TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Lucio Azzari
Models and Methods for Estimation and Filtering of
Signal-Dependent Noise in Imaging




Tampereen teknillinen yliopisto. Julkaisu 1429
Tampere University of Technology. Publication 1429

Lucio Azzari

Models and Methods for Estimation and Filtering of
Signal-Dependent Noise in Imaging

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB 109,
at Tampere University of Technology, on the 11" of November 2016, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2016



Supervisor:

Associate Professor Alessandro Foi
Department of Signal Processing
Tampere University of Technology
Tampere, Finland

Pre-examiners:

Assistant Professor Joseph Salmon
Statistics and Applications group
TELECOM ParisTech

Paris, France

Charles Kervrann, PhD

IRISA / INRIA Rennes

Campus Universitaire de Beaulieu
Rennes, France

Opponent:

Associate Professor Yigiu Dong

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Lyngby, Denmark

ISBN 978-952-15-3837-7 (printed)
ISBN 978-952-15-3887-2 (PDF)
ISSN 1459-2045



Abstract

The work presented in this thesis focuses on Image Processing, that is the
branch of Signal Processing that centers its interest on images, sequences of
images, and videos. It has various applications: imaging for traditional cam-
eras, medical imaging, e.g., X-ray and magnetic resonance imaging (MRI),
infrared imaging (thermography), e.g., for security purposes, astronomical
imaging for space exploration, three-dimensional (video+depth) signal pro-
cessing, and many more.

This thesis covers a small but relevant slice that is transversal to this
vast pool of applications: noise estimation and denoising. To appreciate
the relevance of this thesis it is essential to understand why noise is such an
important part of Image Processing. Every acquisition device, and every
measurement is subject to interferences that causes random fluctuations
in the acquired signals. If not taken into consideration with a suitable
mathematical approach, these fluctuations might invalidate any use of the
acquired signal. Consider, for example, an MRI used to detect a possible
condition; if not suitably processed and filtered, the image could lead to a
wrong diagnosis. Therefore, before any acquired image is sent to an end-user
(machine or human), it undergoes several processing steps. Noise estimation
and denoising are usually parts of these fundamental steps.

Some sources of noise can be removed by suitably modeling the acquisi-
tion process of the camera, and developing hardware based on that model.
Other sources of noise are instead inevitable: high/low light conditions of
the acquired scene, hardware imperfections, temperature of the device, etc.
To remove noise from an image, the noise characteristics have to be first
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estimated. The branch of image processing that fulfills this role is called
noise estimation. Then, it is possible to remove the noise artifacts from the
acquired image. This process is referred to as denoising.

For practical reasons, it is convenient to model noise as random vari-
ables. In this way, we assume that the noise fluctuations take values whose
probabilities follow specific distributions characterized only by few param-
eters. These are the parameters that we estimate. We focus our attention
on noise modeled by Gaussian distributions, Poisson distributions, or a
combination of these. These distributions are adopted for modeling noise
affecting images from digital cameras, microscopes, telescopes, radiography
systems, thermal cameras, depth-sensing cameras, etc. The parameters that
define a Gaussian distribution are its mean and its variance, while a Pois-
son distribution depends only on its mean, since its variance is equal to
the mean (signal-dependent variance). Consequently, the parameters of a
Poisson-Gaussian distribution describe the relation between the intensity of
the noise-free signal and the variance of the noise affecting it. Degradation
models of this kind are referred to as signal-dependent noise.

Estimation of signal-dependent noise is commonly performed by process-
ing, individually, groups of pixels with equal intensity in order to sample
the aforementioned relation between signal mean and noise variance. Such
sampling is often subject to outliers; we propose a robust estimation model
where the noise parameters are estimated optimizing a likelihood function
that models the local variance estimates from each group of pixels as mix-
tures of Gaussian and Cauchy distributions. The proposed model is general
and applicable to a variety of signal-dependent noise models, including also
possible clipping of the data. We also show that, under certain hypotheses,
the relation between signal mean and noise variance can also be effectively
sampled from groups of pixels of possibly different intensities.

Then, we propose a spatially adaptive transform to improve the denois-
ing performance of a specific class of filters, namely nonlocal transform-
domain collaborative filters. In particular, the proposed transform exploits
the spatial coordinates of nonlocal similar features from an image to bet-
ter decorrelate the data, and consequently to improve the filtering. Unlike
non-adaptive transforms, the proposed spatially adaptive transform is ca-
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pable of representing spatially smooth coarse-scale variations in the similar
features of the image. Further, based on the same paradigm, we propose
a method that adaptively enhances the local image features depending on
their orientation with respect to the relative coordinates of other similar
features at other locations in the image.

An established approach for removing Poisson noise utilizes so-called
variance-stabilizing transformations (VST) to make the noise variance in-
dependent of the mean of the signal, hence enabling denoising by a standard
denoiser for additive Gaussian noise. Within this framework, we propose an
iterative method where at each iteration the previous estimate is summed
back to the noisy image in order to improve the stabilizing performance of
the transformation, and consequently to improve the denoising results. The
proposed iterative procedure allows to circumvent the typical drawbacks
that VSTs experience at very low intensities, and thus allows us to apply
the standard denoiser effectively even at extremely low counts.

