of this article is to present a much fur-
ther developed and more general theory for temporal scale
selection in time-causal scale spaces over continuous tem-
poral domains and to analyse the theoretical scale selection
properties for different types of model signals.

3 Scale Selection Properties for the Non-causal
Gaussian Temporal Scale-Space Concept

In this section, we will present an overview of theoretical
properties that will hold if the Gaussian temporal scale-
space concept is applied to a non-causal temporal domain,
if additionally the scale selection mechanism that has been
developed for a non-causal spatial domain is directly trans-
ferred to a non-causal temporal domain. The set of temporal
scale-space properties that we will arrive at will then be used
as a theoretical baseline for developing temporal scale-space
properties over a time-causal temporal domain.

1 The spatio-temporal scale selection method in (Laptev and Lindeberg
[46]) is based on a spatio-temporal Laplacian operator that is not scale
covariant under independent relative scaling transformations of the spa-
tial versus the temporal domains [74], which implies that the spatial and
temporal scale estimate will not be robust under independent variabili-
ties of the spatial and temporal scales in video data. The spatio-temporal
scale selectionmethod applied to the determinant of the spatio-temporal
Hessian in Willems et al. [121] does not make use of the full flexibil-
ity of the notion of γ -normalized derivative operators [74] and has not
previously been developed over a time-causal spatio-temporal domain.

3.1 Non-causal Gaussian Temporal Scale-Space

Over a one-dimensional temporal domain, axiomatic deriva-
tions of a temporal scale-space representation based on the
assumptions of (i) linearity, (ii) temporal shift invariance,
(iii) semi-group property over temporal scale, (iv) suffi-
cient regularity properties over time and temporal scale and
(v) non-enhancement of local extrema imply that the tempo-
ral scale-space representation

L(·; τ, δ) = g(·; τ, δ) ∗ f (·) (1)

should be generated by convolution with possibly time-
delayed temporal kernels of the form [66]

g(t; τ, δ) = 1√
2πτ

e− (t−δ)2
2τ (2)

where τ is a temporal scale parameter corresponding to the
variance of the Gaussian kernel and δ is a temporal delay.
Differentiating the kernel with respect to time gives

gt (t; τ, δ) = − (t − δ)

τ
g(t; τ, δ) (3)

gtt (t; τ, δ) = ((t − δ)2 − τ)

τ 2
g(t; τ, δ) (4)

see the top row in Fig. 1 for graphs. When analysing pre-
recorded temporal signals, it can be preferable to set the
temporal delay to zero, leading to temporal scale-space ker-
nels having a similar form as spatial Gaussian kernels:

g(t; τ) = 1√
2πτ

e− t2
2τ . (5)

3.2 Temporal Scale Selection from Scale-Normalized
Derivatives

As a conceptual background to the treatments that we shall
later develop regarding temporal scale selection in time-
causal temporal scale spaces, we will in this section describe
the theoretical structure that arises by transferring the theory
for scale selection in a Gaussian scale space over a spatial
domain to the non-causal Gaussian temporal scale space:

Given the temporal scale-space representation L(t; τ)

of a temporal signal f (t) obtained by convolution with the
Gaussian kernel g(t; τ) according to (1), temporal scale
selection can be performed by detecting local extrema over
temporal scales of differential expressions expressed in terms
of scale-normalized temporal derivatives at any scale τ

according to [61,62,64,71]

∂ζ n = τ nγ /2 ∂tn , (6)
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where ζ = t/τγ/2 is the scale-normalized temporal vari-
able, n is the order of temporal differentiation and γ is a
free parameter. It can be shown [62, Section9.1] that this
notion of γ -normalized derivatives corresponds to normal-
izing the nth-order Gaussian derivatives gζ n (t; τ) over a
one-dimensional domain to constant L p-norms over scale τ

‖gζ n (·; τ)‖p =
(∫

t∈R
|gζ n (t; τ)|p dt

)1/p

= Gn,γ (7)

with

p = 1

1 + n(1 − γ )
(8)

where the perfectly scale-invariant caseγ = 1 corresponds to
L1-normalization for all orders n of temporal differentiation.

Temporal scale invariance A general and very useful scale-
invariant property that results from this construction of the
notion of scale-normalized temporal derivatives can be stated
as follows: consider two signals f and f ′ that are related by
a temporal scaling transformation

f ′(t ′) = f (t) with t ′ = S t, (9)

and assume that there is a local extremum over scales at
(t0; τ0) in a differential expression Dγ -normL defined as a
homogeneous polynomial of Gaussian derivatives computed
from the scale-space representation L of the original signal
f . Then, there will be a corresponding local extremum over
scales at (t ′0; τ ′

0) = (S t0; S2τ0) in the corresponding differ-
ential expression Dγ -normL ′ computed from the scale-space
representation L ′ of the rescaled signal f ′ [62, Section4.1].

This scaling result holds for all homogeneous polynomial
differential expression and implies that local extrema over
scales of γ -normalized derivatives are preserved under scal-
ing transformations. Specifically, this scale-invariant prop-
erty implies that if a local scale temporal level in dimension of
timeσ = τ is selected to be proportional to the temporal scale
estimate σ̂ = √

τ̂ such that σ = C σ̂ , then if the temporal
signal f is transformed by a temporal scale factor S, the tem-
poral scale estimate and therefore also the selected temporal
scale level will be transformed by a similar temporal factor
σ̂ ′ = S σ̂ , implying that the selected temporal scale lev-
els will automatically adapt to variations in the characteristic
temporal scale of the signal. Thereby, such local extrema over
temporal scale provide a theoretically well-founded way to
automatically adapt the scale levels to local scale variations.

Specifically, scale-normalized scale-space derivatives of
order n at corresponding temporal moments will be related
according to

L ′
ζ ′n (t ′; τ ′) = Sn(γ−1)Lζ n (t; τ) (10)

which means that γ = 1 implies perfect scale invariance in
the sense that the γ -normalized derivatives at corresponding
pointswill be equal. Ifγ �= 1, the difference inmagnitude can
on the other hand be easily compensated for using the scale
values of the corresponding scale-adaptive image features
(see below).

3.3 Temporal Peak

For a temporal peak modelled as a Gaussian function with
variance τ0

g(t; τ0) = 1√
2πτ0

e
− t2

2τ0 . (11)

it can be shown that scale selection from local extrema over
scale of second-order scale-normalized temporal derivatives

Lζ ζ = τγ Ltt (12)

implies that the scale estimate at the position t = 0 of the
peak will be given by Lindeberg [61, Equation (56)] [70,
Equation (212)]

τ̂ = 2γ

3 − 2γ
τ0. (13)

If we require the scale estimate to reflect the temporal dura-
tion of the peak such that

τ̂ = q2τ0, (14)

then this implies

γ = 3q2

2
(
q2 + 1

) (15)

which in the specific case of q = 1 corresponds to [61,
Section5.6.1]

γ = γ2 = 3

4
(16)

and in turn corresponding to L p-normalization for p = 2/3
according to (8).

If we additionally renormalize the original Gaussian peak
to having maximum value equal to one

p(t; t0) = √
2πτ0 g(t; τ0) = e

− t2
2τ0 , (17)

then if using the samevalue ofγ for computing themagnitude
response as for selecting the temporal scale, the maximum
magnitude value over scales will be given by
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Lζ ζ,maxmagn = 2γ (2γ − 3)

3τ0

(
γ τ0

3 − 2γ

)γ

(18)

and will not be independent of the temporal scale τ0 of the
original peak unless γ = 1. If on the other hand using γ =
3/4 as motivated by requirements of scale calibration (14)
for q = 1, the scale dependency will for a Gaussian peak be
of the form

Lζ ζ,maxmagn
∣∣
γ=3/4 = 1

2τ 1/40

. (19)

Toget a scale-invariantmagnitudemeasure for comparing the
responses of second-order temporal derivative responses at
different temporal scales for the purpose of scale calibration,
we should therefore consider a scale-invariant magnitude
measure for peak detection of the form

Lζ ζ,maxmagn,postnorm
∣∣
γ=1 = τ 1/4 Lζ ζ,maxmagn

∣∣
γ=3/4 (20)

which for a Gaussian temporal peak will assume the value

Lζ ζ,maxmagn,postnorm
∣∣
γ=1 = 1

2
(21)

Specifically, this form of post-normalization corresponds to
computing the scale-normalized derivatives for γ = 1 at the
selected scale (14) of the temporal peak, which according
to (8) corresponds to L1-normalization of the second-order
temporal derivative kernels.

3.4 Temporal Onset Ramp

If wemodel a temporal onset rampwith temporal duration τ0
as the primitive function of theGaussian kernel with variance
τ0

Φ(t; τ0) =
∫ t

u=−∞
g(u; τ0) du, (22)

it can be shown that scale selection from local extrema over
scale of first-order scale-normalized temporal derivatives

Lζ = τγ/2Lt (23)

implies that the scale estimate at the central position t = 0
will be given by Lindeberg [61, Equation (23)]

τ̂ = γ

1 − γ
τ0. (24)

If we require this scale estimate to reflect the temporal dura-
tion of the ramp such that

τ̂ = q2τ0, (25)

then this implies

γ = q2

q2 + 1
(26)

which in the specific case of q = 1 corresponds to [61,
Section4.5.1]

γ = γ1 = 1

2
(27)

and in turn corresponding to L p-normalization for p = 2/3
according to (8).

If using the same value of γ for computing the magnitude
response as for selecting the temporal scale, the maximum
magnitude value over scales will be given by

Lζ,maxmagn = γ γ/2

√
2π

(
1 − γ

τ0

) 1
2− γ

2

, (28)

which is not independent of the temporal scale τ0 of the
original onset rampunlessγ = 1. If usingγ = 1 for temporal
scale selection, the selected temporal scale according to (24)
would, however, become infinite. If on the other hand using
γ = 1/2 as motivated by requirements of scale calibration
(25) for q = 1, the scale dependency will for a Gaussian
onset ramp be of the form

Lζ,maxmagn
∣∣
γ=1/2 = 1

2
√

π 4
√

τ0
. (29)

To get a scale-invariant magnitude measure for comparing
the responses of first-order temporal derivative responses
at different temporal scales, we should therefore consider
a scale-invariant magnitude measure for ramp detection of
the form

Lζ,maxmagn,postnorm
∣∣
γ=1 = τ 1/4 Lζ,maxmagn

∣∣
γ=1/2 (30)

which for a Gaussian onset ramp will assume the value

Lζ,maxmagn,postnorm
∣∣
γ=1 = 1

2
√

π
≈ 0.282 (31)

Specifically, this form of post-normalization corresponds to
computing the scale-normalized derivatives for γ = 1 at the
selected scale (25) of the onset ramp and thus also to L p-
normalization of the first-order temporal derivative kernels
for p = 1.

3.5 Temporal Sine Wave

For a signal defined as a temporal sine wave

f (t) = sin(ω0t), (32)

it can be shown that there will be a peak over temporal scales
in the magnitude of the nth-order temporal derivative Lζ n =
τ nγ /2Ltn at temporal scale [62, Section3]
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τmax = nγ

ω2
0

. (33)

Ifwe define a temporal scale parameterσ of dimension [time]
according toσ = √

τ , then this implies that the scale estimate
is proportional to the wavelength λ0 = 2π/ω0 of the sine
wave according to [62, Equation (9)]

σmax =
√

γ n

2π
λ0 (34)

and does in this respect reflect a characteristic time constant
over which the temporal phenomena occur. Specifically, the
maximummagnitude measure over scale [62, Equation (10)]

Lζ n ,max = (γ n)γ n/2

eγ n/2 ω
(1−γ )n
0 (35)

is for γ = 1 independent of the angular frequency ω0 of the
sine wave and thereby scale invariant.

In the following, we shall investigate how these scale
selection properties can be transferred to two types of time-
causal temporal scale-space concepts.

4 Scale Selection Properties for the Time-Causal
Temporal Scale Space-Concept Based on
First-Order Integrators with Equal Time
Constants

In this section, we will present a theoretical analysis of the
scale selection properties that are obtained in the time-causal
scale-space based on truncated exponential kernels coupled
in cascade, for the specific case of a uniform distribution of
the temporal scale levels in units of the composed variance
of the composed temporal scale-space kernels, and corre-
sponding to the time constants of all the primitive truncated
exponential kernels being equal.

We will study three types of idealized model signals for
which closed-form theoretical analysis is possible: (i) a tem-
poral peak modelled as a set of K0 truncated exponential
kernels with equal time constants coupled in cascade, (ii) a
temporal onset ramp modelled as the primitive function of
the temporal peak model and (iii) a temporal sine wave.
Specifically, we will analyse how the selected scale levels
K̂ obtained from local extrema of temporal derivatives over
scale relate to the temporal duration of a temporal peak or
a temporal onset ramp alternatively how the selected scale
levels K̂ depends on the wavelength of a sine wave.

We will also study how good approximation the scale-
normalized magnitude measure at the maximum over tem-
poral scales is compared to the corresponding fully scale-
invariant magnitude measures that are obtained from the
non-causal temporal scale concept as listed in Sect. 3.

4.1 Time-Causal Scale Space Based on Truncated
Exponential Kernels with Equal Time Constants
Coupled in Cascade

Given the requirements that the temporal smoothing opera-
tion in a temporal scale-space representation should obey
(i) linearity, (ii) temporal shift invariance, (iii) temporal
causality and (iv) guarantee non-creation of new local
extrema or equivalently new zero-crossings with increasing
temporal scale for any one-dimensional temporal signal, it
can be shown [53,73,75,77] that the temporal scale-space
kernels should be constructed as a cascade of truncated expo-
nential kernels of the form

hexp(t; μk) =
{ 1

μk
e−t/μk t ≥ 0,

0 t < 0.
(36)

If we additionally require the time constants of all such prim-
itive kernels that are coupled in cascade to be equal, then this
leads to a composed temporal scale-space kernel of the form

hcomposed(t; μ, K ) = t K−1 e−t/μ

μK Γ (K )
= U (t; μ, K ) (37)

corresponding to Laguerre functions (Laguerre polynomials
multiplied by a truncated exponential kernel) and also equal
to the probability density function of the Gamma distribution
having a Laplace transform of the form

Hcomposed(q; μ) =
∫ ∞

t=−∞

(
∗K
k=1hexp(t; μk)

)
e−qt dt

= 1

(1 + μq)K
= Ū (q; μ, K ). (38)

Differentiating the temporal scale-space kernel with respect
to time t gives

Ut (t; μ, K ) = − (t − (K − 1)μ)

μt
U (t; μ, K ) (39)

Utt (t; μ, K ) =
((
K 2 − 3K + 2

)
μ2 − 2(K − 1)μt + t2

)
μ2t2

×U (t; μ, K ), (40)

see the second row in Fig. 1 for graphs. The L1-norms of
these kernels are given by

‖Ut (·; μ, K )‖1 = 2e1−K (K − 1)K−1

μΓ (K )
, (41)

‖Utt (·; μ, K )‖1 = 2e−K−√
K−1+1

×
(
e2

√
K−1

(
K + 2

√
K − 1

) (
K − √

K − 1 − 1
)K
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+
(
K − 2

√
K − 1

) (
K + √

K − 1 − 1
)K

) /
(
(K − 2)2

√
K − 1μ2 Γ (K )

)
. (42)

The temporal scale level at level K corresponds to temporal
variance τ = Kμ2 and temporal standard deviation σ =√

τ = μ
√
K .

4.2 Temporal Peak

Consider an input signal defined as a time-causal temporal
peak corresponding to filtering a delta function with K0 first-
order integrators with time constants μ coupled in cascade:

f (t) = t K0−1 e−t/μ

μK0 Γ (K0)
= U (t; μ, K0). (43)

With regard to the application area of vision, this signal can
be seen as an idealizedmodel of an objectwith temporal dura-
tion τ0 = K0 μ2 that first appears and then disappears from
the field of view, and modelled on a form to be algebraically
compatible with the algebra of the temporal receptive fields.
With respect to the application area of hearing, this signal
can be seen as an idealized model of a beat sound over some
frequency range of the spectrogram, also modelled on a form
to be compatible with the algebra of the temporal receptive
fields.

