7,087 research outputs found

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation

    Advances in Data Modeling Research

    Get PDF
    In this paper, we summarize the discussions of the panel on Advances in Data Modeling Research, held at the Americas Conference on Information Systems (AMCIS) in 2005. We focus on four primary areas where data modeling research offers rich opportunities: spatio-temporal semantics, genome research, ontological analysis and empirical evaluation of existing models. We highlight past work in each area and also discuss open questions, with a view to promoting future research in the overall data modeling area

    Design and Implementation of an Object-Oriented Space-Time GIS Data Model

    Get PDF
    Geographic data are closely related to both spatial and temporal domains. Geographic information systems (GIS) can capture, manage, analyze, and display spatial data. However, they are not suitable for handling temporal data. Rapid developments of data collection and location-aware technologies stimulate the interests of obtaining useful information from the historical data. Researchers have been working to build various spatio-temporal data models to support spatio-temporal query. Nevertheless, the existing models exhibit weaknesses in various aspects. For instance, the snapshot model is plagued with data redundancy and the event-based spatio-temporal data model (ESTDM) is limited to raster dataset. This study reviews existing spatio-temporal data models in order to design an object-oriented space-time GIS data model that makes additional contributions to processing spatio-temporal data. A binary large object (BLOB) data type, labeled Space-Time BLOB, is added to ArcGIS geodatabase data model to store instantiated space-time objects. A Space-Time BLOB is associated with an array that contains the spatial and temporal information for an object at different time points and time intervals. This study also implements a space-time GIS prototype system, along with a set of spatio-temporal query functions, based on the proposed space-time GIS data model

    Towards spatio‐temporal data modeling of geo‐tagged shipping information

    Get PDF
    Ponencias, comunicaciones y pósters presentados en el 17th AGILE Conference on Geographic Information Science "Connecting a Digital Europe through Location and Place", celebrado en la Universitat Jaume I del 3 al 6 de junio de 2014.Spatio-temporal data models deal with capturing information characterized by both spatial and temporal semantics. In this paper we review current approaches for spatio-temporal data modelling and present out initial results for selecting the most relevant approach: Object-Oriented modeling for means of modeling geo-tagged shipping information. The shipping information is provided by the well-known LLLOYD’s lists dataset. We have introduced the case study and dataset characteristics used in the research project and presented our data model in Unified Modeling Language (UML). The model focuses on spatio-temporal events where characteristics are categorized as thematic, spatial and temporal attributes. The paper follows up with discussion on the selected approach and results, and finally ends with presenting the future outlook

    Challenges of the Anthropocene epoch – supporting multi-focus research

    Get PDF
    International audienceWork on multiscale issues presents countless challenges that have been long attacked by GIScience researchers. Most results either concentrate on modeling or on data structures/database aspects. Solutions go either towards generalization (and/or virtualization of distinct scales) or towards linking entities of interest across scales. However, researchers seldom take into account the fact that multiscale scenarios are increasingly constructed cooperatively, and require distinct perspectives of the world. The combination of multiscale and multiple perspectives per scale constitutes what we call multifocus research. This paper presents our solution to these issues. It builds upon a specific database version model – the multiversion MVBD – which has already been successfully implemented in several geospatial scenarios, being extended here to support multi-focus research

    The representation and management of evolving features in geospatial databases

    Get PDF
    Geographic features change over time, this change being the result of some kind of event or occurrence. It has been a research challenge to represent this data in a manner that reflects human perception. Most database systems used in geographic information systems (GIS) are relational, and change is either captured by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent diffculty of modelling geographic objects in relational tables. This diffculty is compounded when the necessary time dimension is introduced to model how those objects evolve. There is little doubt that the object-oriented (OO) paradigm holds signi cant advantages over the relational model when it comes to modelling real-world entities and spatial data, and it is argued that this contention is particularly true when it comes to spatio-temporal data. This thesis describes an object-oriented approach to the design of a conceptual model for representing spatio-temporal geographic data, called the Feature Evolution Model (FEM), based on states and events. The model was used to implement a spatio-temporal database management system in Oracle Spatial, and an interface prototype is described that was used to evaluate the system by enabling querying and visualisation
    • …
    corecore