The developed methods achieve state-of-the-art results in their respec-
tive field of application.

iii
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Notation and abbreviations

In Table 1 and Table 2 we report the most common abbreviations and
mathematical notation used in this thesis.

1-D,2-D,3-D  One-, Two-, Three- Dimensional

AWGN Additive White Gaussian Noise

BM3D Block Matching and 3-D filtering

CCD Charge Coupled Semiconductor Devices
CMOS Complementary Metal-Oxide Semiconductor
dB Decibel

DCT Discrete Cosine Transform

ii.d. independent and identical distributed
MAD Median of Absolute Deviation

ML Maximum Likelihood

MSE Mean Squared Error

NLM Nonlocal Means

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index

VST Variance-Stabilizing Transformation

Table 1: List of Abbreviations.
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NOTATION AND ABBREVIATIONS

Xvi

(1.0%)
o
E{z |y}
var {z}
var {z | y}
std {z}
std {z | y}

‘@Z@>N@

Noise-free data

Noisy data

Estimate of y

Gaussian distribution with mean p and variance o
Poisson distribution with mean and variance A
Expected value of z

Expected value of z given y

Variance of z

Conditional variance of z given y

Standard deviation of z

Conditional standard deviation of z given y

2

Table 2: List of Mathematical Notation.



Chapter 1

Introduction

An acquisition device, such as a camera, is an instrument used for measuring
and quantifying a specific physical attribute. When a device is acquiring a
signal, its sensors are measuring the quantity of the physical attribute inter-
acting with them. In case of pictures, for example, the device measures the
energy of the light beams incident on the sensors. Like any other measure-
ments, image measurements are subject to fluctuations due to both internal
and external factors. The most influential among these factors are com-
monly referred to as noise, and produce visible artifacts that we model as
realizations of random variables that follow a specific mathematical model,
and that affect a clean deterministic signal. The knowledge of the param-
eters defining the model allows us to optimally remove the aforementioned
artifacts, delivering a restored signal. The estimation of these parameters is
referred to as noise estimation, and the removal of the artifacts is referred
to as denoising.

In the particular case of imaging devices, an image is the result of the
acquisition process of a rectangular array of sensing elements. A sensing
element generates an electric charge proportional to the number of inci-
dent photons [Gonzales and Wintz, 1987|; this acquisition step is com-
monly called photon-counting process. Each resulting electric potential is
then quantized and stored as an integer number that will represent a pixel
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value in the final data array that constitutes a digital image. The two
most common classes of imaging sensors for visible spectrum are Charge
Coupled Semiconductor Devices CCD [Boyle and Smith, 1970] and Comple-
mentary Metal-Ozide Semiconductor CMOS |Noble, 1968]. Other impor-
tant imaging technologies for the non-visible spectrum are the Flat Panel
Detectors (FPD) [Jaffray et al., 2002] and Thermal Kinetic Inductance De-
tectors (TKIDs) |Cecil et al., 2015| for x-ray imaging, Magnetic Resonance
Imaging (MRI) |[Damadian, 1971|, the Long Wave Infrared (LWIR) sen-
sors |[Hackwell et al., 1996] for thermography and hyperspectral imaging,
Continuous- Wave Light Detection and Ranging (CW-LiDAR) [Bashkansky
et al., 2004] and Time-of-Flight (ToF) [Lange and Seitz, 2001] sensors for
depth cameras, etc.

A clean signal is usually corrupted by noise from multiple sources; for
example, there is a non-zero probability that an incident photon does not
generate an electric charge [Koczyk et al., 1996; Fowler et al., 1998]; the
modeling of the photon counting process, therefore, has to take into con-
sideration this type of uncertainty. Other sources of noise are commonly
present in standard acquisition devices, and are usually independent from
each other, e.g., dark current (also known as thermal noise) [Gonzales and
Wintz, 1987; Johnson, 1928; Nyquist, 1928]. If the noise produced by these
sources are not included in the denoising model, they will eventually affect
the quality of the output image.

1.1 Scope of the thesis

Every acquired image has to undergo throughout a series of modular pro-
cessing stages; noise estimation and denoising are the steps of this chain
upon which we focus the interest of this thesis. In particular, we develop
new and effective models and methods for estimation of signal-dependent
noise and image denoising.

The common framework for signal-dependent noise estimation first 1)
builds a scatterplot from the statistics of different parts of a noisy image, and
2) then estimates the noise parameters by fitting a curve over the scatterplot.

2



1.2. Outline of the thesis

Our contributions to noise estimation address both steps: we propose a novel
model for the estimation of the local statistics, and a robust model for the
scatterplot fitting.

In image denoising, our contributions address the design of adaptive non-
local transforms in collaborative filters, as well as the development of itera-
tive algorithms for signal-dependent noise removal using variance-stabilizing
transformation (VST).

Overall, we aim at improving different steps of the image denoising
pipeline, and the presented methods can be ultimately combined to im-
prove the removal of signal-dependent noise.

