6 research outputs found

    Models and Methods for Estimation and Filtering of Signal-Dependent Noise in Imaging

    Get PDF
    The work presented in this thesis focuses on Image Processing, that is the branch of Signal Processing that centers its interest on images, sequences of images, and videos. It has various applications: imaging for traditional cameras, medical imaging, e.g., X-ray and magnetic resonance imaging (MRI), infrared imaging (thermography), e.g., for security purposes, astronomical imaging for space exploration, three-dimensional (video+depth) signal processing, and many more.This thesis covers a small but relevant slice that is transversal to this vast pool of applications: noise estimation and denoising. To appreciate the relevance of this thesis it is essential to understand why noise is such an important part of Image Processing. Every acquisition device, and every measurement is subject to interferences that causes random fluctuations in the acquired signals. If not taken into consideration with a suitable mathematical approach, these fluctuations might invalidate any use of the acquired signal. Consider, for example, an MRI used to detect a possible condition; if not suitably processed and filtered, the image could lead to a wrong diagnosis. Therefore, before any acquired image is sent to an end-user (machine or human), it undergoes several processing steps. Noise estimation and denoising are usually parts of these fundamental steps.Some sources of noise can be removed by suitably modeling the acquisition process of the camera, and developing hardware based on that model. Other sources of noise are instead inevitable: high/low light conditions of the acquired scene, hardware imperfections, temperature of the device, etc. To remove noise from an image, the noise characteristics have to be first estimated. The branch of image processing that fulfills this role is called noise estimation. Then, it is possible to remove the noise artifacts from the acquired image. This process is referred to as denoising.For practical reasons, it is convenient to model noise as random variables. In this way, we assume that the noise fluctuations take values whose probabilities follow specific distributions characterized only by few parameters. These are the parameters that we estimate. We focus our attention on noise modeled by Gaussian distributions, Poisson distributions, or a combination of these. These distributions are adopted for modeling noise affecting images from digital cameras, microscopes, telescopes, radiography systems, thermal cameras, depth-sensing cameras, etc. The parameters that define a Gaussian distribution are its mean and its variance, while a Poisson distribution depends only on its mean, since its variance is equal to the mean (signal-dependent variance). Consequently, the parameters of a Poisson-Gaussian distribution describe the relation between the intensity of the noise-free signal and the variance of the noise affecting it. Degradation models of this kind are referred to as signal-dependent noise.Estimation of signal-dependent noise is commonly performed by processing, individually, groups of pixels with equal intensity in order to sample the aforementioned relation between signal mean and noise variance. Such sampling is often subject to outliers; we propose a robust estimation model where the noise parameters are estimated optimizing a likelihood function that models the local variance estimates from each group of pixels as mixtures of Gaussian and Cauchy distributions. The proposed model is general and applicable to a variety of signal-dependent noise models, including also possible clipping of the data. We also show that, under certain hypotheses, the relation between signal mean and noise variance can also be effectively sampled from groups of pixels of possibly different intensities.Then, we propose a spatially adaptive transform to improve the denoising performance of a specific class of filters, namely nonlocal transformdomain collaborative filters. In particular, the proposed transform exploits the spatial coordinates of nonlocal similar features from an image to better decorrelate the data, and consequently to improve the filtering. Unlike non-adaptive transforms, the proposed spatially adaptive transform is capable of representing spatially smooth coarse-scale variations in the similar features of the image. Further, based on the same paradigm, we propose a method that adaptively enhances the local image features depending on their orientation with respect to the relative coordinates of other similar features at other locations in the image.An established approach for removing Poisson noise utilizes so-called variance-stabilizing transformations (VST) to make the noise variance independent of the mean of the signal, hence enabling denoising by a standard denoiser for additive Gaussian noise. Within this framework, we propose an iterative method where at each iteration the previous estimate is summed back to the noisy image in order to improve the stabilizing performance of the transformation, and consequently to improve the denoising results. The proposed iterative procedure allows to circumvent the typical drawbacks that VSTs experience at very low intensities, and thus allows us to apply the standard denoiser effectively even at extremely low counts.The developed methods achieve state-of-the-art results in their respective field of application