Define the temporal scale-space representation by con-
volving this signal with the temporal scale-space kernel (43)
corresponding to K first-order integrators having the same
time constants μ

L(t; μ, K ) = (U (·; μ, K ) ∗ f (·))(t; μ, K )

= e− t
μ μ−K−K0 t K+K0−1

Γ (K + K0)
= U (t; μ, K0 + K )

(44)

where we have applied the semi-group property that follows
immediately from the corresponding Laplace transforms

L̄(q; μ, K ) = 1

(1 + μq)K

1

(1 + μq)K0
= 1

(1 + μq)K0+K

= Ū (q; μ, K0 + K ). (45)

By differentiating the temporal scale-space representation
(44) with respect to time t , we obtain

Lt (t; μ, K ) = (μ(K + K0 − 1) − t)

μt
L(t; μ, K ) (46)

Ltt (t; μ, K ) =
(
μ2

(
K 2+K (2K0 − 3)+K 2

0 − 3K0 + 2
)

−2μt (K + K0 − 1) + t2
) L(t; μ, K )

μ2t2

(47)

implying that the maximum point is assumed at

tmax = μ(K + K0 − 1) (48)

and the inflection points at

tinflect1 = μ
(
K + K0 − 1 − √

K + K0 − 1
)

, (49)

tinflect2 = μ
(
K + K0 − 1 + √

K + K0 − 1
)

. (50)

This form of the expression for the time of the temporal
maximum implies that the temporal delay of the underlying
peak tmax,0 = μ(K0 − 1) and the temporal delay of the
temporal scale-space kernel tmax,U = μ(K −1) are not fully
additive, but instead composed according to

tmax = tmax,0 + tmax,U + μ. (51)

If we define the temporal duration d of the peak as the dis-
tance between the inflection points, if furthermore follows
that this temporal duration is related to the temporal dura-
tion d0 = 2μ

√
K0 − 1 of the original peak and the temporal

duration dU = 2μ
√
K − 1 of the temporal scale-space ker-

nel according to

d = tinflect2 − tinflect1 = 2μ
√
K + K0 − 1

=
√
d20 + d2U + 4μ2. (52)

Notably these expressions are not scale invariant, but instead
strongly dependent on a preferred temporal scale as defined
by the time constant μ of the primitive first-order integrators
that define the uniform distribution of the temporal scales.

Scale-normalized temporal derivatives When using tempo-
ral scale normalization by variance-based normalization,
the first- and second-order scale-normalized derivatives are
given by

Lζ (t; μ, K ) = σγ Lt (t; μ, K ) = (μ
√
K )γ Lt (t; μ, K )

(53)

Lζ ζ (t; μ, K ) = σ 2γ Ltt (t; μ, K ) = (μ2K )γ Ltt (t; μ, K )

(54)

where σ = √
τ , τ = Kμ2 and with Lt (t; μ, K ) and

Ltt (t; μ, K ) according to (46) and (47).
When using temporal scale normalization by L p-normal-

ization, the first- and second-order scale-normalized deriva-
tives are on the other hand given by Lindeberg [75, Equation
(75)]
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Lζ (t; μ, K ) = α1,p(μ, K ) Lt (t; μ, K ) (55)

Lζ ζ (t; μ, K ) = α2,p(μ, K ) Ltt (t; μ, K ) (56)

with the scale normalization factors αn,p(μ, K ) determined
such that the L p-norm of the scale-normalized temporal
derivative computation kernel

Lζ n (·; μ, K ) = αn,p(μ, K ) htn (·; μ, K ) (57)

equals the Lo-norm of some other reference kernel, where
we here take the L p-norm of the corresponding Gaussian
derivative kernels [75, Equation (76)]

‖αn,p(μ, K ) htn (·; μ, K )‖p = αn,p(μ, K ) ‖htn (·; μ, K )‖p

= ‖gξn (·; τ)‖p = Gn,p (58)

for τ = μ2K , thus implying

Lζ (t; μ, K ) = G1,p

‖Ut (·; μ, K )‖p
Lt (t; μ, K ) (59)

Lζ ζ (t; μ, K ) = G2,p

‖Utt (·; μ, K )‖p
Ltt (t; μ, K ) (60)

whereG1,p andG2,p denote the L p-norms (7) of correspond-
ing Gaussian derivative kernels for the value of γ at which
they become constant over scales by L p-normalization, and
the L p-norms ‖Ut (·; μ, K )‖p and ‖Utt (·; μ, K )‖p of the
temporal scale-space kernelsUt andUtt for the specific case
of p = 1 are given by (41) and (42).

Temporal scale selection Let us assume that we want to
register that a new object has appeared by a scale-space
extremum of the scale-normalized second-order derivative
response.

To determine the temporal moment at which the temporal
event occurs, we should formally determine the time where
∂τ (Lζ ζ (t; μ, K )) = 0, which by our model (54) would
correspond to solving a third-order algebraic equation. To
simplify the problem, let us instead approximate the temporal
position of the peak in the second-order derivative by the
temporal position of the peak tmax according to (48) in the
signal and study the evolution properties over scale K of

Lζ ζ (tmax; μ, K ) = Lζ ζ (μ(K + K0 − 1); μ, K ). (61)

In the case of variance-based normalization for a general
value of γ , we have

Lζ ζ (μ(K + K0 − 1); μ, K )

= −K γ μ2γ−3e−K−K0+1(K + K0 − 1)K+K0−2

Γ (K + K0)
(62)

and in the case of L p-normalization for p = 1

Lζ ζ (μ(K + K0 − 1); μ, K )

= −C(K − 2)2
√
K − 1e

√
K−1−K0Γ (K )μ−K−K0−1

× (μ(K+K0 − 1))K+K0/(K + K0 − 1)2Γ (K + K0)/

2

(
e2

√
K−1

(
K + 2

√
K − 1

) (
K − √

K − 1 − 1
)K

+
(
K − 2

√
K − 1

) (
K + √

K − 1 − 1
)K

)
. (63)

To determine the scale K̂ at which the local maximum is
assumed, let us temporarily extend this definition to con-
tinuous values of K and differentiate the corresponding
expressions with respect to K . Solving the equation

∂K (Lζ ζ (μ(K + K0 − 1); μ, K ) = 0 (64)

numerically for different values of K0 then gives the depen-
dency on the scale estimate K̂ as function of K0 shown in
Table1 for variance-basednormalizationwith eitherγ = 3/4
or γ = 1 and L p-normalization for p = 1.

As can be seen from the results in Table1, when using
variance-based scale normalization for γ = 3/4, the scale
estimate K̂ closely follows the scale K0 of the temporal peak
and does therefore imply a good approximate transfer of the
scale selection property (14) to this temporal scale-space con-
cept. If one would instead use variance-based normalization
for γ = 1 or L p-normalization for p = 1, then that would,
however, lead to substantial overestimates of the temporal
duration of the peak.

Furthermore, if we additionally normalize the input signal
to having unit contrast, then the corresponding time-causal
correspondence to the post-normalized magnitude measure
(20)

Lζ ζ,maxmagn,postnorm
∣∣
γ=1

= τ 1/4 Lζ ζ,maxmagn
∣∣
γ=3/4 = K

K + K0 − 1
(65)

is for scale estimates proportional to the temporal duration of
the underlying temporal peak K̂ ∼ K0 very close to constant
under variations of the temporal duration of the underly-
ing temporal peak as determined by the parameter K0, thus
implying a good approximate transfer of the scale selection
property (21).

4.3 Temporal Onset Ramp

Consider an input signal defined as a time-causal onset ramp
corresponding to the primitive function of K0 first-order inte-
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Table 1 Numerical estimates of the value of K̂ at which the scale-
normalized second-order temporal derivative assumes its maximum
over temporal scale for a temporal peak (with the discrete expres-
sion over discrete temporal scales extended to a continuous variation)
as function of K0 and for either (i) variance-based normalization

with γ = 3/4, (iii) variance-based normalization with γ = 1 and
(iv) L p-normalization with p = 1; For the case of variance-based nor-
malization with γ = 3/4, (ii) the post-normalized magnitude measure
Lζ ζ,maxmagn,postnorm

∣∣
γ=1 according to (20) and at the corresponding

scale (i) is also shown

K0 K̂ (var, γ = 3/4) Lζ ζ,maxmagn,postnorm
∣∣
γ=1 (var, γ = 3/4) K̂ (var, γ = 1) K̂ (L p , p = 1)

Scale estimate K̂ and maximum magnitude Lζ ζ,max from temporal peak (uniform distr)

4 3.1 0.504 6.1 10.3

8 7.1 0.502 14.1 18.3

16 15.1 0.501 30.1 34.3

32 31.1 0.500 62.1 66.3

64 63.1 0.500 126.1 130.3

Note that the temporal scale estimates K̂ do for γ = 3/4 constitute a good approximation of the temporal scale K̂0 of the underlying structure and
that the maximum magnitude estimates obtained at this temporal scale do for γ = 1 constitute a good approximation to a scale-invariant constant
maximum magnitude measure over temporal scales

grators with time constants μ coupled in cascade:

f (t) =
∫ t

u=0

uK0−1 e−u/μ

μK0 Γ (K0)
du =

∫ t

u=0
U (u; μ, K0) du.

(66)

With respect to the application area of vision, this signal can
be seen as an idealized model of a new object with temporal
diffuseness τ0 = K0 μ2 that appears in the field of view
and modelled on a form to be algebraically compatible with
the algebra of the temporal receptive fields. With respect to
the application area of hearing, this signal can be seen as
an idealized model of the onset of a new sound in some
frequency band of the spectrogram, also modelled on a form
to be compatible with the algebra of the temporal receptive
fields.

Define the temporal scale-space representation of the sig-
nal by convolution with the temporal scale-space kernel (43)
corresponding to K first-order integrators having the same
time constants μ

L(t; μ, K ) = (U (·; μ, K ) ∗ f (·))(t; μ, K )

=
∫ t

u=0
U (t; μ, K0 + K ) du. (67)

Then, the first-order temporal derivative is given by

Lt (t; μ, K ) = U (t; μ, K0 + K )

= t K0+K−1 e−t/μ

μK0+K Γ (K0 + K )
(68)

which assumes its temporal maximum at tramp = μ(K0 +
K − 1).

Temporal scale selection Let us assume that we are going
to detect a new appearing object from a local maximum in
the first-order derivative over both time and temporal scales.
When using variance-based normalization for a general value
of γ , the scale-normalized response at the temporal maxi-
mum in the first-order derivative is given by

Lζ,max = Lζ (μ(K0 + K − 1); μ, K )

= σγ Lt (μ(K0 + K − 1); μ, K )

=
(√

Kμ
)γ

(K + K0 − 1)K+K0−1e−K−K0+1

μΓ (K + K0)
.

(69)

When using L p-normalization for a general value of p, the
corresponding scale-normalized response is

Lζ,max = Lζ (μ(K0 + K − 1); μ, K )

= G1,p

‖Ut (·; μ, K )‖p
Lt (μ(K0 + K − 1); μ, K )

(70)

where the L p-norm of the first-order scale-space derivative
kernel can be expressed in terms of exponential functions,
the Gamma function and hypergeometric functions, but is
too complex to be written out here. Extending the definition
of these expressions to continuous values of K and solving
the equation

∂K (Lζ (μ(K + K0 − 1); μ, K ) = 0 (71)

numerically for different values of K0 then gives the depen-
dency on the scale estimate K̂ as function of K0 shown in
Table2 for variance-based normalization with γ = 1/2 or
L p-normalization for p = 2/3.
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Table 2 (Columns 2–3) Numerical estimates of the value of K̂ at which
the scale-normalized first-order temporal derivative assumes its maxi-
mum over temporal scale for a temporal onset ramp (with the discrete
expression over discrete temporal scales extended to a continuous vari-
ation) as function of K0 and for (i) variance-based normalization for

γ = 1/2 and (ii) L p-normalization for p = 2/3; (Columns 4–5) Max-
imum magnitude values Lζ,max at the corresponding temporal scales,
with themagnitude values defined by (iii) variance-based normalization
for γ = 1 and (iv) L p-normalization for p = 1

K0 K̂ (var, γ = 1/2) K̂ (L p , p = 2/3) Lζ,max (var, γ = 1) Lζ,max (L p , p = 1)

Scale estimate K̂ and maximum magnitude Lζ,max from temporal ramp (uniform distr)

4 3.2 3.6 0.282 0.254

8 7.2 7.7 0.282 0.272

16 15.2 15.8 0.282 0.277

32 31.2 31.8 0.282 0.279

64 63.2 64.0 0.282 0.281

Note that for γ = 1/2 as well as for p = 2/3 the temporal scale estimates K̂ constitute a good approximation of the temporal scale K0 of the
underlying onset ramp as well as that the scale-normalized maximummagnitude estimates Lζ,max computed for γ = 1 and p = 1 constitute a good
approximation to a scale-invariant constant magnitude measure over temporal scales

As can be seen from the numerical results, for both
variance-based normalization and L p-normalization with
corresponding values of γ and p, the numerical scale esti-
mates in terms of K̂ closely follow the diffuseness scale of
the temporal ramp as parameterized by K0. Thus, for both of
these scale normalization models, the numerical results indi-
cate an approximate transfer of the scale selection property
(14) to this temporal scale-space model. Additionally, the
maximummagnitude values according to (69) can according
to Stirling’s formula Γ (n + 1) ≈ (n/e)n

√
2πn be approxi-

mated by

Lζ,max ≈
√
K√

2π
√
K + K0 − 1

(72)

and are very stable under variations of the diffuseness scale
K0 of the ramp, and thus implying a good transfer of the scale
selection property (31) to this temporal scale-space concept.

4.4 Temporal Sine Wave

Consider a signal defined as a sine wave

f (t) = sinω0t. (73)

This signal can be seen as a simplified model of a dense
temporal texture with characteristic scale defined as the
wavelength λ0 = 2π/ω of the signal. In the application area
of vision, this can be seen as an idealized model of watch-
ing some oscillating visual phenomena or watching a dense
texture that moves relative the gaze direction. In the area of
hearing, this could be seen as an idealized model of tempo-
rally varying frequencies around some fixed frequency in the
spectrogram corresponding to vibrato.

Define the temporal scale-space representation of the sig-
nal by convolution with the temporal scale-space kernel (43)
corresponding to K first-order integrators with equal time
constants μ coupled in cascade

L(t; μ, K ) = (U (·; μ, K ) ∗ f (·))(t; μ, K )

= |Û (ω0; μ, K )| sin
(
ω0t + arg Û (ω; μ, K )

)
(74)

where |Û (ω0; μ, K )| and arg Û (ω; μ, K ) denote the
magnitude and the argument of the Fourier transform
ĥcomposed(ω; μ, K ) of the temporal scale-space kernel
U (·; μ, K ) according to

Û (ω; μ, K ) = 1

(1 + i μω)K
, (75)

|Û (ω; μ, K )| = 1(
1 + μ2 ω2

)K/2 , (76)

arg Û (ω; μ, K ) = −K arctan (μω) . (77)

By differentiating (74) with respect to time t , it follows that
the magnitude of the nth-order temporal derivative is given
by

Ltn ,ampl = ωn
0(

1 + μ2 ω2
0

)K/2 . (78)

Temporal scale selection Using variance-based temporal
scale normalization, the magnitude of the corresponding
scale-normalized temporal derivative is given by

Lζ n ,ampl = σ nLtn ,ampl = (Kμ2)nγ /2ωn
0(

1 + μ2 ω2
0

)K/2 . (79)

123



J Math Imaging Vis (2017) 58:57–101 73

Extending this expression to continuous values of K and
differentiating with respect to K implies that the maximum
over scale is assumed at scale

K̂ = γ n

log
(
1 + μ2ω2

0

) (80)

with the following series expansion for small values of ω0

corresponding to temporal structures of longer temporal
duration

K̂ = γ n

μ2ω2
0

+ γ n

2
− 1

12
ω2
0

(
γμ2n

)
+ O

(
ω4
0

)
. (81)

Expressing the corresponding scale estimate σ̂ in terms of
dimension length and parameterized in terms of the wave-
length λ0 = 2π/ω0 of the sine wave

σ̂ = √
τ̂ = μ

√
K̂ = μ

√√√√√
γ n

log

(
1 + 4π2μ2

λ20

)

=
√

γ n

2π
λ0

(
1 + π2μ2

λ20
+ O

((
μ

λ0

)4
))

(82)

we can see that the dominant term
√

γ nλ0
2π is proportional to

the temporal duration of the underlying structures in the sig-
nal and in agreement with the corresponding scale selection
property (34) of the scale-invariant non-causal Gaussian tem-
poral scale-space concept, whereas the overall expression is
not scale invariant.