1.2 Outline of the thesis

In Chapter 2 we discuss the main sources of noise in imaging, we introduce
the observation models that we use throughout the thesis, and we give a
brief summary of the prior works most relevant to this thesis. In Chapter 3
we deal with the noise estimation problem. We introduce two methods for
estimating the noise affecting an image. In particular, we investigate the
case of signal-dependent noise, in which the noise variance depends on the
signal intensity. We approach this problem from two distinct standpoints;
we first study the possibility of estimating affine noise variance using het-
erogeneous samples [Publication II|, then we propose a robust estimator for
generic (also non-affine) signal-dependent noise variance (that uses instead
homogeneous samples) [Publication I]. In Chapter 4 we tackle the problem
of denoising. We first introduce a denoising algorithm that exploits the
spatial coordinates of nonlocal similar features of an image to generate a
spatially adaptive basis that is then used to transform and filter the data
[Publication I1I]. Based on the same spatial information, we also incorporate
in the algorithm an adaptive enhancement of the image. Then, we propose
an iterative algorithm combined with variance stabilization techniques for
denoising Poisson noise. At each iteration we combine the noisy observa-
tion with the previous estimate to increase the signal-to-noise-ratio (SNR)
of the signal that we stabilize, increasing therefore the accuracy of the stabi-

3
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lizing transformation [Publication IV], especially for low SNR. Finally, the
conclusions on the thesis are given in Chapter 5.

The proposed ideas and algorithms contribute to advance the state of
the art in both noise estimation and denoising.

1.3 Author contribution

The author of the thesis has actively contributed to the development of the
ideas, models, and methods introduced in Publications I-IV, on which this
thesis is based. Furthermore, he is also the first author of all these publi-
cations, taking care of the manuscript writing and of the implementation
and experimental validation the proposed methods, under the supervision
of Dr. Alessandro Foi.



Chapter 2

Preliminaries

This chapter provides general concepts that we use throughout this thesis.
In Section 2.1 we describe the main sources of noise in an imaging acquisition
device. Section 2.2 presents observation models for: additive white Gaussian
noise (AWGN), Poisson noise, and Gaussian-Poisson noise. In Section 2.3
we analyze some relevant methods for Gaussian and Poisson noise removal,
while in Section 2.4 we analyze relevant methods for Poisson-Gaussian noise
estimation. In Section 2.5 we give a more detailed description of the Block
Matching and 3-D Filtering (BM3D) algorithm, since it is often referred
to in this thesis. Finally, in Section 2.6, we introduce the quality metrics
adopted to validate the proposed ideas and quantify the performance of the
proposed methods.

2.1 Acquisition devices and noise sources

Raw images are far from their final end-user form, and have to be processed
to improve their quality before any further operation and/or visualization.
There are several steps (modules) that a raw image has to go through:
white balancing, demosaicing, denoising, optical correction, contrast en-
hancement, color transformation, and tone mapping. For the interest of
this thesis we consider only the denoising block, that usually includes a
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prior noise estimation step.

To model correctly the noise affecting a signal, it is necessary to com-
prehend the functioning of the acquisition device, and opportunely identify
the sources of the noise itself. An image is generated by converting the
light coming from a natural scene to digital data. In particular, a camera
performs this conversion using a semiconducting array of sensing elements
positioned after an aperture: when the shutter opens, the light from the
scene goes through the lenses and the aperture, finally colliding with the
sensors. This array converts the energy of the incident light beams to elec-
tric charges, that are successively accumulated in an electric potential. The
electric potentials are then converted to digital values, and finally stored
collectively as a raw image, whose pixel intensities correspond to the energy
accumulated by each sensing element.

The most common digital camera sensors are Charge Coupled Semi-
conductor Devices (CCD) and Complementary Metal-Oxide Semiconduc-
tor (CMOS). While most of the modern devices have CCD sensors, CMOS
sensor technology is becoming more and more popular due to its flexibil-
ity |Jahne, 2004]. The main difference between the two is that, while in
CCD arrays the charge of a row of sensors is transported via the same
circuit, sharing also the same amplifier, CMOS arrays are based on the Ac-
tive Pixel Sensor (ASP) technology, for which every single sensor is treated
independently, having a unique transport line. Although there are clear dif-
ferences, the sensors share the same light acquisition procedure, since they
are both silicon photosensitive diodes; therefore, we consider a single model
to represent the noise affecting both sensors.

To understand the nature of the noise from the sensors, let us consider
the acquisition of a still scene; although the average incident energy over a
relatively long period of time might be constant (constant brightness), the
amount of photons incident on the camera sensors during the exposure fluc-
tuates with time. Furthermore, not all the incident photons are converted
to electric charge. Therefore, taking several pictures of the same still scene
does not give identical images. This whole phenomenon is known as shot
noise, and is well modeled by the family of Poisson distributions [Mandel,
1959].

