5,652 research outputs found

    Microeconomic Structure determines Macroeconomic Dynamics. Aoki defeats the Representative Agent

    Full text link
    Masanao Aoki developed a new methodology for a basic problem of economics: deducing rigorously the macroeconomic dynamics as emerging from the interactions of many individual agents. This includes deduction of the fractal / intermittent fluctuations of macroeconomic quantities from the granularity of the mezo-economic collective objects (large individual wealth, highly productive geographical locations, emergent technologies, emergent economic sectors) in which the micro-economic agents self-organize. In particular, we present some theoretical predictions, which also met extensive validation from empirical data in a wide range of systems: - The fractal Levy exponent of the stock market index fluctuations equals the Pareto exponent of the investors wealth distribution. The origin of the macroeconomic dynamics is therefore found in the granularity induced by the wealth / capital of the wealthiest investors. - Economic cycles consist of a Schumpeter 'creative destruction' pattern whereby the maxima are cusp-shaped while the minima are smooth. In between the cusps, the cycle consists of the sum of 2 'crossing exponentials': one decaying and the other increasing. This unification within the same theoretical framework of short term market fluctuations and long term economic cycles offers the perspective of a genuine conceptual synthesis between micro- and macroeconomics. Joining another giant of contemporary science - Phil Anderson - Aoki emphasized the role of rare, large fluctuations in the emergence of macroeconomic phenomena out of microscopic interactions and in particular their non self-averaging, in the language of statistical physics. In this light, we present a simple stochastic multi-sector growth model.Comment: 42 pages, 6 figure

    A Python based automated tracking routine for myosin II filaments

    Get PDF
    The study of motor protein dynamics within cytoskeletal networks is of high interest to physicists and biologists to understand how the dynamics and properties of individual motors lead to cooperative effects and control of overall network behaviour. Here, we report a method to detect and track muscular myosin II filaments within an actin network tethered to supported lipid bilayers. Based on the characteristic shape of myosin II filaments, this automated tracking routine allowed us to follow the position and orientation of myosin II filaments over time, and to reliably classify their dynamics into segments of diffusive and processive motion based on the analysis of displacements and angular changes between time steps. This automated, high throughput method will allow scientists to efficiently analyse motor dynamics in different conditions, and will grant access to more detailed information than provided by common tracking methods, without any need for time consuming manual tracking or generation of kymographs

    Efficient Data Compression with Error Bound Guarantee in Wireless Sensor Networks

    Get PDF
    We present a data compression and dimensionality reduction scheme for data fusion and aggregation applications to prevent data congestion and reduce energy consumption at network connecting points such as cluster heads and gateways. Our in-network approach can be easily tuned to analyze the data temporal or spatial correlation using an unsupervised neural network scheme, namely the autoencoders. In particular, our algorithm extracts intrinsic data features from previously collected historical samples to transform the raw data into a low dimensional representation. Moreover, the proposed framework provides an error bound guarantee mechanism. We evaluate the proposed solution using real-world data sets and compare it with traditional methods for temporal and spatial data compression. The experimental validation reveals that our approach outperforms several existing wireless sensor network's data compression methods in terms of compression efficiency and signal reconstruction.Comment: ACM MSWiM 201

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    End-to-end Flow Correlation Tracking with Spatial-temporal Attention

    Full text link
    Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. However, most of existing DCF trackers only consider appearance features of current frame, and hardly benefit from motion and inter-frame information. The lack of temporal information degrades the tracking performance during challenges such as partial occlusion and deformation. In this work, we focus on making use of the rich flow information in consecutive frames to improve the feature representation and the tracking accuracy. Firstly, individual components, including optical flow estimation, feature extraction, aggregation and correlation filter tracking are formulated as special layers in network. To the best of our knowledge, this is the first work to jointly train flow and tracking task in a deep learning framework. Then the historical feature maps at predefined intervals are warped and aggregated with current ones by the guiding of flow. For adaptive aggregation, we propose a novel spatial-temporal attention mechanism. Extensive experiments are performed on four challenging tracking datasets: OTB2013, OTB2015, VOT2015 and VOT2016, and the proposed method achieves superior results on these benchmarks.Comment: Accepted in CVPR 201

    Greedy Maximization Framework for Graph-based Influence Functions

    Full text link
    The study of graph-based submodular maximization problems was initiated in a seminal work of Kempe, Kleinberg, and Tardos (2003): An {\em influence} function of subsets of nodes is defined by the graph structure and the aim is to find subsets of seed nodes with (approximately) optimal tradeoff of size and influence. Applications include viral marketing, monitoring, and active learning of node labels. This powerful formulation was studied for (generalized) {\em coverage} functions, where the influence of a seed set on a node is the maximum utility of a seed item to the node, and for pairwise {\em utility} based on reachability, distances, or reverse ranks. We define a rich class of influence functions which unifies and extends previous work beyond coverage functions and specific utility functions. We present a meta-algorithm for approximate greedy maximization with strong approximation quality guarantees and worst-case near-linear computation for all functions in our class. Our meta-algorithm generalizes a recent design by Cohen et al (2014) that was specific for distance-based coverage functions.Comment: 8 pages, 1 figur
    • …
    corecore