If the wavelength λ0 is much longer than the time con-
stant μ of the primitive first-order integrators, then the scale
selection properties in this temporal scale-space model will
constitute a better approximation of the corresponding scale
selection properties in the scale-invariant non-causal Gaus-
sian temporal scale-space model.

The maximum value over scale is

Lζ n ,ampl,max = e− γ n
2 ωn

0μ
γ n

(
γ n

log
(
1 + μ2ω2

0

)
) γ n

2

(83)

with the following series expansion for large λ0 = 2π/ω0

and γ = 1:

Lζ n ,ampl,max = e−n/2nn/2

×
(
1 + π2μ2n

λ20
+ π4μ4n(3n − 10)

6λ40

+O

((
μ

λ0

)6
))

. (84)

Again we can note that the first term agrees with the
corresponding scale selection property (35) for the scale-
invariant non-causal Gaussian temporal scale space, whereas
the higher-order terms are not scale invariant.

Figure2 shows graphs of the scale estimate σ̂ according to
(82) for n = 2 and γ = 3/4 and the maximum response over
scale Lζ n ,ampl,max for n = 2 and γ = 1 as function of the
wavelengthλ0 of the sinewave (marked in blue). For compar-
ison,we also show the corresponding scale estimates (34) and
magnitude values (35) that would be obtained using tempo-
ral scale selection in the scale-invariant non-causal Gaussian
temporal scale space (marked in brown).

As can be seen from the graphs, both the temporal scale
estimate σ̂ (λ0) and themaximummagnitude Lζ,ampl,max(λ0)

obtained from a set of first-order integrators with equal time
constants coupled in cascade approach the corresponding
results obtained from the non-causal Gaussian scale space
for larger values of λ0 in relation to the time constant μ of
the first-order integrators. The scale estimate obtained from
a set of first-order integrators with equal time constants is,
however, for lower values of λ0 generally significantly higher
than the scale estimates obtained from a non-causal Gaussian
temporal scale space. The scale-normalized magnitude val-
ues, which should be constant over scale for a scale-invariant
temporal scale space when γ = 1 according to the scale
selection property (35), are for lower values of λ0 much
higher than the scale-invariant limit value when performing
scale selection in the temporal scale-space concept obtained
by coupling a set of first-order integrators with equal time
constants in cascade. The scale selection properties (34) and
(35) are consequently not transferred to this temporal scale-
space concept for the sine wave model, which demonstrates
the need for using a scale-invariant temporal scale-space
concept when formulating mechanisms for temporal scale
selection. The scale selection properties of such a scale-
invariant time-causal temporal concepts will be analysed in
Sect. 5, and showing that it is possible to obtain temporal
scale estimates for a dense sine wave that are truly propor-
tional to the wavelength of the signal, i.e. a characteristic
estimate of the temporal duration of the temporal structures
in the signal.

Concerning this theoretical analysis, it should be noted
that we have here for the expressions (82), (83) and (84) dis-
regarded the rounding of the continuous value K̂ in (81) to the
nearest integer upwards or downwards where it assumes its
maximum value over temporal scales. Thereby, the graphs
in Fig. 2 may appear somewhat different if such quantiza-
tion effects because of discrete temporal scale levels are also
included. The lack of true temporal scale invariance will,
however, still prevail.

Concerning the motivation to the theoretical analysis in
this section, while the purpose of this analysis has been
to investigate how the temporal scale estimates depend on
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scale estimate σ̂(λ0) n=1,γ=1/2 max magnitude Lζ,ampl,max(λ0) |γ=1

scale estimate σ̂(λ0) n=2,γ=3/4 max magnitude Lζζ,ampl,max(λ0) |γ=1

Fig. 2 (Left column) Temporal scale estimates σ̂ (marked in blue)
obtained from a sine wave using the maximum value over scale of
the amplitude of either (top row) first-order scale-normalized temporal
derivatives or (bottom row) second-order scale-normalized temporal
derivatives and as function of the wavelength λ0 for variance-based
temporal scale normalization with γ = 1/2 for first-order derivatives
and γ = 3/4 for second-order derivatives. Note that for this tempo-
ral scale-space concept based on truncated exponential kernels with
equal time constants, the temporal scale estimates σ̂ do not constitute
a good approximation to the temporal scale estimates being propor-
tional to the wavelength λ0 of the underlying sine wave. Instead, the
temporal scale estimates are affected by a systematic scale-dependent

bias. (Right column) The maximum scale-normalized magnitude for
(top row) first-order scale-normalized temporal derivatives or (bottom
row) second-order scale-normalized temporal derivatives as function of
the wavelength λ0 using variance-based temporal scale normalization
with γ = 1 (marked in blue). The brown curves show corresponding
scale estimates and magnitude values obtained from the scale-invariant
but not time-causal Gaussian temporal scale space. Thus, when the tem-
poral scale-space concept based on truncated exponential kernels with
equal time constants coupled in cascade is applied to a sine wave, the
maximum magnitude measures over temporal scales do not at all con-
stitute a good approximation of temporal scale invariance (horizontal
axis wavelength λ0 in units of μ)

the frequency or the wavelength of the signal, it should
be emphasized that the primary purpose has not been to
develop a method for only estimating the frequency or the
wavelength of a sine wave. Instead, the primary purpose
has been to carry out a closed-form theoretical analysis
of the properties of temporal scale selection when applied
to a model signal for which such closed-form theoretical
analysis can be carried out. Compared to using a Fourier
transform for estimating the local frequency content in a
signal, it should be noted that the computation of a Fourier
transform requires a complementary parameter—a window

scale over which the Fourier transform is to be computed.
The frequency estimate will then be an average of the fre-
quency content over the entire interval as defined by the
window scale parameter. Using the proposed temporal scale
selection methodology it is on the other hand possible to
estimate the temporal scale without using any complemen-
tary window scale parameter. Additionally, the temporal
scale estimate will be instantaneous and not an average over
multiple cycles of a periodic signal, see also the later exper-
imental results that will be presented in Sect. 7 in particular
Fig. 7.
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5 Scale Selection Properties for the Time-Causal
Temporal Scale-Space Concept Based on the
Scale-Invariant Time-Causal Limit Kernel

In this section, we will analyse the scale selection properties
for the time-causal scale-space concept based on convolution
with the scale-invariant time-causal limit kernel.

The analysis starts with a detailed study of a sine wave,
for which closed-form theoretical analysis is possible and
showing that the selected temporal scale level σ̂ measured in
units of dimension time [time] according to σ̂ = √

τ̂ will be
proportional to the wavelength of the signal, in accordance
with true scale invariance. We also show that despite the
discrete nature of the temporal scale levels in this temporal
scale-space concept, local extrema over scale will neverthe-
less be preserved under scaling transformations of the form
λ1 = c jλ0, with c denoting the distribution parameter of the
time-causal limit kernel.

Then, we present a general result about temporal scale
invariance that holds for temporal derivatives of anyorder and
for any input signal, showing that under a temporal scaling
transformation of the form t ′ = c j t , local extrema over scales
are preserved under such temporal scaling transformations
with the temporal scale estimates transforming according to
τ ′ = c jτ . We also show that if the scale normalization power
γ = 1 corresponding to p = 1, the scale-normalized mag-
nitude responses will be preserved in accordance with true
temporal scale invariance.

5.1 Time-Causal Temporal Scale Space Based on the
Scale-Invariant Time-Causal Limit Kernel

Given the temporal scale-space model based on truncated
exponential kernels (36) coupled in cascade

hcomposed(·; μ) = ∗K
k=1hexp(·; μk), (85)

having a composed Fourier transform of the form

Hcomposed(q; μ) =
∫ ∞

t=−∞
∗K
k=1hexp(·; μk)(t) e

−qt dt

=
K∏

k=1

1

1 + μkq
, (86)

and as arises from the assumptions of (i) linearity, (ii) tem-
poral shift invariance, (iii) temporal causality and (iv) non-
creation of new local extrema or equivalently zero-crossings
with increasing scale, it is more natural to distribute the tem-
poral scale levels logarithmically over temporal scales

τk = c2(k−K )τmax (1 ≤ k ≤ K ) (87)

so that the distribution in terms of effective temporal scale
τeff = log τ [55] becomes uniform. This implies that time
constants of the individual first-order integrators should for
some c > 1 be given by [73,75]

μ1 = c1−K√
τmax, (88)

μk = √
τk − τk−1 = ck−K−1

√
c2 − 1

√
τmax (2 ≤ k ≤ K ).

(89)

Specifically, if one lets the number of temporal scale lev-
els tend to infinity with the density of temporal scale levels
becoming infinitely dense towards τ → 0, it can be shown
that this leads to a scale-invariant time-causal limit kernel
having a Fourier transform of the form [75, Section5]

Ψ̂ (ω; τ, c) = lim
K→∞ ĥexp(ω; τ, c, K )

=
∞∏
k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

. (90)

5.2 Temporal Sine Wave

Consider an input signal defined as a sine wave

f (t) = sinω0t, (91)

and taken as an idealized model of a oscillating signal with
temporal structures having characteristic temporal duration
λ0 = 2π/ω0.

For the time-causal temporal scale-space defined by con-
volution with the time-causal semi-group Ψ (t; τ, c), the
temporal scale-space representation L(t; τ, c) is given by

L(t; τ, c) =
∣∣∣Ψ̂ (ω0; τ, c)

∣∣∣ sin (
ω0t + arg Ψ̂ (ω0; τ, c)

)
(92)

where the magnitude |Ψ̂ (ω; τ, c)| and the argument
arg Ψ̂ (ω; τ, c) of the Fourier transform Ψ̂ (ω; τ, c) of the
time-causal limit kernel are given by

|Ψ̂ (ω; τ, c)| =
∞∏
k=1

1√
1 + c−2k(c2 − 1)τ ω2

, (93)

arg Ψ̂ (ω; τ, c) =
∞∑
k=1

arctan
(
c−k

√
c2 − 1

√
τ ω

)
. (94)

Thus, the magnitude on the nth-order temporal derivative is
given by

Ltn ,ampl = ωn |Ψ̂ (ω; τ, c)| (95)

123



76 J Math Imaging Vis (2017) 58:57–101

n = 1, c =
√
2 n = 2, c =

√
2

n = 1, c = 2 n = 2, c = 2

Fig. 3 Scale-space signatures showing the variation over scales of the
amplitude of scale-normalized temporal derivatives in the scale-space
representation of sine waves with angular frequencies ω0 = 1/4 (green
curves), ω0 = 1 (blue curves) and ω0 = 4 (brown curves) under con-
volution with the time-causal limit kernel approximated by the slowest
K = 32 temporal smoothing steps and for γ = 1 corresponding to
p = 1. (Left column) First-order temporal derivatives n = 1. (Right
column) Second-order temporal derivatives n = 2. (Top row) Distribu-

tion parameter c = √
2. (Bottom row) Distribution parameter c = 2.

Note how these graphs reflect temporal scale invariance in the sense
that (i) a variation in the angular frequency of the underlying signal
corresponds to a mere shift of the scale-space signature to either finer
or coarser temporal scales and (ii) the maximummagnitude response is
independent of the frequency of the underlying signal (horizontal axis
Temporal scale τ on a logarithmic axis)

Fig. 4 Corresponding results as
in Fig. 3 above but with (left
column) γ = 1/2 for first-order
derivatives and (right column)
γ = 3/4 for second-order
derivatives. Note that the use of
scale normalization powers
γ < 1 implies that the maxima
over temporal scales are moved
to finer temporal scales and that
the (uncompensated) maximum
magnitude responses are no
longer scale invariant

n = 1, c =
√
2 n = 2, c =

√
2

n = 1, c = 2 n = 2, c = 2
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σ̂(λ0) for c =
√

ˆ2 σ(λ0) for c = 2

Fig. 5 Scale estimates σ̂ = √
τ̂ as function of the wavelength λ0 for

sine waves of different angular frequencies ω0 = 2π/λ0 and different
orders n of temporal differentiation and different values of γ : (blue
curves) n = 1 and γ = 1/2, (brown curves) n = 2 and γ = 3/4,
(green curves) n = 1 and γ = 1, (red curves) n = 2 and γ = 1.
Note how the scale estimates expressed in dimensions of time σ = √

τ

are directly proportional to the wavelength λ0 of the sine wave and in
agreement with temporal scale invariance (horizontal axis wavelength
λ0) (for c = √

2 the time-causal limit kernel has been approximated by
the slowest K = 32 temporal smoothing stages and for c = 2 by the
slowest K = 12 temporal smoothing stages)

and for the nth-order scale-normalized derivate based on
variance-based scale normalization the amplitude as func-
tion of scale is

Lζ n ,ampl = τ nγ /2ωn |Ψ̂ (ω; τ, c)|

= τ nγ /2ωn
∞∏
k=1

1√
1 + c−2k(c2 − 1)τ ω2

. (96)

Figure3 shows graphs of the variation of this entity as func-
tion of temporal scale for different angular frequencies ω0,
orders of temporal differentiation n and the distribution
parameter c. As can be seen from the graphs, themaxima over
scales are assumed at coarser scales with increasing wave-
length of the sine wave. The maxima over temporal scale are
also assumed at coarser scales for second-order derivatives
than for first-order derivatives.

Specifically, when γ = 1 themagnitude values at the local
extrema over scale are constant over scale, which implies a
transfer of the scale selection property (10) to this temporal
scale-space model. Notably, this situation is in clear contrast
to the situation for the temporal scale-space generated by
first-order integrators with equal time constants coupled in
cascade. In Fig. 2 it was shown that because of the lack of
true temporal scale invariance of that temoral scale-space
concept, the maximum magnitude values are not constant
over scales for γ = 1 as they should be according to the
scale-invariant scale selection property (10).

When choosing lower values of γ as motivated from the
determination of the parameter γ for scale selection in a
Gaussian scale space to make the scale estimate reflect the
width of a Gaussian peak for second-order derivatives or
reflect the width of a diffuse ramp for first-order derivatives,
which leads to γ = 1/2 for first-order derivatives (27) and

γ = 3/4 for second-order derivatives (16), the local extrema
over scale are moved to finer scales (see Fig. 4). Then, how-
ever, the maximummagnitude values are no longer the same
for sine waves of different frequencies, implying that a com-
plementary magnitude normalization step is necessary (see
Sect. 5.3 for additional details).

Local extrema over temporal scale Taking the logarithm of
the expression (96) gives

log Lζ n ,ampl = nγ

2
log τ + n logω0

−1

2

∞∑
k=1

log
(
1 + c−2k(c2 − 1)τ ω2

0

)
. (97)

If we treat τ as a continuous variable and differentiate with
respect to τ we obtain

∂τ

(
log Lζ n ,ampl

) = nγ

2τ
− 1

2

∞∑
k=1

c−2k(c2 − 1) ω2
0

1 + c−2k(c2 − 1) τ ω2
0

.