6
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Another relevant source of noise is the so-called thermal noise. Thermal
noise is generated by thermal agitation [Nyquist, 1928; Johnson, 1928|, and
is due to the fact that at any given temperature (except absolute zero),
conductors have a probability to emit charges due to heat, even when there
is no electric potential to stimulate them. This results in a background cur-
rent, present also in absence of input signals (dark current) [J&dhne, 2004],
which alters the measurements of the sensors. The inevitable fluctuations
of this current are thus modeled as noise. By definition, this type of noise
is proportional to the working temperature of the device, and it could be
reduced by decreasing the surrounding temperature of the electric circuits;
however, in most applications this solution is unacceptable or unfeasible,
and therefore we have to find alternative ways to suppress this sort of arti-
facts.

Flicker noise is a type of noise with power spectral density inversely pro-
portional to the frequency, and it is present in all electronic devices. It is also
known as 1/ f noise [Weissman, 1988] or pink noise, from the corresponding
power distribution in the light-wave color spectrum. A consequence of its
power distribution is that the variance of the noise is large at low frequency,
while being small at higher frequency.

The last types of noise sources that we investigate are those due to the
imperfections of the electronic components. For example, the sensing ele-
ments of a sensor might have slightly different photoelectric responses, or
the amplifiers of a sensor might have slightly different gains. These nonuni-
formities are referred to as readout noise and Fixed-Pattern Noise (FPN).
Readout noise is due to the amplification and analog-to-digital conversion,
and it is a particular type of FPN. In general, a fixed pattern noise is a type
of noise that repeats itself over time with the same structure, and could
be corrected by using dark frames, i.e. pictures taken without exposure to
light.
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2.2 Adopted noise models

2.2.1 Additive white Gaussian noise (AWGN)

From Section 2.1 it is clear that a signal acquired by a digital device is af-
fected by noise from several sources. It is neither reasonable, nor convenient,
to try to separate and treat each noise source individually; therefore, we con-
ventionally group them together and we address them as a single noise. This
procedure is theoretically supported by the Central Limit Theorem (CLT)
[Tijms, 2007; Papoulis and Pillai, 2002|. Considering a set of N indepen-

dent random variables X1i,..., X, with respective means pu,...,uy and
standard deviations o1, ...,0y, the sum
1 .
- — 1) —>N(O 1) with  s= (2.1)
5

when N — oo, with N denoting a convergence in distribution. Therefore,
we can represent the sum of the noise from various sources as a Gaussian
random variable.

The Gaussian noise is further commonly assumed additive, independent
and identically distributed (i.i.d.); with this assumption we can model our
observed image z as

z(x) =y (x) +n(2), (2.2)
where y is the noise-free image that we want to recover, z € Q C Z¢ is
the d-dimensional spatial coordinate of the signal (d = 2 for images), and
n~N (0, 02) is the zero-mean random variable that models the additive
white Gaussian noise (AWGN) affecting y. From (2.2) we find that

E{z(z) |y(@)}=y(2) and var{z(2)|y(2)}=0%  (23)

where E {-} and var {-}, are, respectively, the expectation and variance of
the value in-between curly brackets. Clearly this type of noise is signal-
independent, in the sense that its standard deviation does not depend on
the noise-free signal y, and it has a flat power spectrum.

8



2.2. Adopted noise models

The above simplifications make the problem of denoising more conve-
nient to solve, and it allows us to use simpler denoising tools. However,
we have made strong assumptions, and one can object the validity of the
model. In particular, signal-dependent noises, such as shot noise, is not
taken into account by this model. Nonetheless, there are cases in which the
noise sources can be assumed signal-independent |[Nakamura, 2005|, where
this model holds and is very advantageous.

2.2.2 Poisson noise

The conventional way to model data corrupted by Poisson noise (signal-
dependent noise) is to represent the observed image z as realizations of
independent Poisson random variables. In particular, z is modeled as

z(x) ~ Py (),
P(Z(x)!y(x))—{ % z(xz) e NU{0} (2.4)

0 elsewhere,

where y is the noise-free image to be estimated. Therefore, in (2.4) we
consider each pixel as an independent realization of a Poisson random vari-
able whose mean and variance are the noise-free signal y that we want to
estimate

E{z(2) [y (2)} =var{z(z) |y (z)} =y (z). (2.5)

From (2.5) we can observe an important property of Poisson noise. Since the
variance is equal to the mean of the signal, there is a square root dependency
between mean and standard deviation. This implies that the signal-to-noise
ratio SNR, i.e. ratio between noise-free signal energy and noise energy,
increases when the intensity of the noise-free signal y increases

y? (x)

SNR =101 —_—
9810 Jar {noise}

= 10log;py (). (2.6)

Since denoising is easier for large SNR scenarios, denoising of Poisson images
becomes quite challenging for low intensities, where the noise is relatively
stronger compared to larger intensities.
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Variance-stabilizing transform (VST)

As mentioned above, in a Poisson image each pixel is affected by noise with
variance equal to the mean of the pixel intensity. This dependency has to
be taken into consideration when developing a denoiser for such images. In
literature, one of the most common way to denoise Poisson images is by
variance-stabilizing transformation (VST). As the name suggests, a VST
is a point-to-point transformation applied to the data, that makes the re-
sulting signal affected by noise with constant variance (signal-independent).
As a result from this transformation, we can use standard denoising filters
for additive noise, like those listed in Section 2.2.1, to denoise the Pois-
son image. Applying then an inverse VST, we obtain a denoised image
that is considered the final estimate. This framework has been the back-
bone of Poisson denoising for a long time, and many works based on the
VST+(AWGN denoising) filters can be found in the literature.

