5,685 research outputs found

    Contextual Media Retrieval Using Natural Language Queries

    Full text link
    The widespread integration of cameras in hand-held and head-worn devices as well as the ability to share content online enables a large and diverse visual capture of the world that millions of users build up collectively every day. We envision these images as well as associated meta information, such as GPS coordinates and timestamps, to form a collective visual memory that can be queried while automatically taking the ever-changing context of mobile users into account. As a first step towards this vision, in this work we present Xplore-M-Ego: a novel media retrieval system that allows users to query a dynamic database of images and videos using spatio-temporal natural language queries. We evaluate our system using a new dataset of real user queries as well as through a usability study. One key finding is that there is a considerable amount of inter-user variability, for example in the resolution of spatial relations in natural language utterances. We show that our retrieval system can cope with this variability using personalisation through an online learning-based retrieval formulation.Comment: 8 pages, 9 figures, 1 tabl

    Event detection in location-based social networks

    Get PDF
    With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    Robotic swarm control from spatio-temporal specifications

    Full text link
    In this paper, we study the problem of controlling a two-dimensional robotic swarm with the purpose of achieving high level and complex spatio-temporal patterns. We use a rich spatio-temporal logic that is capable of describing a wide range of time varying and complex spatial configurations, and develop a method to encode such formal specifications as a set of mixed integer linear constraints, which are incorporated into a mixed integer linear programming problem. We plan trajectories for each individual robot such that the whole swarm satisfies the spatio-temporal requirements, while optimizing total robot movement and/or a metric that shows how strongly the swarm trajectory resembles given spatio-temporal behaviors. An illustrative case study is included.This work was partially supported by the National Science Foundation under grants NRI-1426907 and CMMI-1400167. (NRI-1426907 - National Science Foundation; CMMI-1400167 - National Science Foundation
    corecore