(98)

Figure5 shows graphs of how the scale estimate σ̂ obtained
by setting the derivative with respect to temporal scale to
zero increases linearly with the wavelength λ0 of the sig-
nal, with different slopes of the linear curve depending on
the order of temporal differentiation and the value of the
scale normalization parameter γ . This overall linear scaling
behaviour can directly be proved by rewriting the expression
∂τ

(
log Lζ n ,ampl

) = 0 in (98) into

nγ

τω2
0

−
∞∑
k=1

c−2k(c2 − 1)

1 + c−2k(c2 − 1) τ ω2
0

= 0. (99)
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Table 3 Scale estimates σ̂ computed from local extrema over scale
for a sine wave with angular frequency ω0 = 1 and different orders of
temporal differentiation n and different scale normalization parameters
γ with γn = 1/2 for n = 1 and γn = 3/4 for n = 2, and different values
of the distribution parameter c (for c = √

2 the time-causal limit kernel
has been approximated by the slowest K = 32 temporal smoothing
stages and for c = 2 by the slowest K = 12 temporal smoothing
stages)

n = 1 n = 2

Scale estimates σ̂ for c = √
2

γ = 1 1.20 2.06

γ = γn 0.77 1.61

Scale estimates σ̂ for c = 2

γ = 1 1.43 3.17

γ = γn 0.83 2.17

Since this expression is a direct function of the dimensionless
entity τω2

0, it follows that the temporal scale estimates will
be of the form

τ̂ = ϕ(nγ, c)

ω2
0

(100)

for some function ϕ(nγ, c), and thus obeying temporal scale
invariance in the sense that the scale estimate in dimension
length is proportional to the wavelength of the signal

σ̂ = √
τ̂ =

√
ϕ(nγ, c)

2π
λ0. (101)

Notice how this situation is in contrast to the results of scale
selection in the temporal scale-space concept obtained by
coupling first-order integrators with equal time constants in
cascade, where the scale estimate for a sine wave is not
directly proportional to the wavelength of the temporal sig-
nal, but also affected by a wavelength-dependent temporal
scale bias (see Eq. (82) and Fig. 2 in Sect. 4.4).

Table3 shows numerical values of the differences between
the results for different orders of differentiation n and differ-
ent values of γ . These numerical entities become particularly
illuminatingby forming the ratio σ̂ /

√
nγ as shown inTable4.

For a non-causal Gaussian scale space, this ratio should be
equal to one for all combinations of n and γ [see Eq. (33)].
For this non-causal temporal scale space, we can, however,
note that the deviation from one increases both with larger
values of the distribution parameter2 c and with increasing
order of temporal differentiation n, which both lead to larger

2 The reason why the these ratios depend on the distribution parameter
c can specifically be explained by observing that the temporal duration
of the temporal derivatives of the time-causal limit kernel Ψtα (t; τ, c)
will depend on the distribution parameter c—see “Appendix 3” for a
derivation and explicit estimates of thewidth of the temporal derivatives
of the time-causal limit kernel.

Table 4 Ratios between the scale estimates σ̂ in Table3 and
√
nγ

computed from local extrema over scale for a sine wave with angular
frequency ω0 = 1

n = 1 n = 2

Ratios σ̂ /
√
nγ for c = √

2

γ = 1 1.20 1.46

γ = γn 1.09 1.32

Ratios σ̂ /
√
nγ for c = 2

γ = 1 1.43 2.24

γ = γn 1.18 1.77

For the corresponding entities obtained from scale selection for a sine
wave in a non-causal Gaussian scale space, this ratio is equal to one for
all combinations of n and γ . These scale selection entities thus reveal
a larger deviation from a Gaussian behaviour both for larger values of
c and for temporal derivatives of higher order

degrees of temporal asymmetry due to the non-causal tem-
poral dimension.

In the essential proportionality of the scale estimate σ̂ to
the wavelength λ0 of the signal according to (101), the main
component of the scale selection property (34) is thereby
transferred to this temporal scale-space concept, although
the proportionality constant has to be modified depending on
the value of the temporal scale distribution parameter c, the
order of temporal differentiation n and the scale normaliza-
tion parameter γ .

Preservation of local extrema over temporal scale under
temporal scaling transformations Let us assume that the
continuous magnitude function (97) assumes a maximum
over temporal scales for some pair (ω0, τ0) and that the
derivative with respect to temporal scale is thereby zero

∂τ

(
log Lζ n ,ampl

)∣∣
(ω0,τ0)

= nγ

2τ0
− 1

2

∞∑
k=1

c−2k(c2 − 1) ω2
0

1 + c−2k(c2 − 1) τ0 ω2
0

= 0. (102)

Let us next assume that we feed in a different sine wave with
wavelength λ1 = c jλ0 for some integer j (for the same value
of c as used in the definition of the time-causal limit kernel)
and corresponding to ω1 = c− jω0 with its matching scale
τ1 = c2 jτ0. Then, it holds that

∂τ

(
log Lζ n ,ampl

)∣∣
(ω1,τ1)

= nγ

2τ1
− 1

2

∞∑
k=1

c−2k(c2 − 1) ω2
1

1 + c−2k(c2 − 1) τ1 ω2
1

= c−2 j

(
nγ

2τ0
− 1

2

∞∑
k=1

c−2k(c2 − 1) ω2
0

1 + c−2k(c2 − 1) τ0 ω2
0

)

= c−2 j ∂τ

(
log Lζ n ,ampl

)∣∣
(ω0,τ0)

. (103)
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This result implies that the sign of the derivate with respect
to temporal scale is preserved between matching angular fre-
quencies and scales (ω0, τ0) and (ω1, τ1). Specifically, local
extrema over temporal scales are preserved under uniform
scaling transformations of the temporal domain t ′ = c j t ,
implying scale covariance of the temporal scales that are
selected from local extrema over scales of scale-normalized
temporal derivatives.

Note also that although the analysis in Eq. (103) is per-
formed based on a temporary extension of τ into a continuous
variable, the scale covariance still holds when the continu-
ous function is sampled into a discrete set of temporal scale
levels.3

5.3 General Scale Invariance Property Under Temporal
Scaling Transformations

In Lindeberg [75, Appendix 3] it is shown that for two tem-
poral signals f and f ′ that are related by a temporal scaling
transform f ′(t ′) = f (t) for t ′ = c j

′− j t with the correspond-
ing transformation between corresponding temporal scale
levels τ ′ = c2( j

′− j)τ , the scale-normalized temporal deriva-
tives defined by either L p-normalization or variance-based
normalization in the scale-space representation defined by
convolution with the time-causal limit kernel Ψ (t; τ, c) are
for any temporal input signal f related according to

L ′
ζ ′n (t ′; τ ′, c) = c( j ′− j)n(γ−1) Lζ n (t; τ, c)

= c( j ′− j)(1−1/p) Lζ n (t; τ, c). (104)

This result specifically implies that the scale-space signa-
tures, which are the graphs that show the variation in the
strength of scale-normalized derivatives over scale, will be
rescaled copies of each other for signals that are related by a
uniform scaling transformation of the temporal domain.

Specifically, local temporal scale estimates τ̂ and τ̂ ′ as
determined from local extrema over temporal scales in the
two temporal domains will be assumed at corresponding

3 A formal proof of the transfer of this preservation property of local
extrema over temporal scales from a temporary extension of the tem-
poral scale parameter τ into a continuous variable back into a restricted
discrete set of temporal scale levels can be stated as follows: From
Eq. (103) it follows that the continuous temporal scale-space signa-
tures for the two sine waves of wavelengths λ0 and λ1 = c jλ0 will
increase and decrease respectively at corresponding matching temporal
scale levels τ0 and τ1 = c2 j τ0. If we next sample these scale-space
signatures at some discrete set of temporal scale levels τ0,k = c2k and
τ1,k = c2 j c2k , then it follows that the discrete maxima over temporal
scales will also be related according to τ1,max = c2 j τ0,max. This preser-
vation property of local extrema does, however, only hold for temporal
scaling factors S that are integer powers of the distribution parameter
c, i.e. only S = c j . Alternatively, this preservation property can also be
derived from the more general scale invariance property under temporal
scaling transformations (104) that is stated in next section.

temporal scale levels and will thus be transformed in a scale-
covariant way for any temporal scaling transformation of the
form t ′ = c j

′− j t . In units of the temporal variance, it holds
that

τ̂ ′ = c2( j
′− j)τ̂ (105)

and in units of the temporal standard deviation

σ̂ ′ = c j
′− j σ̂ . (106)

If γ = 1 corresponding to p = 1, the magnitude val-
ues at corresponding temporal scale levels will be equal.
If γ �= 1 corresponding to p �= 1, the magnitude values
will be related according to (104). Thereby, this expression
provides a way to normalize maximum strength measures
between local extrema over scales assumed at different tem-
poral scales as obtained e.g. in the scale-space signatures
shown in Fig. 4.

Note that by this construction we have been able to trans-
fer the temporal scale invariance property (9) and (10) that
holds for a non-causal Gaussian temporal scale-space con-
cept to also hold for a time-causal temporal scale-space
concept, which is a novel type of theoretical construction.
This property is, however, restricted to the temporal scale-
space concept based on convolution with the time-causal
limit kernel and does, for example, not hold for the time-
causal temporal scale-space concept based on convolution
with a cascade of truncated exponential kernels having equal
time constants and corresponding to a uniform distribution of
the temporal scale levels in units of the composed temporal
variance.

6 Influence of Discrete Temporal Scale Levels on
the Theoretical Analysis

In the theoretical analysis of scale selection properties of
(i) a temporal peak in Sect. 4.2, (ii) a temporal onset ramp
in Sect. 4.3 and (ii) a temporal sine wave in Sect. 4.4 and
Sect. 5.2, we did first compute closed-form expressions for
how the scale-normalized temporal magnitude measures
depend upon the temporal scale levels τK = Kμ2 according
to (62), (69) and (79) for the time-causal scale-space con-
cept based on truncated exponential kernels with equal time
constant coupled in cascade or how the scale-normalized
magnitude measure depends on the temporal scale level
τK = c2K τ0 according to (96) for the time-causal temporal
scale-space concept based on the scale-invariant limit kernel:

Mpeak,uni(K ) = −Lζ ζ (μ(K + K0 − 1); μ, K )

= K γ μ2γ−3e−K−K0+1(K + K0 − 1)K+K0−2

Γ (K + K0)
, (107)
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Monset,uni(K ) = Lζ (μ(K0 + K − 1); μ, K )

=
(√

Kμ
)γ

(K + K0 − 1)K+K0−1e−K−K0+1

μΓ (K + K0)
, (108)

Msine,uni(K ) = Lζ n ,ampl(K )

= (Kμ2)nγ /2ωn
0(

1 + μ2 ω2
0

)K/2 , (109)

Msine,limit(K ) = Lζ n ,ampl(c
2K τ0)

= (c2K τ0)
nγ /2ωn

∞∏
k=1

1√
1 + c−2k(c2 − 1)c2K τ0 ω2

.

(110)

Then, to compute the temporal scale levels at which the
scale-normalized derivative responses assumed their maxi-
mum values over temporal scales, we temporarily extended
these magnitude measures from being defined over discrete
integer temporal scale levels K to a continuum over K , to be
able to differentiate the closed-form expressions with respect
to the temporal scale level.

A general question that could be raised in this context
therefore concerns how good approximation the results from
the continuous approximation of local extrema over scales
are with respect to a setting where the temporal scale levels
are required to be discrete. A common property of the four
types of scale-space signatures according to equations (107)–
(109) and shown in Fig. 6 is that they are unimodal, i.e.,
they assume a single maximum over temporal scales and do
first increase and then decrease. Thereby, when the continu-
ous variable Kc with its associated maximum over temporal
scales K̂c obtained from a continuous analysis is in a sec-
ond stage restricted to be discrete, it follows that the discrete
maximum over discrete temporal scales K̂d is guaranteed to
be assumed at either the nearest lower or the nearest higher
integer. Thus, we obtain the discrete temporal scale estimate
by rounding the continuous scale estimate K̂c to either the
nearest lower or the nearest higher integer.

Whether the value should be rounded upwards or down-
wards depends on how close the continuous estimate K̂c is
to the nearest downwards versus upwards integers and on
the local degree of asymmetry of the scale-space signature
around the maximum over temporal scales.

When implementing and executing a temporal scale selec-
tion algorithm in practice, the situation can on the other hand
be reverse. Given a set of discrete temporal scale levels, we
may detect a local maximum over temporal scales at some
discrete temporal scale level K̂d. If we would like to use this
temporal scale estimate for estimating the temporal dura-
tion of the underlying temporal structure that gave rise to
the response, e.g. according to the methodology outlined in
“Appendix 3”, we may on the other hand would like to com-

pute a better continuous estimate K̂c of the temporal scale
level than as restricted by the discrete temporal scale levels.

A straightforward way of computing amore accurate tem-
poral scale estimate in such a situation is by interpolating
a parabola over the measurements over the temporal scale
levels in an analogous way as subresolution spatial scale
estimates can be obtained over a spatial scale-space rep-
resentation [62,76,85]. Let (x0, y0) denote the scale level
and the magnitude measure at the discrete maximum and let
(x0−1, y−1) and (x0+1, y1) denote the corresponding scale
level and magnitude measure at the nearest lower and upper
temporal scales, respectively. Assuming the following form
of the interpolating function

y(x) = a
(x − x0)2

2
+ b (x − x0) + c, (111)

the interpolation coefficients become

a = y1 − 2y0 + y−1 (112)

b = (y1 − y−1)/2 (113)

c = y0 (114)

with the corresponding subresolution estimate of the maxi-
mum over scales

x̂ = x0 − b

a
= x0 − y1 − y−1

2(y1 − 2y0 + y−1)
. (115)

Note that the correction offset �x = −b/a is restricted to
the interval �x ∈ [−1/2, 1/2] implying that the location x0
of the discrete maximum is guaranteed to be on the sampling
grid point xi nearest to the subresolution estimate x̂ .

7 Temporal Scale Selection for 1-D Temporal
Signals

To illustrate the derived scale selection properties, we will
in this section show the result of applying temporal scale
selection to different types of purely temporal signals.