Let us consider a Poisson random variable z whose mean and stan-
dard deviation are, respectively, E{z |y} = y and std{z | y} = o (y). De-
noting with f a generic VST function, ideally, we would like to obtain
std{f (2) |y} = ¢, with ¢ > 0 being a constant value. We obtain the first
order of the Taylor polynomial approximation of f (z) around the value y
as

fE=f)+E-y) (). (2.7)

Computing the standard deviation of both members of (2.7), we obtain

std {f (2) |y} = o (y) f' (v), (2.8)

since y is deterministic, i.e. std {y} = 0. By imposing the standard devi-
ation equal to the desired constant ¢, i.e. std{f (z) |y} = ¢, we find an
approximate analytical expression of the VST as primitive function:

f(z) —/0 @dy. (2.9)

Equation (2.9) can be used to find a VST for Poisson random variables.

10
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Indeed, by substituting ¢ = 1 and o (y) = ,/y we can solve the integral

1
f(z)= /0 ﬁdy = 2/z. (2.10)

This is a generic result that has not been used only in signal processing;
in fact, the stabilizing performances of the VST in (2.10) were already
studied by Bartlett [1936], while Curtiss [1943| proves that (2.10) is an
asymptotic stabilizer of the Poisson distribution; in this scenario asymptotic
means that the variance of the transformed signal converges to a constant
as y — +oo. However, in the same work, the author shows that there are
better expressions of VST for Poisson variance stabilization, with faster rate
of convergence. More specifically, he proposes a VST of the form f(z) =
24/z +1/2. Finally, Anscombe [1948|] proves that the optimal constant to

be summed to z is 3/8:
f(z) ZQR' (2.11)

This function is known as the Anscombe transform, and the optimality
is intended in terms of asymptotic rate of convergence for large values of
intensity. In his work, Anscombe [1948| gives the asymptotic expression
of the variance of the transformed variable f (z) = 2y/z + 8 for a generic

constant 8 > 0,
3-8 322 — 5253 + 17 1
var{f(z)}z{H 8y5+ b 32yf+ }+o<>.

Y3
By setting 5 = 3/8, (2.12) becomes

var{f(z)}:{1+161?ﬁ}+(’)<ylg), (2.13)

proving that § = 3/8 is the optimal value for convergence to 1 in case
of large values of mean y. For small value of intensity, i.e. y < 2, the
Anscombe transform becomes inaccurate.

Although many other VST have been proposed [Freeman and Tukey,
1950; Bar-Lev and Enis, 1988, 1990; Foi, 2009], in our implementations we
use as VST the Anscombe transform.

(2.12)

11
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Inverse transformation

An important aspect of VST algorithms is the inverse transformation. In
fact, once the signal has been transformed and denoised, it is contaminated
by bias due to the non-linearity of the forward VST. The design and compu-
tation of an unbiased inverse transformation, which maps the data back to
its original range, can be challenging, and exact solutions became available
only recently [Mékitalo and Foi, 2011]. Further details are given in Section
4.2.1.

2.2.3 Poisson-Gaussian noise

The Poisson-Gaussian noise model is given by the sum of two independent
sources of noise, one whose variance is signal-dependent (Poisson), and one
whose variance is signal-independent (Gaussian). Its formal model is

z(x) =ap(x)+n(x), (2.14)
where
p(z) ~P(y(z)) and  n(z)~N(0,b), (2.15)

and « si a constant « > 0. From (2.14) we define the Poisson-Gaussian
noise 7,4 as

Tpg (¥) =z (x) —ay (). (2.16)

Although (2.14) is the rigorous Poisson-Gaussian model, for our applications
we consider an alternative approximation model that reformulates z (z) as
the sum of a deterministic signal y () and the random noise o (y (x)) & ()

z(x) =y (x) +o(y ()€ (), (2.17)

where £ is a zero-mean random variable with unitary variance, i.e. E{£} =0
and var {¢} = 1, and o is a univariate function (so called standard devia-
tion function), which gives the signal-dependent standard deviation of the

12
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noise as a function of the deterministic noise-free signal y (z). We also as-
sume the noise model in (2.17) as heteroskedastic Gaussian, i.e. a Gaussian
distribution whose variance depends on the noise-free signal y (x):

o (y (2)) € (x) ~ N (0,0% (y (2))) - (2.18)
This simplification is validated by the fact that, for large values of mean,
the Poisson distribution is well approximated by the Gaussian distribution
P(y) =~ N (y,y). Since we estimate noise affecting images whose range of
intensities (usually y € [0, 255]) is mostly confined where the approximation
is valid, we can express the noise distribution as in (2.18).
Trivially,

E{z(x)} =y (x) and std{z (z)} =0 (y(z)). (2.19)
We finally give the simplified variance expression
o? (y(z)) = ay(x) + b, (2.20)

where a represents the signal-dependent part of the variance, while b the
independent one. Although higher order of approximation could be used,
in this thesis we model the noise variance (2.20) as an affine function of the
signal mean, since it well represents noise affecting the digital acquisition
devices most interesting for the thesis, such as digital cameras and micro-
scopes. Nonetheless, as in [Sutour et al., 2015|, the algorithm presented in
Publication I supports any order of approximation of the noise variance,
and can be also used in scenarios where a higher order of approximation is
needed.