    Patch-based Denoising Algorithms for Single and Multi-view Images

    Get PDF
    In general, all single and multi-view digital images are captured using sensors, where they are often contaminated with noise, which is an undesired random signal. Such noise can also be produced during transmission or by lossy image compression. Reducing the noise and enhancing those images is among the fundamental digital image processing tasks. Improving the performance of image denoising methods, would greatly contribute to single or multi-view image processing techniques, e.g. segmentation, computing disparity maps, etc. Patch-based denoising methods have recently emerged as the state-of-the-art denoising approaches for various additive noise levels. This thesis proposes two patch-based denoising methods for single and multi-view images, respectively. A modification to the block matching 3D algorithm is proposed for single image denoising. An adaptive collaborative thresholding filter is proposed which consists of a classification map and a set of various thresholding levels and operators. These are exploited when the collaborative hard-thresholding step is applied. Moreover, the collaborative Wiener filtering is improved by assigning greater weight when dealing with similar patches. For the denoising of multi-view images, this thesis proposes algorithms that takes a pair of noisy images captured from two different directions at the same time (stereoscopic images). The structural, maximum difference or the singular value decomposition-based similarity metrics is utilized for identifying locations of similar search windows in the input images. The non-local means algorithm is adapted for filtering these noisy multi-view images. The performance of both methods have been evaluated both quantitatively and qualitatively through a number of experiments using the peak signal-to-noise ratio and the mean structural similarity measure. Experimental results show that the proposed algorithm for single image denoising outperforms the original block matching 3D algorithm at various noise levels. Moreover, the proposed algorithm for multi-view image denoising can effectively reduce noise and assist to estimate more accurate disparity maps at various noise levels

    Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

    Get PDF
    The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of technology, raw data is invariably affected by a variety of inherent and external disturbing factors, such as the stochastic nature of the measurement processes or challenging sensing conditions, which may cause, e.g., noise, blur, geometrical distortion and color aberration. In this thesis we introduce two filtering frameworks for video and volumetric data restoration based on the BM3D grouping and collaborative filtering paradigm. In its general form, the BM3D paradigm leverages the correlation present within a nonlocal emph{group} composed of mutually similar basic filtering elements, e.g., patches, to attain an enhanced sparse representation of the group in a suitable transform domain where the energy of the meaningful part of the signal can be thus separated from that of the noise through coefficient shrinkage. We argue that the success of this approach largely depends on the form of the used basic filtering elements, which in turn define the subsequent spectral representation of the nonlocal group. Thus, the main contribution of this thesis consists in tailoring specific basic filtering elements to the the inherent characteristics of the processed data at hand. Specifically, we embed the local spatial correlation present in volumetric data through 3-D cubes, and the local spatial and temporal correlation present in videos through 3-D spatiotemporal volumes, i.e. sequences of 2-D blocks following a motion trajectory. The foundational aspect of this work is the analysis of the particular spectral representation of these elements. Specifically, our frameworks stack mutually similar 3-D patches along an additional fourth dimension, thus forming a 4-D data structure. By doing so, an effective group spectral description can be formed, as the phenomena acting along different dimensions in the data can be precisely localized along different spectral hyperplanes, and thus different filtering shrinkage strategies can be applied to different spectral coefficients to achieve the desired filtering results. This constitutes a decisive difference with the shrinkage traditionally employed in BM3D-algorithms, where different hyperplanes of the group spectrum are shrunk subject to the same degradation model. Different image processing problems rely on different observation models and typically require specific algorithms to filter the corrupted data. As a consequent contribution of this thesis, we show that our high-dimensional filtering model allows to target heterogeneous noise models, e.g., characterized by spatial and temporal correlation, signal-dependent distributions, spatially varying statistics, and non-white power spectral densities, without essential modifications to the algorithm structure. As a result, we develop state-of-the-art methods for a variety of fundamental image processing problems, such as denoising, deblocking, enhancement, deflickering, and reconstruction, which also find practical applications in consumer, medical, and thermal imaging

    Adaptive Edge-guided Block-matching and 3D filtering (BM3D) Image Denoising Algorithm

    Get PDF
    Image denoising is a well studied field, yet reducing noise from images is still a valid challenge. Recently proposed Block-matching and 3D filtering (BM3D) is the current state of the art algorithm for denoising images corrupted by Additive White Gaussian noise (AWGN). Though BM3D outperforms all existing methods for AWGN denoising, still its performance decreases as the noise level increases in images, since it is harder to find proper match for reference blocks in the presence of highly corrupted pixel values. It also blurs sharp edges and textures. To overcome these problems we proposed an edge guided BM3D with selective pixel restoration. For higher noise levels it is possible to detect noisy pixels form its neighborhoods gray level statistics. We exploited this property to reduce noise as much as possible by applying a pre-filter. We also introduced an edge guided pixel restoration process in the hard-thresholding step of BM3D to restore the sharpness of edges and textures. Experimental results confirm that our proposed method is competitive and outperforms the state of the art BM3D in all considered subjective and objective quality measurements, particularly in preserving edges, textures and image contrast
    corecore