The bottom rows in Fig. 7 shows a one-dimensional model
signal having a temporally varying frequency of the form

f (t) = sin

(
exp

(
b − t

a

))
(116)

defined such that the local wavelength increases with time t .
Figure8 shows the temporal scale-space representation of the
scale-normalized second-order temporal −Lζ ζ as function
of scale for the maximally scale-invariant choice of γ = 1
corresponding to p = 1. Note how structures in the signal
of longer temporal duration give rise responses at coarser
temporal scales in agreement with the derived theoretical
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Temporal peak for K0 = 5 Scale-space signature Mpeak,uni(K)

Temporal onset ramp for K0 = 5 Scale-space signature

0.19

0.18

0.17

Monset,uni(K)

Sine wave for ω0 = 1 Scale-space signature Msine,uni(K)

Sine wave for ω0 = 1 Scale-space signature Msine,limit(K)

Fig. 6 Graphs of the three types of model signals for which closed-
form expressions can be computed for how the scale-normalized
derivative-based magnitude responses vary as function of the scale
parameter: (top row) Time-causal temporal peak model according to
(43) with temporal duration determined by K0 = 5 for which the
second-order scale-normalized temporal derivative response at the peak
varies according to (107) here with γ = 3/4, (second row) Time-causal
onset ramp model according to (66) with temporal duration determined
by K0 = 5 for which the first-order scale-normalized temporal deriva-
tive response at the ramp varies according to (108) here with γ = 1/2,
(third row) Temporal sine wave according to (73) with angular fre-
quency ω0 = 1 for which the amplitude of the second-order temporal
derivative response varies according to (109) here with γ = 1 and
(bottom row) Temporal sinewave according to (91) forwhich the ampli-

tude of the second-order temporal response measure varies according
to (110) here with γ = 1 . The scale-space signatures in the first three
rows have been computed using the time-causal temporal scale-space
concept based on truncated exponential kernels with equal time con-
stants μ = 1 coupled in cascade, whereas the scale-space signature
in the bottom row has been computed using the time-causal temporal
scale-space concept obtained by convolution with the scale-invariant
limit kernel with distribution parameter c = 2. Note specifically that
the shape of the scale-space signature in the third row is different from
the shape in the fourth row because of the uniform distribution of tem-
poral scale levels K in the third row and the logarithmic distribution in
the fourth row (horizontal axis for the figures in the left column: time
t) (Horizontal axis for the figures in the right column: temporal scale
level K )
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Fig. 7 Temporal scale selection by scale-space extrema detection
applied to a synthetic sine wave signal f (t) = sin(exp((b − t)/a))

for a = 200 and b = 1000 with temporally varying frequency so
that the wavelength increases with time t . (Top left) Temporal scale-
spacemaxima of the scale-normalized second-order temporal derivative
−Lζ ζ detected using the time-causal temporal scale-space concept cor-
responding to convolution with the time-causal limit kernel for c = √

2
and with each scale-space maximum marked at the point (t̂, σ̂ ) with
σ̂ = √

τ̂ at which the scale-space maximum is assumed. (Top right)

Temporal scale-space maxima detected using the non-causal Gaussian
temporal scale-space concept using five temporal scale levels per scale
octave. For both temporal scale-space concepts, the scale-normalized
temporal derivatives have been defined using l p-normalization for
p = 2/3 and corresponding to γ = 3/4 for second-order temporal
derivatives (horizontal axis time t) (Vertical axis in top row Temporal
scale estimates in units of σ = √

τ ) (vertical axis in bottom row Signal
strength f (t))

properties of the scale-covariant scale-space concepts over a
time-causal vs. a non-causal temporal domain.

In the top rows in Fig. 7 we show the results of apply-
ing local temporal scale selection by detecting local maxima
over both time and scale of the scale-normalized second-
order temporal derivative −Lζ ζ for the scale-calibrated
choice of γ = 3/4 corresponding to p = 2/3. Each
detected scale-space extremum has been marked by a star
at the point in scale-space (t̂, σ̂ ) = (t̂,

√
τ̂ ) at which the

local maximum over temporal scale was assumed. Such
temporal scale selection has been performed using two
types of temporal scale-space concepts: (i) based on the
time-causal scale-space representation corresponding to con-
volutionwith the scale-invariant limit kernelwith distribution
parameter c = √

2 approximated by a finite number of
the at least K = 8 slowest primitive smoothing steps at
the finest level of scale or (ii) based on the non-causal
Gaussian kernel using 5 temporal scale levels per scale
octave.

The discrete implementation of the time-causal tempo-
ral scale-space representation corresponding to convolution
with the scale-invariant limit kernel has been based on recur-
sive filters over time according to the methodology described
in Lindeberg [75, section6.2] whereas the discrete imple-
mentation of the non-causal Gaussian temporal scale-space
concept has been based on the discrete analogue of the

Gaussian kernel described in Lindeberg [53,54]. Discrete
implementation of scale-normalized temporal derivatives has
in turn been based on discrete l p-normalization according to
the methodology outlined in [75, section7].

As can be seen from the results in the top rows in Fig. 7,
the temporal scale estimates σ̂ increase proportional to the
local wavelength λ according to the derived scale-invariant
properties of the temporal scale-space concepts based on con-
volution with the time-causal limit kernel or the non-causal
Gaussian kernel. The scale estimates obtained using the time-
causal versus the non-causal temporal scale-space concepts
are, however, not equal in units of the standard deviation σ̂

of the temporal scale-space kernel—see also the theoretical
analysis in Sect. 5 with specifically the numerical compar-
isons in Table4. Thus, different scale calibration factors are
needed to transform the temporal scale estimates in units of
the temporal standard deviation to units of the temporal dura-
tion of the signal for the time-causal versus the non-causal
Gaussian temporal scale-space concepts—compare with the
theoretical analysis in “Appendix 3”.

Another qualitative difference that can be noted with
regard to temporal scale selection in a time-causal tempo-
ral scale-space representation versus a non-causal Gaussian
temporal scale-space representation is that any measurement
performed in a time-causal temporal scale-space concept is
associated with an inherent temporal delay δ, whereas the
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−Lζζ computed with time-causal limit kernel −Lζζ computed with non-causal Gaussian kernel

Fig. 8 Temporal scale-space representation of the scale-normalized
second-order temporal derivative−Lζ ζ computed from a synthetic sine
wave signal f (t) = sin(exp((b − t)/a)) for a = 200 and b = 1000
with temporally varying frequency so that thewavelength increaseswith
time t . (Left) Using the time-causal temporal scale-space concept cor-
responding to convolution with the time-causal limit kernel for c = √

2.
(Right) Using the non-causal Gaussian temporal scale-space concept.

For both temporal scale-space concepts, the scale-normalized temporal
derivatives have been defined using l p-normalization for p = 1 and cor-
responding to γ = 1. Note how the notion of scale-normalized temporal
derivatives implies that stronger responses are obtained at temporal scale
levels proportional to the duration of the underlying structures in the
temporal signal (horizontal axis time t) (Vertical axis effective temporal
scale log τ )

temporal delay can be defined to be zero for a non-causal
Gaussian temporal scale-space. Thus, the local extrema over
scales will be assumed later with increasing temporal scale
levels as induced by temporal structures of having longer
temporal duration. Varying the parameter q in the scale cal-
ibration criteria (14) and (25) to values of q < 1 provides a
straightforward way of enforcing responses to be obtained at
finer temporal scales and thereby implying shorter temporal
delays, at the potential cost of a larger likelihood of false
positive responses by not detecting the underlying temporal
structures at the same temporal scales as they occur.

Yet another side effect of the longer temporal delays at
coarser temporal scales is that multiple local responses over
scales may be obtained with respect to the same under-
lying temporal structure, with first responses obtained at
finer temporal scales followed by later responses at coarser
temporal scales. Because of the temporal shift caused by
different temporal delays between adjacent temporal scale
levels, scale-space extrema detection over a local 3 × 3
neighbourhood may not detect a single extremum over
temporal scales as for the non-causal Gaussian temporal
scale-space concept. Therefore, explicit handling of differ-
ent temporal delays at different temporal scale levels is
needed when performing temporal scale selection in a time-
causal temporal scale-space representation. The presented
theory of temporal scale selection properties is intended
to be generally applicable with respect to different such
strategies for handling the temporal delays in specific algo-
rithms.
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Post-filtered scale-space extrema from the time-causal limit kernel

Fig. 9 The result of post-filtering the scale-space extrema shown in
Fig. 7 (left) to result in a single extremum over temporal scales for each
underlying temporal structure

7.1 Post-Filtering of Responses at Adjacent Temporal
Scales

In view of the behaviour of image structures over temporal
scales illustrated in Fig. 8, one way of suppressing multiple
responses to the same underlying structure at different tem-
poral scales is by performing an additional search around
each scale-space extremum as follows: if a point (t̂, τ̂ ) at
temporal scale level with temporal scale index k is a scale-
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space maximum, perform an additional search at the nearest
finer temporal scale level k−1 to previous temporalmoments
t − j as long as the scale-normalized values monotonically
increase. When the monotone increase stops and a local tem-
poralmaximumhas been found, then compare if the temporal
maximum value at the nearest finer temporal scale is greater
than the temporal maximum value at the current scale. If so,
suppress the scale-space maximum at the current scale. In a
corresponding manner, perform a search at the next coarser
temporal scale k + 1 to the following temporal moments
t + j as long as the scale-normalized values monotonically
increase. When the monotone increase stops and a local tem-
poralmaximumhas been found, then compare if the temporal
maximum value at the next coarser temporal scale is greater

than the temporal maximum value at the current scale. If so,
suppress the scale-space maximum at the current scale. By
this type of straightforward scale-space tracking over adja-
cent temporal scales, a single response will be obtained to
the same underlying structure as illustrated in Fig. 9. Addi-
tionally, a more accurate temporal scale estimate can be
computed by performing the parabolic interpolation accord-
ing to (111) and (115) over the nearest backward and forward
temporal maxima at the adjacent finer and coarser temporal
scales as opposed to an interpolation over temporal scales at
the same temporal moment as at which the temporal scale-
space maximum was assumed.

Note that in a real-time situation, the necessary informa-
tion needed to perform a search to the past can be stored
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Fig. 10 Illustration of the temporal dynamics over multiple temporal
scales that arises when a temporal scale-space representation responds
to a temporal peak with temporal standard deviation σ0 = 32 for (left
column) the time-causal representation corresponding to convolution
with the time-causal limit kernel and (right column) the non-causal
Gaussian temporal scale space. (Top row) Graphs of the input kernels
for the cases of a time-causal peak and a non-causal peak, respectively.
(Bottom row) Scale-space maps of the scale-normalized second-order
temporal derivative −Lζ ζ . Note that if we slice the time-causal scale-
space map vertically at a temporal moment before the full development

of the temporal scale-spacemaximum at the temporal scale correspond-
ing to the temporal scale of the peak, we will get earlier temporal
responses at finer temporal scales, whereas if we slice the time-causal
scale-space map at a temporal moment after the full development of the
temporal scale-space maximum, we will get later temporal responses at
coarser temporal scales. When handling multiple temporal scale levels
in a time-causal real-time situation, it is therefore natural to include
explicit mechanisms for tracking and handling how the temporal struc-
tures evolve over temporal scales (horizontal axis time t) (vertical axis
in bottom row effective temporal scale log τ )
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Fig. 11 The result of performing temporal delay compensation of the
scale-space extrema shown in Fig. 9 by correcting the temporal moment
t̂ of the scale-space extremum by an estimate of the temporal delay
computed from the position of the temporal maximum of the temporal

scale-space kernel according to [75, Section 4]. Note that although the
computations by necessity have to be associated with a temporal delay,
we can nevertheless compute a good estimate of when the underlying
event occurred that gave rise to the feature response

by a process that records the value of temporal maxima at
each temporal scale. In a corresponding manner, later dele-
tion or subresolution interpolation of the scale estimate of
a scale-space maximum can only be performed when time
has passed to the location of the next temporal maximum at
the nearest coarser temporal scale. If a preliminary feature
response has been obtained at any temporal scale while a
potential response at the nearest coarser temporal scale is not
available yet because of its longer temporal scale, a real-time
system operating over multiple scales should preferably be
designedwith the ability to correct or adjust preliminarymea-
surements when more information at coarser scales becomes
available—see also Fig. 10 for an illustration of the underly-
ing temporal dynamics that arises when processing signals
at multiple scales using a time-causal temporal scale-space
representation.

While these descriptions have been given regarding scale-
space maxima and local maxima, the procedure for handling
scale-space minima and local minima is analogous with the
polarity of the signal reversed.

7.2 Temporal Delay Compensation

In Fig. 11wehave additionally adjusted the temporal location
of every temporal scale-spacemaximumby an estimate of the
temporal delay δ computed from the location of the tempo-
ral maximum of the underlying temporal scale-space kernel
according to [75, Section4]. Note that although any temporal
event detected at a coarser temporal scalewill by necessity be
associated with nonzero temporal delay, we can nevertheless
retrospectively compute a good estimate of when the under-
lying event occurred that gave rise to the registered feature
response.

7.3 Temporal Scale Selection for a Real Measurement
Signal

While a main purpose of this article is to develop a theory
of temporal scale selection to be used in conjunction with a
spatio-temporal scale-space concept for video analysis or a
spectro-temporal scale-space concept for audio analysis, we
argue that this theory is applicable to much larger classes
of time-dependent measurement signals. For the purpose of
isolating the effect to a purely one-dimensional measure-
ment signal, we do in Fig. 12 show the result of applying
corresponding temporal scale selection to a real measure-
ment signal showinghourlymeasurements of the temperature
at a weather station. Note how the temporal scale selection
method based on scale-space extrema is able to extract the
coarse scale temperature peaks although the signal contains
substantial high-amplitude variations at finer scales.

For the purpose of having the local feature responses being
less dependent on the local phase of the signal than for either
first- or second-order temporal derivatives Lζ or Lζ ζ , we do
in Fig. 13 show the result of computing a quasi quadrature
measure

Qt L = L2
ζ + CL2

ζ ζ

tΓ
(117)

derived in [74] to for

C = 1√
(1 − Γ ))(2 − Γ )

(118)

constitute an improved version of an earlier proposed quasi
quadrature measure in Lindeberg [60].
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Fig. 12 Temporal scale selection by scale-space extrema detection
applied to a measured temperature signal (showing hourly temper-
ature measurements at Tullinge outside Stockholm during the years
1997–2002, open data courtesy of the Swedish Meteorological and
Hydrological Institute, SMHI, in Sweden). (Top left) Temporal scale-
spacemaxima of the scale-normalized second-order temporal derivative
−Lζ ζ detected using the time-causal temporal scale-space concept cor-
responding to convolution with the time-causal limit kernel for c = √

2
and with each scale-space maximum marked at the delay-compensated
point (t̂ − δ, σ̂ ) with σ̂ = √

τ̂ at which the scale-space maximum is
assumed with the temporal delay estimate δ determined from the tem-

poral location of the peak of the corresponding temporal scale-space
kernel at the given scale. (Top right) Temporal scale-space maxima
detected using the non-causal Gaussian temporal scale-space concept
using five temporal scale levels per scale octave. For both temporal
scale-space concepts, the scale-normalized temporal derivatives have
been defined using discrete l p-normalization for p = 2/3 correspond-
ing to γ = 3/4 for second-order temporal derivatives. Note how the
temporal scale selection method is able to extract the coarse scale tem-
poral phenomena although the signal contains very strong variations at
finer temporal scales (horizontal axis time t in units of days) (Vertical
axis t in upper figure temporal scale estimates in units of days)

Quasi quadrature
√QtL computed with time-causal
limit kernel

Quasi quadrature
√QtL computed with non-causal

Gaussian kernel

Fig. 13 Temporal scale-space representation of the scale-normalized
quasi quadrature measure Qt L = (L2

ζ + CL2
ζ ζ )/tΓ for C =

1/
√

(1 − Γ ))(2 − Γ ), γ = 1 and Γ = 0 computed from the
temperature signal in Fig. 12. (Left) Using the time-causal temporal
scale-space concept corresponding to convolution with the time-causal
limit kernel for c = √

2. (Right) Using the non-causal Gaussian tem-
poral scale-space concept. For both temporal scale-space concepts, the

scale-normalized temporal derivatives have been defined using discrete
l p-normalization. Note how this operator responds to different types
of temporal structures at different temporal scales with a particularly
strong response due to temporal variations caused by the annual tem-
perature cycle (horizontal axis time t) (Vertical axis effective temporal
scale log τ )

Note how this operator responds to different types of
temporal structures at different temporal scales with a partic-
ularly strong response due to the temporal variations caused

by the daily and annual temperature cycles. This effect
becomes more immediately noticeable if we complement the
above temporal scale selection method with a complemen-
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Fig. 14 Graphs that for each temporal scale level σk show the sum
of the quasi quadrature responses in Fig. 13 over time t . With a com-
plementary stationarity assumption, the peaks over temporal scales
reflect the temporal scale levels σk at which there is the largest scale-
normalized variability in terms of first- and second-order temporal
derivative responses. For the time-causal model to the left, the local
maxima over temporal scale are assumed at temporal scale levels
σ̂1 = 0.207 days and σ̂2 = 71.5 days, respectively. For the non-causal

model to the right, the local maxima over temporal scales are assumed
at temporal scale levels σ̂1 = 0.236 days and σ̂2 = 85.2 days. The ratios
between these temporal scale levels are 332 for the time-causal model
and 345 for the non-causal model in good qualitative agreement with
the finer scale peaks corresponding to the daily cycle and the coarser
scale peaks corresponding to the yearly cycle of 365days (horizontal
axis temporal scale index k corresponding to a uniform sampling in
terms of effective temporal scale log τ )

tary assumption about stationarity of the signal and sum up
the scale-normalized feature responses of the quasi quadra-
ture measure over time for every temporal scale level. In the
graphs shown in Fig. 14 we do then obtain two major peaks
over temporal scales, with the finer scale peak corresponding
to the daily temperature cycle and the coarser scale peak to
the annual temperature cycle.