Variance stabilization via generalized Anscombe transformation

Similar to the case of Poisson images, the Gaussian-Poisson noise can be sta-
bilized using the generalized Anscombe transform [Starck et al., 1998] f;. In
particular, the noise in (2.14) is stabilized via the following transformation

2 3 3 b
—\/az+ -a?+b— ap, z2>——a——+p
folz) =3 @ 8 38 o (2.21)
0, z< ——a— — +pu,
8 o}
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where p is the expected value of the Gaussian distribution.

2.3 Image denoising methods

In this chapter we give a brief and non-exhaustive review of some of the
most significant works on Gaussian and Poisson noise removal.

2.3.1 Denoising of additive Gaussian noise

Although there are many criteria that could be used to classify AWGN de-
noising methods, we decide to distinguish three, partly overlapping, classes
of algorithms: local algorithms, nonlocal algorithms, and transform-domain
algorithms.

Local algorithms

As the name suggests, local methods denoise each pixel of an image by ex-
ploiting the information from the pixels spatially close to it, 7.e. its local
neighbourhood. The first local methods relevant to the thesis are presented
in [Nadaraya, 1964; Watson, 1964|, where the authors estimate a reference
pixel via a weighted average of its neighborhood: the weights are computed
with a Gaussian kernel (window) whose arguments are the Euclidean dis-
tances between reference pixel and neighbors. Since the weights depend
on the spatial coordinates of the neighbors but not on the pixel intensities,
pixels of the image that belong to non-uniform areas are usually poorly esti-
mated, because neighbors may have different intensities. Smooth intensity
variations can be dealt with by the local polynomial approximation (LPA)
methods, that estimate the reference pixel by finding a polynomial func-
tion that best fits its windowed neighborhood [Stone, 1977; Cleveland and
Devlin, 1988; Fan and Gijbels, 1996; Katkovnik et al., 2006].

Even though LPA methods improve the estimate in non-uniform areas
of the image, the size of the support window does not adapt to each specific
neighbourhood or discontinuities. Katkovnik et al. [2004] propose a method
to determine the pointwise adaptive size of directional windows in image
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denoising. This method is based on the intersection of confidence intervals
(ICI) method first proposed in [Goldenshluger and Nemirovski, 1997].

Another relevant adaptive local denoising algorithm is the bilateral filter
[Tomasi and Manduchi, 1998]; this algorithm denoises a reference pixel with
a weighted average of its neighborhood, in which the weights are computed
from a bi-variate Gaussian kernel whose arguments are, respectively, the
Euclidean distance and difference in intensity between reference and neigh-
bor. In this way the neighbors that are closer spatially and in intensity have
more weight compared to the others, improving the filter performance in
edges and texture of an image.

Nonlocal algorithms

The idea behind nonlocal algorithms is that the information required to
denoise a pixel in not necessarily in a close surrounding of the pixel under
interest, but could be found anywhere in the noisy image. Although already
formulated in 1997 [De Bonet, 1997], the first relevant work on non-locality
is the NonLocal Means (NLM) algorithm [Buades et al., 2005]. There, the
authors propose to replace the current reference pixel with a weighted av-
erage of the pixels whose neighborhood is similar to the neighborhood of
the pixel to be estimated. Similar neighborhoods give larger weights, while
dissimilar neighborhoods have smaller weights. The similarity between two
neighborhoods is measured via fo norm of their intensities. In principle, the
whole image can be used to denoise a single pixel, but for practical reasons
the search of similar neighborhoods is restricted to a smaller region. The
difference with the local algorithms is clear: non-local algorithms use a col-
lection of neighborhoods for denoising, instead of a single one. In the same
year Awate and Whitaker [2005] propose a similar patch-oriented nonlocal
method, called UINTA, that denoises an image by minimizing a penalty
function based on the entropy of patterns of intensities from regions of the
image with similar neighborhood.

Several variations of NLM can be found in literature. For example,
in [Kervrann and Boulanger, 2006, 2008; Deledalle et al., 2012] the au-
thors improve the filtering results by optimizing search areas, aggregation
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weights, and shape of the patches. A particular example is the SAFIR al-
gorithm [Boulanger et al., 2008], that optimizes the search window based
on the estimation error and on the estimates at previous iteration. Buades
et al. [2013], furthermore, present a variation of NLM in which the covari-
ance of a group of similar blocks is used to increase the performance of the
nonlocal weighted mean. Nonlocality is also exploited for video denoising,
like Liu and Freeman [2010] do in their work; there, the redundancy of infor-
mation is considered also in the temporal direction, extending the research
of similar neighbours to different frames of a video.