Note that the purpose of this experiment is not primar-
ily to develop an algorithm for detecting periodic variations
in a signal but to illustrate that the temporal scale selection
mechanism produces intuitively reasonable temporal scale
estimates for a real-world 1-D signal with known properties.

7.4 Numerical Accuracy of the Temporal Scale
Estimates

To investigate how well the temporal scale estimates gen-
erated by the resulting temporal scale selection mechanism
reflect the temporal scale in the underlying temporal sig-
nal, we generated temporal model signals defined as either
(i) a temporal peak modelled as time-causal limit kernel with
temporal scale τ0 and distribution parameter c for different
values of τ0 and c and (ii) a temporal onset ramp modelled
as the primitive function of the temporal peak model. Then,
we detected scale-space extrema of the second-order scale-
normalized temporal derivative −Lζ ζ for peak detection or
scale-space extrema of the first-order scale-normalized tem-
poral derivative Lζ for onset detection, using the time-causal
temporal scale-space concept corresponding to convolution
with the time-causal limit kernel for the same value of c and
resulting in temporal scale estimates σ̂ = √

τ̂ .

Table 5 Experimental results of the accuracy of the temporal scale
estimates when detecting temporal scale-space extrema of the scale-
normalized derivative−Lζ ζ in a temporal peak defined as a time-causal
limit kernel with temporal standard deviation σ0 = √

τ0 for distribution
parameter c and then detecting the strongest temporal scale-space max-
imum with temporal scale estimate σ̂ = √

τ̂ also using the same value
of the distribution parameter c and for two ways of defining temporal
scale-normalized derivatives by either (i) discrete l p-normalization or
(ii) variance-based normalization

c = √
2 c = 2

σ0 σ̂0
∣∣
L p

σ̂0
∣∣
var σ0 σ̂0

∣∣
L p

σ̂0
∣∣
var

Temporal scale estimates from temporal peaks

2 2.26 2.14 2 1.58 2.16

4 4.11 4.05 4 4.57 4.06

8 7.76 8.06 8 8.02 7.96

16 15.90 16.03 16 15.60 15.86

32 31.97 32.06 32 31.35 31.66

64 64.12 64.13 64 63.15 63.31

Tables5 and 6 show results from this experiment for the
time-causal temporal peak and the temporal onset rampmod-
els, respectively.Note howwell the theoretical temporal scale
selection results derived for truncated exponential kernels
with a uniform distribution of the temporal scale levels in
Sects. 4.2 and 4.3 do also generalize to truncated exponential
kernels with a logarithmic distribution of the temporal scale
levels. Table7 shows corresponding results for the non-causal
Gaussian scale-space concept applied to non-causal tempo-
ral peak and temporal onset ramp models, respectively, and
again with a very good agreement between the local scale
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Table 6 Experimental results of the accuracy of the temporal scale
estimates when detecting temporal scale-space extrema of the scale-
normalized derivative Lζ in a temporal onset ramp defined as the
primitive function of a time-causal limit kernel with temporal standard
deviation σ0 = √

τ0 for distribution parameter c and then detecting
the strongest temporal scale-space maximum with temporal scale esti-
mate σ̂ = √

τ̂ also using the same value of the distribution parameter c
and for two ways of defining temporal scale-normalized derivatives by
either (i) discrete l p-normalization or (ii) variance-based normalization

c = √
2 c = 2

σ0 σ̂0
∣∣
L p

σ̂0
∣∣
var σ0 σ̂0

∣∣
L p

σ̂0
∣∣
var

Temporal scale estimates from temporal onset ramps

2 2.01 1.96 2 2.04 1.97

4 3.66 3.90 4 3.68 3.98

8 7.71 8.02 8 7.60 7.94

16 15.68 16.02 16 15.42 15.90

32 32.00 32.04 32 31.48 31.77

64 64.08 64.08 64 63.44 63.54

Table 7 Experimental results of the accuracy of the temporal scale
estimates for the non-causal Gaussian temporal scale-space concept
when applied to the detection temporal scale-space maxima of the
scale-normalized derivative −Lζ ζ for a temporal peak and to the scale-
normalized derivative Lζ for onset ramp detection for two ways of
defining temporal scale-normalized derivatives by either (i) discrete l p-
normalization or (ii) variance-based normalization

Temporal peak Temporal onset ramp

σ0 σ̂0
∣∣
L p

σ̂0
∣∣
var σ0 σ̂0

∣∣
L p

σ̂0
∣∣
var

Temporal scale estimates from non-causal Gaussian scale space

2 2.95 1.92 2 1.59 2.07

4 4.04 3.97 4 3.86 4.03

8 8.10 7.98 8 7.92 8.02

16 15.89 15.99 16 15.94 16.01

32 32.06 32.00 32 31.97 32.00

64 64.02 64.00 64 63.97 64.00

estimates σ̂ in relation to the inherent temporal scale σ0 in
the signal.

For this experiment,we can specifically note that variance-
based temporal scale normalization does on average lead
to slightly more accurate temporal scale estimates com-
pared to discrete l p-normalization, which can be contrasted
to previous results regarding spatial scale selection in
hybrid pyramids by Lindeberg and Bretzner [76], where l p-
normalization lead to much more accurate scale selection
results compared to variance-based normalization.

8 Temporal Scale Selection in Spatio-Temporal
Video Data

In this section, we will develop a basic proof of concept of
applying the proposed theory and methodology for selecting
local temporal scales in video data based on a small set of spe-
cific spatio-temporal feature detectors formulated in terms of
spatio-temporal differential invariants. Amore detailed treat-
ment of this topic with examples for more general families
of differential expressions for spatio-temporal scale selec-
tion with associated spatio-temporal image models for scale
calibration is presented in a companion paper [74].

8.1 Spatio-Temporal Receptive Field Model

For applying the proposed framework for temporal scale
selection to spatio-temporal video data, we follow the
approach with idealized models of spatio-temporal receptive
fields of the form

T (x1, x2, t; s, τ ; v,Σ)=g(x1−v1t, x2−v2t; s,Σ) h(t; τ)

(119)

as previously derived, proposed and studied in Lindeberg
[66,68,75] where

– x = (x1, x2)T denotes the image coordinates,
– t denotes time,
– s denotes the spatial scale,
– τ denotes the temporal scale,
– v = (v1, v2)

T denotes a local image velocity,
– Σ denotes a spatial covariance matrix determining the
spatial shape of an affine Gaussian kernel g(x; s,Σ) =

1
2πs

√
detΣ

e−xT Σ−1x/2s ,

– g(x1−v1t, x2−v2t; s,Σ) denotes a spatial affine Gaus-
sian kernel that moves with image velocity v = (v1, v2)

in space–time and
– h(t; τ) is a temporal smoothing kernel over time.

and we specifically here choose as temporal smoothing ker-
nel over time either (i) the time-causal temporal scale-space
kernel corresponding to a set of first-order integrators with
equal time constants coupled in cascade (37)

h(t; τ) = U (t; μ, K ) = t K−1 e−t/μ

μK Γ (K )
(120)
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with τ = Kμ2 or (ii) the time-causal limit kernel

h(t; τ) = Ψ (t; τ, c) (121)

defined via its Fourier transform of the form (90).
For simplicity, we shall in this treatment restrict ourselves

to space–time separable receptive fields obtained by setting
the image velocity to zero v = (v1, v2) = (0, 0) and to recep-
tive fields that are rotationally symmetric over the spatial
domain as obtained by setting the spatial covariance matrix
to a unit matrix Σ = I . The resulting spatio-temporal recep-
tive fields that we then obtain correspond to complementing
our time-causal temporal scale-space concepts studied in
Sects. 4, 5 with a rotationally symmetric spatial Gaussian
scale-space concept over the spatial domain.

Specifically, the naturalwayof expressing spatio-temporal
scale selection mechanisms within this space–time separable
spatio-temporal scale-space concept

L(x1, x2, t; s, τ )=(T (·, ·, ·; s, τ )∗ f (·, ·, ·))(x1, x2, t; s, τ )

(122)

is by studying scale-normalized partial derivates of the form
[75, Section8.5, Equation (108)]

Lx
m1
1 x

m2
2 tn ,norm = s(m1+m2)γs/2 αn(τ ) Lx

m1
1 x

m2
2 tn . (123)

where the factor s(m1+m2)γs/2 transforms the regular partial
spatial derivatives to corresponding scale-normalized spatial
derivatives with γs denoting the spatial scale normalization
parameter [62] and the factorαn(τ ) is the scale normalization
factor for scale-normalized temporal derivatives according to
either variance-based normalization [75, Section7.2, Equa-
tion (74)]

αn(τ ) = τ nγτ /2 (124)

with γτ denoting the temporal scale normalization parameter
for scale-normalized temporal derivatives according to L p-
normalization [75, Section7.2, Equation (76)]

αn(τ ) = ‖gξn (·; τ)‖p

‖htn (·; τ)‖p
= Gn,γτ

‖htn (·; τ)‖p
. (125)

and Gn,γτ denotes the L p-norm of the non-causal temporal
Gaussian derivative kernel for the γτ -value for which this
Lp-norm becomes constant over temporal scales.

8.2 Differential Entities for Spatio-Temporal Scale
Selection

Inspired by the way neurons in the lateral geniculate nucleus
(LGN) respond to visual input [14,15], which for many LGN

cells can bemodelled by idealized operations of the form [68,
Equation (108)]

hLGN (x, y, t; s, τ ) = ±(∂xx + ∂yy) g(x, y; s) ∂tn h(t; τ),

(126)

let us consider the following differential entities [75, Sec-
tion8.4, Equations (95)–(96)]

∂t (∇2
(x,y)L) = Lxxt + Lyyt (127)

∂t t (∇2
(x,y)L) = Lxxtt + Lyytt (128)

which correspond to first- and second-order temporal deriva-
tives of the spatial Laplacian operator and study the corre-
sponding scale-normalized spatio-temporal derivative expres-
sions for γs = 1:

∂t,norm(∇2
(x,y),normL) = s α1(τ ) (Lxxt + Lyyt )

= s α1(τ ) ∂t (∇2
(x,y)L), (129)

∂t t,norm(∇2
(x,y),normL) = s α2(τ ) (Lxxtt + Lyytt )

= s α2(τ ) ∂t t (∇2
(x,y)L). (130)

Notably, we do not focus on extending the previously estab-
lished use of the spatial Laplacian operator for spatial scale
selection to a spatio-temporal Laplacian operator for spatio-
temporal scale selection, since the most straightforward way
of defining such an operator ∇2

(x,y,t)L = Lxx + Lyy + κ2Ltt

for some κ is not covariant under independent rescaling of
the spatial and temporal coordinates as occurs if observing
the same scene with cameras having independently different
spatial and temporal sampling rates. The differential enti-
ties ∂t,norm(∇2

(x,y),normL) and ∂t t,norm(∇2
(x,y),normL) are on

the other hand truly covariant under independent rescalings
of the spatial and temporal dimensions and therefore better
candidates to be used as primitives in spatio-temporal scale
selection algorithms.

8.3 Spatio-Temporal Scale Selection Properties

8.3.1 Response to a Localized Gaussian Blink

Consider a local idealized spatio-temporal image pattern
defined as the combination of a rotationally symmetric
Gaussian blob g(x, y; s0) over the spatial domain and a
time-causal temporal peak U (t; μ, K0) of the form (43)
over the temporal domain

f (x, y, t) = g(x, y; s0)U (t; μ, K0). (131)

Ifwe define the spatio-temporal scale-space representation of
this spatio-temporal image pattern of the form (122) with the
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temporal scale-space kernel chosen as the composed kernel
U (t; μ, K ) corresponding to a cascade of first-order inte-
grators with equal time constants coupled in cascade (120),
then it follows from the semi-group property of the spatial
Gaussian kernel and the semi-groupproperty (45) of the time-
causal temporal kernel U (t; μ, K ) that the spatio-temporal
scale-space representation will be of the form

L(x, y, t; s, τ ) = g(x, y; s0 + s)U (t; μ, K0 + K ). (132)

The second-order temporal derivative of the spatial Lapla-
cian of the Gaussian Specifically, the scale-normalized
differential entity ∂t t,norm(∇2

(x,y),normL) constituting an ide-
alized model of a “lagged” LGN cell [75, Figure3(right)]
will by a combination of the Laplacian response of Gaussian

∇2g(x, y; s) = (x2 + y2 − 2s)/s2 g(x, y; s), (133)

the second-order temporal derivative of Ltt (t; μ, K ) of a
time-causal peak in Eq. (47) and the temporal scale normal-
ization operation

Lζ ζ (t; μ, K ) = (μ2K )γτ Ltt (t; μ, K ) (134)

in Eq. (54) assume the form

∂t t,norm(∇2
(x,y),normL)

= (μ2K )γτ

μ2t2

(
μ2

(
K 2 + K (2K0 − 3) + K 2

0 − 3K0 + 2
)

− 2μt (K + K0 − 1) + t2
)

× (x2 + y2 − 2(s0 + s))

(s0 + s)2
g(x, y; s0 + s)U (t; μ,

K0 + K ). (135)

Specifically, based on previously established scale selection
properties of the spatial Laplacian of the Gaussian [62,70]
and the second-order scale-normalized temporal derivatives
of the time-causal scale space (Sect. 4.2), it follows that this
spatio-temporal differential entity will for spatial and tem-
poral scale normalization powers γs = 1 and γτ = 3/4,
respectively, assume its local extremum over both spatial and
temporal scales at spatial scale

ŝ = s0 (136)

and at a temporal scale that is a good approximation of the
temporal scale of the temporal peak K̂ ≈ K0 corresponding
to (see Table1)

τ̂ ≈ τ0. (137)

Thus, simultaneous spatio-temporal scale selection using the
differential entity ∂t t,norm(∇2

(x,y),normL) applied to themodel
signal (131) will estimate both the spatial extent and the tem-
poral duration of the Gaussian blink.

The determinant of the spatio-temporal Hessian For gen-
eral values of the spatial and temporal scale normalization
parameters γs and γτ , the determinant of the spatio-temporal
Hessian is given by

detH(x,y,t),normL = s2γs τγτ
(
Lxx L yy Ltt + 2Lxy Lxt L yt

−Lxx L
2
yt − Lyy L

2
xt − Ltt L

2
xy

)
.

(138)

In the specific case when the spatio-temporal scale-space
representation of a time-causal Gaussian blink is of the form
(132), if we restrict the analysis to the spatial origin (x, y) =
(0, 0) where gx = gy = 0 and to the temporal maximum
point tmax where ht = 0, implying that Lxy = Lxt = Lyt =
0, it follows that the determinant of spatio-temporal Hessian
at the spatio-temporal maximum reduces to the form

detH(x,y,t),normL
∣∣
(x,y)=(0,0),t=tmax

=
(
s2γs g gxx gyy

)∣∣∣
(x,y)=(0,0)

(
(μ2K )γτ U 2Utt

)∣∣∣
t=tmax

,

(139)

we can observe that the spatial and temporal scale selection
properties of the determinant of the spatio-temporal Hessian
will be different from the scale selection properties of the
second-order temporal derivative of the spatial Laplacian.
In a companion paper [74], it is shown that for a corre-
sponding non-causalGaussian temporal scale-space concept,
spatial and temporal scale normalization parameters equal to
γs = 5/4 and γτ = 5/4 lead to scale estimates ŝ and τ̂ cor-
responding to the spatial and temporal extents ŝ = s0 and
τ̂ = τ0 of a Gaussian blink.

Byperforming a corresponding studyof the temporal scale
selection properties of the purely temporal component of this
expression

θnorm =
(
(μ2K )γτ U 2Utt

)∣∣∣
t=tmax

(140)

for the specific case of time-causal temporal scale-space
representation based on a uniform distribution of the inter-
mediate temporal scale levels as previously done for the
temporal scale selection properties of the second-order tem-
poral derivative of a temporal peak in Table1, we obtain the
results shown in Table8. The column labelled K̂ shows that
the maximum over temporal scales is obtained at a temporal
scale level near the temporal scale of the underlying temporal
peak
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τ̂ ≈ τ0, (141)

whereas the column labelled θpostnorm shows that if we nor-
malize the input signal f (t) = U (t; μ, K0) to having unit
contrast, then the corresponding post-normalized differential
entity

θpostnorm
∣∣
γ=1 = 1

τ 1/4
θnorm|γ=5/4 = K

K + K0 − 1
(142)

is approximately constant for temporal peaks with differ-
ent temporal duration as determined by the parameter K0.
In these respects, this time-causal scale selection method
implies a good approximate transfer of the scale selection
property of treating similar temporal structures of different
temporal duration in a uniform manner.

8.3.2 Response to a Localized Gaussian Onset Blob

Consider a local idealized spatio-temporal image pattern
defined as the combination of a rotationally symmetric
Gaussian blob g(x, y; s0) over the spatial domain and a
time-causal onset ramp

∫ t
u=0U (u; μ, K0) du of the form

(66) over the temporal domain

f (x, y, t) = g(x, y; s0)
∫ t

u=0
U (u; μ, K0) du. (143)

Again defining the temporal scale-space representation of
this spatio-temporal image pattern of the form (122) with the
temporal scale-space kernel chosen as the composed kernel
U (t; μ, K ) corresponding to a cascade of first-order inte-
grators with equal time constants coupled in cascade (120), it
follows from the semi-group property of the spatial Gaussian
kernel and the semi-group property (45) of the time-causal
temporal kernel U (t; μ, K ) that the spatio-temporal scale-
space representation will be of the form

L(x, y, t; s, τ ) = g(x, y; s0 + s)
∫ t

u=0
U (u; μ, K0) du.

(144)

The first-order temporal derivative of the spatial Lapla-
cian of the Gaussian For the scale-normalized differen-
tial entity ∂t,norm(∇2

(x,y),normL) constituting an idealized
model of a “non-lagged” LGN cell [75, Figure3(left)] will
by a combination of the Laplacian response of Gaussian
∇2g(x, y; s) = (x2+ y2−2s)/s2 g(x, y; s), the first-order
temporal derivative Lt (t; μ, K ) of a time-causal onset ramp
in Eq. (68) and the temporal scale normalization operation
Lζ (t; μ, K ) = (μ

√
K )γτ Lt (t; μ, K ) in Eq. (53) assume

the form

Table 8 Numerical estimates of the value of K̂ at which the tem-
poral component of the determinant of the spatio-temporal Hessian
assumes its maximum over temporal scale (with the discrete expres-
sion over discrete temporal scales extended to a continuous variation)
as function of K0 and for either (i) variance-based normalization
with γ = 5/4, (iii) variance-based normalization with γ = 1 and
(iv) L p-normalization with p = 1; For the case of variance-based nor-
malization with γ = 5/4, (ii) the post-normalized magnitude measure
Lζ ζ,maxmagn,norm

∣∣
γ=1 according to (20) and at the corresponding scale

(i) is also shown

K0 K̂ (var, γ = 5/4) θpostnorm
∣∣
γ=1 (var, γ = 5/4)

Scale estimate K̂ and max magnitude θpostnorm from temporal peak
(uniform distr)

4 3.1 0.508

8 7.1 0.503

16 15.1 0.501

32 31.1 0.502

64 63.1 0.501

Note that for γ = 5/4 the temporal scale estimate K̂ constitutes a good
approximation to the temporal scale estimate being proportional to the
temporal scale of the underlying temporal peak and that the maximum
magnitude estimate θpostnorm

∣∣
γ=1 constitutes a good approximation to

themaximummagnitudemeasure being constant under variations of the
temporal duration of the underlying spatio-temporal image structure

∂t,norm(∇2
(x,y),normL)

= (x2 + y2 − 2(s0 + s))

(s0 + s)2
g(x, y; s0 + s)

× (μ
√
K )γτ U (t; μ, K0 + K ). (145)

Specifically, based on previously established scale selection
properties of the spatial Laplacian of the Gaussian [62,70]
and the first-order scale-normalized temporal derivatives of
the time-causal scale space (Sect. 4.3), it follows that this
spatio-temporal differential entity will for spatial and tem-
poral scale normalization powers γs = 1 and γτ = 1/2,
respectively, assume its local extremum over both spatial and
temporal scales at spatial scale

ŝ = s0 (146)

and at a temporal scale that is a good approximation of the
temporal scale of the temporal onset ramp K̂ ≈ K0 corre-
sponding to (see Table2)

τ̂ ≈ τ0. (147)

Thus, simultaneous spatio-temporal scale selection using the
differential entity ∂t,norm(∇2

(x,y),normL) applied to the model
signal (143) will estimate both the spatial extent and the tem-
poral duration of a Gaussian onset blob.
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8.4 General Scale Selection Property for Temporal
Modelling and Time-Causal Scale Space Based on
the Scale-Invariant Time-Causal Limit Kernel

If we instead model the Gaussian blink (131) and the onset
Gaussian blob (143) by the scale-invariant time-causal limit
kernel Ψ (t; τ, c) over the temporal domain

f (x, y, t) = g(x, y; s0) Ψ (t; τ, c), (148)

f (x, y, t) = g(x, y; s0)
∫ t

u=0
Ψ (u; τ, c) du, (149)

then by the general transformation property of the time-
causal limit kernel under temporal scaling transformations
by a temporal scaling factor S = c j that is an integer power
of the distribution parameter c of the time-causal limit kernel
[75, Equation (44)]

S Ψ (S t; S2τ, c) = Ψ (t; τ, c), (150)

it holds that the corresponding spatio-temporal scale-space
representations of two temporally scaled video sequences
f ′(x ′, y′, t) = f (x, y, t) for (x ′, y′, t ′) = (x, y, St) are
related according to Lindeberg [75, Equation (46)]

L ′(x ′, y′; , t ′; s′, τ ′, c) = L(x, y, t; s, τ, c) (151)

for (s′, τ ′) = (s, S2τ) if S = c j . The corresponding scale-
normalized temporal derivatives are in turn related according
to (104)

L ′
ζ ′n (x ′, y′, t ′; s′, τ ′, c) = Sn(γτ −1) Lζ n (x, y, t; s, τ, c).

(152)

If the scale-normalized temporal derivative Lζ n (x, y, t; s,
τ, c) computed from the original video sequence f assumes
a local extremum over temporal scales at (x, y, t; s, τ ) =
(x0, y0, t0; s0, τ0), then by the general scale invariance prop-
erty of temporal scale selection in the temporal scale-space
concept based on the time-causal limit kernel, which is
described in Sect. 5.3, it follows that the scale-normalized
temporal derivative Lζ ′n (x ′, y′, t ′; s′, τ ′, c) computed from
the temporally scaled video sequence f ′ will assume a local
extremum over temporal scales at

(x ′
0, y

′
0, t

′
0; s′

0, τ
′
0) = (x0, y0, St0; s0, S

2τ0). (153)

This scale-invariant property can also be extended to spatio-
temporal derivatives Lξm1ηm2 ζ n and spatio-temporal differ-
ential invariants Dnorm defined in terms of homogenous
polynomials as well as homogeneous rational expressions
of such scale-normalized spatio-temporal derivatives. In this

way, byperformingboth the temporalmodelling of the under-
lying temporal signal in terms of the time-causal limit kernel
and using a temporal scale-space concept based on the time-
causal limit kernel, we can support fully scale-covariant
temporal scale estimates for temporal scale selection in video
data defined over a time-causal spatio-temporal domain.

The only component that remains is to determine how the
original temporal scale estimate τ̂ depends on the distribution
parameter c and the temporal scale normalization parameter
γτ for some value of τ0.

9 Temporal Scale Selection in Spectro-Temporal
Audio Data

For audio signals, corresponding temporal scale selection
methods can be applied to a time-causal spectro-temporal
domain, with the 2-D spatial domain of video data over the
spatial dimensions (x, y) conceptually replaced by a 1-D
logspectral domain over the logspectral dimension ν in the
spectrogram computed at any temporalmoment using a time-
causal receptive field model as proposed in Lindeberg and
Friberg [78,79] or with the time-causal kernels in that model
replaced by the time-causal limit kernel [75].

The analogous operations to the first- and second-order
temporal derivatives of the spatial dimension would then
be the first- and second-order temporal derivatives of the
second-order derivative in the logspectral dimension

∂t,norm(Lνν,norm) = sγs τγτ /2 Lννt (154)

∂t t,norm(Lνν,norm) = sγs τγτ Lννt t (155)

where s denotes the logspectral scale and τ the temporal
scale.

By calibrating the logspectral scale normalization param-
eter γs such that the selected temporal scale should reflect
the logspectral width of a spectral band, it follows that we
should use γs = 3/4. By calibrating the temporal scale nor-
malization parameter γτ such that the selected temporal scale
of ∂t,norm(Lν,norm) should reflect the temporal duration of
an onset, if follows that we should use γτ = 1/2 for this
operator. By instead calibrating the temporal scale normal-
ization parameter γτ such that the selected temporal scale of
∂t t,norm(Lνν,norm) should reflect the temporal duration of a
beat, if follows that we should use γτ = 3/4 for that operator.

Note that these operations can be expressed both over
frequency-time separable spectro-temporal receptive fields
and over glissando-adapted spectro-temporal receptive fields
if we for glissando-adapted receptive fields also replace
the temporal derivative operator ∂t by the corresponding
glissando-adapted temporal derivative operator ∂t̄ = ∂t +
v ∂ν , where v denotes the glissando parameter.
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10 Summary and Conclusions

In this treatment, we have proposed a new theoretical frame-
work for temporal scale selection in a time-causal scale-space
representation. Starting from a general survey of previously
proposed temporal scale-space concepts and a detailed anal-
ysis of their relative advantages and disadvantages, we have
focused our efforts on the time-causal scale-space concept
based on first-order integrators coupled in cascade and anal-
ysed the extent to which scale-space properties that hold for
the scale-invariant non-causalGaussian temporal scale-space
concept can be transferred to this time-causal scale-space
concept. Specifically, we have analysed this time-causal
scale-space concept for two specific ways of distributing the
intermediate temporal scale levels using either (i) a uniform
distribution over the temporal scales as parameterized by the
variance of the temporal scale-space kernel and correspond-
ing to convolution with temporal kernels that are Laguerre
functions and in turn corresponding to temporal derivatives
of the Gamma distribution or (ii) a logarithmic distribution
taken to the limit of a recently proposed time-causal limit
kernel with an infinitely dense distribution of temporal scale
levels towards zero temporal scale.

For peak and ramp detection, we have shown that for
the time-causal temporal scale-space concept based on first-
order integratorswith equal time constant coupled in cascade,
we can reasonably well estimate the temporal scale of a
localized temporal peak or a localized onset rampwith corre-
sponding good approximation of constancy of appropriately
post-normalized scale-normalized magnitude measures of
the corresponding feature detectors under variations in the
temporal duration of the underlying temporal peak or the
underlying temporal ramp. For a non-localized sine wave
signal, the lack of temporal scale invariance is, however, sub-
stantial both with regard to a systematic offset in temporal
scale estimates and a lack of corresponding constancy of the
magnitude measures over variations of the wavelength of the
underlying sine wave.

For the time-causal temporal scale-space concept based on
convolution with the time-causal limit kernel with an under-
lying logarithmic distribution of the temporal scale levels
and taken to the limit of the time-causal limit kernel with
an infinitely dense distribution of temporal scale levels near
temporal scale zero, we have on the other hand shown that
it is possible to achieve perfect temporal invariance in the
respects that (i) the temporal scale estimates in dimension
[time] are proportional to the wavelength of the underlying
sine wave and (ii) the magnitude measures remain constant
under variations of the wavelength of the sine wave.

Additionally, we have shown a general scale invariance
result that holds for any temporal signal and which states that
for temporal scaling transformation with a temporal scaling
factor given as an integer power of the distribution parameter

c of the time-causal limit kernel that is used for generating
the temporal scale space, it holds that:

(i) local extrema over temporal scales of scale-normalized
derivatives are preserved under this group of temporal
scaling transformations with scaling factors of the form
t ′ = c j t for integer j ,

(ii) the corresponding scale estimates are transformed in a
scale-covariant way corresponding to τ̂ ′ = c2 j τ̂ in units
of the variance of the temporal scale-space kernel,

(iii) if the scale normalization parameter γ of variance-based
scale-normalized derivatives is chosen as γ = 1 and
corresponding to p = 1 for L p-normalization, then
the magnitude values of the scale-normalized temporal
derivatives are preserved under scaling transformations
with any temporal scaling factor c j that is an integer
power of the distribution parameter c of the time-causal
limit kernel and

(iv) for other values of the scale normalization parameters
γ or p, the corresponding scale-normalized derivatives
are transformed according to a scale-covariant power
law (104), which is straightforward to compensate for
by post-normalization.

In these respects, the proposed framework for temporal
scale selection in the scale-space concept based on the
time-causal limit kernel provides the necessary mechanisms
to achieve temporal scale invariance while simultaneously
being expressed over a time-causal and time-recursive tem-
poral domain. From a theoretical perspective, this is a
conceptually novel type of construction that has not previ-
ously been achieved based on any other type of time-causal
temporal scale-space concept.

As experimental confirmation of the derived theoretical
results regarding temporal scale selection properties, we
have presented experimental results of applying two types
of more specific temporal scale selection algorithms to one-
dimensional temporal signals, based on either (i) sparse
scale-space extrema detection by detecting local extrema
of feature responses over both time and temporal scales or
(ii) dense feature maps over temporal scales here specifically
manifested in terms of a temporal quasi quadrature entity that
constitutes an energy measure of the local strength of scale-
normalized first- and second-order temporal derivates.

We have also described practical details to handle in time-
causal scale selection algorithms in relation to the inherent
temporal delays of time-causal image measurements and
proposed specific mechanisms to handle the differences in
temporal delays between time-causal scale-space represen-
tations at different temporal scales.

Experimental results presented for synthetic and real one-
dimensional temporal signals show that it is possible to
compute local estimates of temporal scale levels that in units
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of the standard deviation of the underlying temporal scale-
space kernel are proportional to the temporal duration of the
underlying structures in the temporal signal that gave rise to
the filter responses.

Beyond these two specific ways of expressing temporal
scale selection mechanisms, we argue that the theoretical
results presented in the paper should also more generally
open up for extensions to other ways of comparing time-
dependent filter responses at multiple temporal scales.