Another category of nonlocal filters developed from NLM are the col-
laborative filters; compared to NLM, that exploits nonlocal information to
denoise one pixel per time, collaborative filters process together nonlocal
parts of an image, denoising them jointly at the same time [Dabov et al.,
2006, 2007b,b]. We dedicate the entire Section 2.5 to the description of the
collaborative Block Matching 3-D (BM3D) filter algorithm of Dabov et al.
[2006], because it is the denoising filter for additive noise that we mostly
refer to throughout the thesis.

Transform-domain algorithms

Transform-domain filters perform the so called denoising in sparse domain
[Donoho and Johnstone, 1995; Donoho, 1995]. The idea is to represent the
observed signal in a domain in which its noise-free version is sparse, i.e.
most of the energy of the noise-free signal is confined in a small amount of
transform coefficients. Since the observed noisy signal is affected by noise
with a flat power spectrum, most of its transform coefficients are different
from zero due to the effect of noise, even if a sparse transform is applied. To
perform denoising in transform domain, a shrinkage operator is commonly
applied to the transform coefficients in order to suppress the coefficients that
are different from zero due to noise. Because sparse transform coefficients
that well-represent the signal have usually much larger magnitude than
those that only depend on the noise, hard-thresholding to zero the small
magnitude coefficients is usually the simplest and sometimes most efficient
shrinkage operator.
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The first transforms used for transform-domain filtering have been the
Discrete Fourier Transform (DFT) and the Discrete Cosine Transform (DCT).
The main advantages of these transforms is that, especially for relatively
small supports (e.g., 8 X 8 or 16 x 16 blocks), the transform coefficients
are very sparse, i.e. only few are different from zero. This is due to the
fact that, using a small support, the majority of the observed blocks can
be approximated smooth, and are well represented by a small amount of
transform coefficients. Between DFT and DCT it is common practice to
opt for the DCT, due to its periodicity |Gonzales and Wintz, 1987].

An example of DCT transform-domain filter is the sliding DCT algo-
rithm [Oktem et al., 1998; Yaroslavsky et al., 2001]. A sliding window is
shifted along the observed image; at each step the authors compute the
DCT transform of the block, and then they perform shrinkage. The inverse
transformed block is finally considered an estimate of the noise-free block.
Since patches estimated at different steps usually overlap, the algorithm
also introduces the aggregation of overlapping patches, that is performed
via point-wise averaging (or weighted averaging) of overlapping pixels. An
interesting improvement of sliding DCT is the shape adaptive DCT (SA-
DCT) algorithm [Foi et al., 2007, 2006]. There, LPA is combined with the
ICT rule in order to compute the optimal shape of the patch for each spe-
cific region of the image. The patch is successively transformed with a shape
adaptive-DCT transform, and filtered via hard-thresholding. Furthermore,
the authors introduce also a second stage filtering, in which a Wiener filter
is applied using as pilot signal the previous estimate.

Multiscale transforms constitute a large subcategory among the transform-
domain denoising algorithms. The general idea is to represent the observed
signal in a transform domain at different scales. In this way it is possi-
ble to process (parts of) the image with filters at different scales. This
allows to correctly smooth large smooth areas, while still preserving de-
tails and texture from the original image. The most convenient multiscale
transform used in literature is the wavelet transform. The wavelet basis
is usually generated from a single mother wavelet function that is scaled
and shifted in order to obtain an orthogonal basis used for the transforma-
tion. The first wavelet was introduced in 1911 by Haar [1911], and since
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then many others have been proposed, for example, by Daubechies [1988],
Beylkin et al. [1991], and Coifman and Meyer [1991]|. Recently, more so-
phisticated transforms have been proposed for multiresolution denoising;:
directional wavelets [Antoine et al., 1996], curvelets [Starck et al., 2002],
ridgelets [Starck et al., 2002|, shearlets [Labate et al., 2005|, etc. The main
difference with standard wavelets is that they use particular basis capable of
preserving specific features of an image, like straight lines, curves, or edges.

Elad and Aharon [2006] develop a transform-domain algorithm that ex-
ploits singular value decomposition (SVD) and K-means: the K-SVD de-
noising algorithm. There, the authors propose a two-stage iterative algo-
rithm; in the first stage, atoms for sparse representation of the image are
computed via K-means, while in the second stage the dictionary is updated
applying SVD decomposition of the atoms. Denoising is performed by rep-
resenting the estimated signal using only few atoms, corresponding to the
larger eigenvalues from the SVD.

Notably, BM3D [Dabov et al., 2007b| can be treated as a special nonlocal
transform-based method, since it performs denoising via shrinking of the
transform coefficients of groups of similar blocks.

2.3.2 Denoising of Poisson noise

In this section we present the most representative methods for Poisson im-
age denoising. We divide these algorithms in two main categories: VST
based, and direct denoisers. While the first category applies variance stabi-
lizing transformation before denoising, the second directly filters the Poisson
image.

VST-based methods for Poisson images denoising

Exploiting the variance stabilization concept introduced in Section 2.2.2,
Poisson denoising algorithms based on VST have been proposed extensively
during the course of the years. The idea is to stabilize the variance of the
noise with a VST (e.g., Anscombe transform), and to denoise the resulting
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signal with a filter for additive noise. Then, an inverse transformation is
applied.