Experimental results obtained by applying this temporal
scale selection theory to video analysis will be reported in a
companion paper [74].
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Appendix 1: Why a Semi-Group Property Over
Temporal Scales Leads to Undesirable Temporal
Dynamics in the Presence of Temporal Delays

One way of understanding why the assumption about a semi-
group property over temporal scales may lead to undesirable
temporal dynamics for a temporal scale space representation
involving temporal delays can be obtained as follows:

Ideally, for a temporal scale-space concept involving a
temporal delay one would like the temporal delay δ to be
proportional to the temporal scale parameter σ in terms of
dimension [time]

δ = C σ (156)

for some constant C > 0. For a temporal scale-space kernel
with finite4 temporal variance τ , this corresponds to letting

4 Regarding the assumption of a finite temporal variance, it is inter-
esting to compare the situation with the time-causal semi-group kernel
φ(t; τ) = 1√

2π t3/2
τ e−τ 2/2t derived by Fagerström [19, Equation (27)]

and Lindeberg [66, Equation (93)]. For this kernel, the first- and second-
order temporal moments are not finite

∫ ∞
t=0 t φ(t; τ) dt → ∞ and∫ ∞

t=0 t
2 φ(t; τ) dt → ∞, implying that the analysis in this appendix

breaks down if applied to the time-causal semi-group, since this analy-
sis is based on the additive properties of mean values and variances for
non-negative distributions. The fact that the first- and second-order tem-
poral moments are infinite for the time-causal semi-group, does on the
other hand also reflect undesirable temporal dynamics, since temporal
smoothing with such a kernel leads to slow and smeared out temporal
responses compared to temporal smoothing with a temporal kernel hav-
ing finite first- and second-order temporal moments. If we measure the

the temporal delay at any temporal scale be proportional to
the square root of the temporal scale parameter τ according
to

δ = φ(τ) = C
√

τ . (157)

Let us next assume that we have to two temporal scale-space
kernels h(t; τ1, δ1) and h(t; τ2, δ2) with finite temporal
variances τ1 and τ2 and finite temporal means δ1 and δ2 from
the same family of temporal kernels h. If the temporal ker-
nels are to obey a semi-group property over temporal scales,
then by the additive property of mean values and variances
under convolution of positive functions, it follows that the
composed temporal scale-space kernel should be given by

h(·; τ1, δ1) ∗ h(t; τ2, δ2) = h(t; τ1 + τ2, δ1 + δ2). (158)

This property should for example hold for the non-causal
Gaussian temporal scale-space kernels (2) if we require the
kernels to obey a semi-group property over temporal scales.
Combining this property with a fixed relationship between
the temporal delay δ and the temporal scale τ according to
δ = φ(τ) does, however, then lead to

δ1 + δ2 = φ(τ1 + τ2) = φ(τ1) + φ(τ2). (159)

This implies that the function φ must be additive in terms of
its argument τ , implying increasingly longer temporal delays
at coarser temporal scales and thus a violation of the desirable
form of temporal dynamics δ = φ(τ) = C

√
τ .

We can, however, remedy the situation by replacing
the temporal semi-group property with a weaker cascade
smoothing property over temporal scales

L(·; τ2, δ2) = h(·; (τ1, δ1) �→ (τ2, δ2)) ∗ L(·; τ1, δ1),

(160)

where the temporal kernels should for any triplets of temporal
scale values and temporal delays (τ1, δ1), (τ2, δ2) and (τ3, δ3)

temporal delay of the time-causal semi-group kernel by the position of
the temporal maximum t̂ = τ 2/3 [66, Equation (119)] and its temporal
extent from the difference between the time instances at which the one-
dimensional time-causal semi-group kernel assumes half its maximum
value �t ≈ 0.900 τ 2 [66, Equation (122)], then the temporal delay and
the temporal extent of the time-causal semi-group kernel are indeed
proportional. Those measures of the temporal delay and the temporal
extent of the temporal kernel are, however, not the same as used in the
in the arguments in this appendix.
The example with the time-causal semi-group therefore demonstrates
that at the cost of infinite first- and second-order temporal moments it is
possible to find a temporal smoothing kernel that both obeys the semi-
group property and a proportionality relation between measures of the
temporal delay and the temporal extent in dimensions of [time]. Due
to the infinite first- and second-order temporal moments, the temporal
dynamics is, however, undesirable anyway.
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obey the transitive property

h(·; (τ1, δ1) �→ (τ2, δ2)) ∗ h(·; (τ2, δ2) �→ (τ3, δ3))

= h(·; (τ1, δ1) �→ (τ3, δ3)) (161)

andwe can specifically for the non-causal Gaussian temporal
scale-space concept with time-delayed Gaussian kernels of
the form (2) choose

h(·; (τ1, δ1) �→ (τ2, δ2)) = g(·; τ2 − τ1,C(
√

τ2 − √
τ1)).

(162)

Based on this form of cascade smoothing property over tem-
poral scale, we can both (i) guarantee non-creation of new
structures in the signal from finer to coarser temporal scales
based on the scale-space properties of the temporal scale-
space kernel g and (ii) achieve temporal delays that increase
linearly with the temporal scale parameter in terms of dimen-
sion [time] such that δ1 = C

√
τ1 and δ2 = C

√
τ2 in (160).

In our temporal scale-space concept based on truncated
exponential kernels coupled in cascade [53,73,75,77], we
can specifically note that (i) the special case when all the time
constants are equal implies a semi-group property over dis-
crete temporal scales and longer temporal delays at coarser
temporal scales (see the second row in Fig. 1) whereas the
(ii) the special case with logarithmically distributed temporal
scales implies that only a weaker cascade smoothing prop-
erty holds and which enables much faster temporal response
properties (see the third and fourth rows in Fig. 1).

Since any time-causal temporal scale-space representation
will give rise to nonzero temporal delays, and we have shown
in this section how the assumption of a semi-group structure
over temporal scale leads to undesirable temporal dynamics
in the presence of temporal delays, we argue that one should
not require a semi-group structure over temporal scales for
time-causal scale space and instead require a less restrictive
cascade smoothing property over temporal scales.

Appendix 2: Scale Normalization of Temporal
Derivatives in Koenderink’s Scale-Time Model

In his scale-time model, Koenderink [42] proposed to per-
form a logarithmic mapping of the past via a time delay and
then applied Gaussian smoothing in the transformed tempo-
ral domain. Following the slight modification of this model
proposed in Lindeberg [75, Appendix 2] to have the tempo-
ral kernels normalized to unit L1-norm such that a constant
signal should remain unchanged under temporal smoothing,
these kernels can be written on the form

hKoe(t; σ, δ) = 1√
2πσ δ

e− log2( t
δ )

2σ2
− σ2

2 . (172)

where δ represents the temporal delay and σ is a dimension-
less temporal scale parameter relative to the logarithmically
transformed temporal domain. The temporal mean of this
kernel is [75, Appendix 2, Equation (152)]

t̄ =
∫ ∞

t=−∞
t hKoe(t; σ, δ) dt = δ e

3σ2
2 (173)

and the temporal variance [75, Appendix 2, Equation (153)]

τ =
∫ ∞

t=−∞
(t − t̄)2 hKoe(t; σ, δ) dt = δ2e3σ

2
(
eσ 2 − 1

)
.

(174)

In relation to the proportionality requirement (157) between
the temporal delay and the temporal scale parameter in terms
of dimension [time] used for the theoretical arguments in
“Appendix 1”

t̄ = C
√

τ (175)

it follows that that this relation is satisfied if and only if

C = 1√
eσ 2 − 1

(176)

is held constant between the temporal scale-time represen-
tations at different temporal scales, in other words only if a
one-parameter family of scale-time representations is gener-
ated by keeping the dimensionless temporal scale parameter
σ constant while varying only the temporal delay parame-
ter δ. If proportionality between the temporal delay and the
temporal scale parameter of dimension [time] is required,
then the dimensionless scale parameter σ should therefore
be determined from the proportionality constant C accord-
ing to

σ =
√
log

(
1 + 1

C2

)
. (177)

Differentiating the kernel (172) with respect to time gives the
expressions for the first-, second- and third-order temporal
derivatives in equations (163), (164) and (165) in Table9.
The first-order temporal derivative has its zero-crossing at

tmax = δ, (178)

the second-order temporal derivative has its zero-crossings
at

tinflect1 = δ e
− 1

2 σ
(√

σ 2+4+σ
)
, (179)

tinflect2 = δ e
− 1

2 σ
(
σ−√

σ 2+4
)
. (180)

and its peaks at the zero-crossings of the third-order deriva-
tive

t3,1 = e
−σ

(√
σ 2+3+σ

)
, (181)
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Table 9 Regular first-, second-
and third-order temporal
derivatives of Koenderink’s
scale-time kernel (renormalized
according to (172))

Regular temporal derivatives of Koenderink’s scale-time kernel

ht,Koe(t; σ, δ) = − log( t
δ )e

− log2( t
δ )+σ4

2σ2√
2πδσ 3t

(163)

htt,Koe(t; σ, δ) = e− log2( t
δ )+σ4

2σ2
(
σ 2 log( t

δ )+log2( t
δ )−σ 2)

√
2πδσ 5t2

, (164)

httt,Koe(t; σ, δ) = e− log2( t
δ )+σ4

2σ2
(−3σ 2 log2( t

δ )+
(
3σ 2−2σ 4

)
log( t

δ )−log3( t
δ )+3σ 4

)
√
2πδσ 7t3

. (165)

Table 10 Scale-normalizedfirst- and second-order temporal derivatives ofKoenderink’s scale-time kernel using either variance-based normalization
for a general value of γ , variance-based normalization for γ = 1 or LP -normalization for p = 1

Scale-normalized temporal derivatives of Koenderink’s scale-time kernel

Using variance-based normalization, the corresponding scale-normalized temporal derivatives are for a general value of γ given by

hζ,Koe(t; σ, δ) = τγ/2ht,Koe(t; σ, δ) =
(
δ2e3σ2

(
eσ2−1

))γ /2
log

(
δ
t

)
e− log2( t

δ )+σ4

2σ2

√
2πδσ 3t

, (166)

hζ ζ,Koe(t; σ, δ) = τγ htt,Koe(t; σ, δ) =
(
δ2e3σ2

(
eσ2−1

))γ
e− log2( t

δ )+σ4

2σ2
(
log( t

δ )
(
log( t

δ )+σ 2)−σ 2)
√
2πδσ 5t2

, (167)

which for the specific value of γ = 1 reduce to

hζ,Koe(t; σ, δ) = √
τ ht,Koe(t; σ, δ) =

√
eσ2−1 log

(
δ
t

)
eσ2−

log2
(

δ
t

)
2σ2

√
2πσ 3t

, (168)

hζ ζ,Koe(t; σ, δ) = τ htt,Koe(t; σ, δ) = δ
(
eσ2−1

)
e− log2( t

δ )−5σ4

2σ2
(
log( t

δ )
(
log( t

δ )+σ 2)−σ 2)
√
2πσ 5t2

, (169)

or when using L p-normalization for p = 1:

hζ,Koe(t; σ, δ) = G1,1
‖ht,Koe(·; σ,δ)‖1 ht,Koe(t; σ, δ) = − log( t

δ )e
− log2( t

δ )
2σ2√

2πσ 2t
, (170)

hζ ζ,Koe(t; σ, δ) = G2,1
‖htt,Koe(·; σ,δ)‖1 htt,Koe(t; σ, δ) =

√
2
π

δe− 2 log2( t
δ )+σ4

4σ2
(
log( t

δ )
(
log( t

δ )+σ 2)−σ 2)
σ 3t2

(
σ sinh

(
1
4 σ

√
σ 2+4

)
+√

σ 2+4 cosh
(
1
4 σ

√
σ 2+4

)) . (171)

t3,2 = δe−σ 2
, (182)

t3,3 = δe
σ
(√

σ 2+3−σ
)
. (183)

The L1-norms of the first- and second-order temporal scale-
space kernels are thereby given by

‖ht,Koe(·; σ, δ)‖1 = 2hKoe(tmax; σ, δ) =
√

2
π
e− σ2

2

δσ
,

(184)

‖htt,Koe(·; σ, δ)‖1
= 2

(
ht,Koe(tinflect1; σ, δ) − ht,Koe(tinflect2; σ, δ)

)

=
√

2
π
e− σ2

4 − 1
2

δ2σ 2

(
σ sinh

(
1

4
σ
√

σ 2 + 4

))

+
√

σ 2 + 4 cosh

(
1

4
σ
√

σ 2 + 4

))
. (185)

Basedon these characteristics,we candefine scale-normalized
temporal derivatives ofKoenderink’s scale-timekernel accord-
ing to Equations (166)–(171) in Table10.

Appendix 3: Estimating the Temporal Duration of
Underlying Temporal Structures from Scale-Time
Approximations of Temporal Derivatives of the
Time-Causal Limit Kernel

In [75, Appendix 2] the following transformation between
the parameters in Koenderink’s scale-time kernels and the
time-causal limit kernel (90) is derived

⎧⎨
⎩

τ = δ2 e3σ
2
(
eσ 2 − 1

)

c = eσ2

2−eσ2

⎧⎪⎨
⎪⎩

σ =
√
log

(
2c
c+1

)

δ = (c+1)2
√

τ

2
√
2
√

(c−1)c3

(186)
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Fig. 15 Scale-time
approximations of the temporal
durations d1(τ, c) and d2(τ, c)
of the first- and second-order
temporal derivatives of the
time-causal limit kernel
according to (193) and (194) as
function of the distribution
parameter c for τ = 1

d1(τ, c) for τ = 1 d2(τ, c) for τ = 1

under the conditions c > 1 and σ <
√
log 2 ≈ 0.832 by

requiring the first- and second-order temporal moments of
the kernels in the two families to be equal.

Given this approximate mapping between the time-causal
limit kernel and the temporal kernels in Koenderink’s scale-
timemodel,we can approximate the positions of the temporal
peak, the peaks in the first- and second-order temporal deriva-
tives of the time-causal limit kernel based on our previously
derived expressions for the maximum point tmax, the inflec-
tion points tinflect1 and tinflect2 as well as the zero-crossings
of the third-order derivative t3,1, t3,2 and t3,2 according to
(178)–(183) in “Appendix 2”:

tmax ≈ δ = (c + 1)2

2
√
2
√

(c−1)c3
τ

, (187)
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− 1

2 σ
(√

σ 2+4+σ
)
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(c + 1)5/2

√
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− 1

2

√
log
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2c
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)(
log
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)
+4

)

4c2
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tinflect2 ≈ δ e
− 1
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)
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)(
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t3,1 ≈ e
−σ

(√
σ 2+3+σ
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t3,2 ≈ δe−σ 2

= (c + 1)3

4
√
2
√
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τ

, (191)
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(192)

Specifically, this leads to the following estimates of how the
temporalwidthof thefirst- and second-order temporal deriva-
tives depend on the distribution parameter c

d1 = tinflect2 − tinflect1 ≈ 2δe−σ 2/2 sinh
(σ

2

√
σ 2 + 4

)

= (c + 1)5/2
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τ

(193)

d2 = t3,3 − t3,2 ≈ 2δe−σ 2
sinh
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√

σ 2 + 3
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2
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c (c − 1)

× sinh
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(
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) (
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)
+ 3
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(194)

which can be compared to the corresponding widthmeasures
for the non-causal Gaussian kernel

d1 = tinflect2 − tinflect1 = (δ + √
τ) − (δ − √

τ) = 2
√

τ ,

(195)

d2 = t3,3 − t3,1 = (δ + √
3τ) − (δ − √

3τ) = 2
√
3
√

τ .

(196)

Figure15 shows graphs of the width measures (193) and
(194) of thefirst- and second-order temporal derivatives time-
causal limit kernel obtained as obtained from a scale-time
approximation. As can be seen from the graphs, the width
measures vary by about 30% when the distribution param-
eter is varied between c = √

2 and c = 2. Thus, the value
of the distribution parameter c must be taken into explicit
account when transferring the temporal scale parameter τ to
a characteristic length estimate on the temporal axis. Notably
when the distribution parameter tends to c → 1, the temporal
width estimates approach the corresponding width estimates
(195) and (196) of the Gaussian kernel.
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Given that a temporal feature has been detected from a
local maximum over temporal scales in either the first- or
second-order temporal derivative of the time-causal limit
kernel, if we use the behaviour of the Gaussian temporal
scale-space model (195) and (196) for additional calibration
of the proportionality constant of the scale estimate, we do
then obtain the following estimates d̂ of the temporal dura-
tion of the corresponding temporal feature as function of the
temporal scale estimate τ̂ and the distribution parameter c:

d̂1 = d1(τ̂ , c)

2

= (c + 1)5/2

4c2
√
c − 1

× sinh
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1
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+ 4
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(197)

d̂2 = d2(τ̂ , c)
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4
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(198)
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