Fryzlewicz and Nason [2004] stabilize Poisson images via Haar-Fisz trans-
form, that is a wavelet transform (generated from the better known Haar
transform) that stabilizes the Poisson distribution into a Gaussian one, es-
pecially effective for low intensity values. The authors exploit this property
to stabilize the noisy signal, and to treat it as an additive noise. Zhang
et al. [2008] introduce a multi-scale variance stabilizing transform (MS-
VST) that outperforms [Fryzlewicz and Nason, 2004]. There, the authors
propose to decompose a signal via a generic filter-bank of wavelets, ridgelets
and curvelets. Each representation of the signal is then stabilized via an
ad-hoc VST (computed from the Anscombe transform), and then filtered
using an AWGN filter. Each transform sub-band is therefore interpreted
as a signal affected by signal-dependent noise to stabilize with an adaptive
transform.

Although many alternatives have been proposed, the Anscombe VST
remains appealing for a wide audience within the scientific community, for
its simplicity and practicality. Boulanger et al. [2008], for example, adopt
the Anscombe transform to denoise Poisson data. Even though based on
the simple Anscombe VST, these methods achieve state-of-the-art results in
terms of image quality. For this reason, we use the same framework in our
approach to Poisson image denoising, and we develop an iterative scheme
to cope with the low-intensity case mentioned in [Fryzlewicz and Nason,
2004].

Direct Poisson images denoising

While VST algorithms adapt AWGN denoising algorithms to denoise Pois-
son images, in literature we also find specific algorithms for direct Poisson
image denoising. In this section we analyze those that we will later on use
to compare the performances of the proposed Poisson denoising scheme.
The first algorithm that we discuss is the Non-Local Sparse-Principal
Component Analysis (Poisson-NLSPCA) [Salmon et al., 2014|. There, the
authors combine the Poisson-PCA [Collins et al., 2001] with a sparse dictio-
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nary learning technique for Poisson data, to iteratively converge to a final
estimate. In particular, the image is divided in overlapping patches, that are
successively grouped into clusters via K-means. Then, a dictionary is found
for each cluster, and a sparse representation of the patches is computed.
This allows to denoise the data directly, without any variance stabilization.

Giryes and Elad [2014] propose an iterative Sparse Poisson Denoising
Algorithm (SPDA) similar to [Salmon et al., 2014|, but they use a global
dictionary for all the patches from the entire image, and introduce a novel
greedy technique for the computation of the sparse representation of each
patch. There, the authors also impose that similar enough patches share
the same sparse coefficients.

Based on the work by Danielyan et al. [2010], another algorithm recently
proposed is the Plug-&-Play Prior for Poisson Inverse Problem (P4IP) [Rond
et al., 2015]. In their work the authors propose a Plug-&-Play framework
[Venkatakrishnan et al., 2013] solved iteratively by the alternating direction
method of multipliers (ADMM) algorithm [Boyd et al., 2011]. The denoising
part of this method is performed using a Gaussian denoising filter plugged
directly into the processing chain of P*IP. Indeed, in a loose sense, this
algorithm could be even considered a VST algorithm in which the VST is
iteratively refined to adapt to the data to be denoised.

The algorithm in [Pyatykh and Hesser, 2015] processes and denoises,
individually, patches extracted from the image using a minimum mean
squared error (MMSE) estimator performed by k-d tree search [Muja and
Lowe, 2014] combined with a K-nearest neighbor graph search.

Oh et al. [2014] present instead an approach in which the estimation
is performed by minimizing a cost function whose regularization term is
an hybrid function of the image and its logarithm, depending on the local
intensity of the image itself.

2.4 Poisson-Gaussian noise estimation

The main purpose of noise estimation algorithms is to estimate the param-
eters a and b of the function (2.20). The most common framework first
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builds a scatterplot with mean values of the signal on the abscissa, and
corresponding standard deviations (variances) on the ordinate; then, it fits
a curve over these points to estimate the function parameters. It is com-
mon practice to compute each scatter-point from homogeneous samples, i.e.
each element in a sample share a unique common expectation value (hence
they also share a common unique variance value). This practice is based on
the fact that the sample variance of homogeneous samples is an unbiased
estimator of the noise variance for that particular expectation value. Conse-
quently, each point in the scatterplot refers to a specific point of (2.20), and
therefore has a direct relation with the curve whose parameters we want to
estimate. We first analyze relevant algorithms that adopt a patch-based ap-
proach, where each scatter-point is estimated from the statistics of a single
patch from the noisy image; then, we analyze relevant segmentation-based
approaches, where each scatter-point is estimated from segmented (homoge-
neous) elements extracted from the whole noisy image. Finally, we introduce
a category of algorithms that does not compute a scatterplot, but instead
use alternative methods to the aforementioned framework to estimate the
noise parameters.

2.4.1 Patch-based methods

A relevant patch-based algorithm is introduced by Lee and Hoppel [1989)],
that divide the image into small patches, and directly compute their mean
and variance to build the scatterplot of mean-variance pairs. Since image
blocks might contain heterogeneous elements that would mislead the esti-
mation of the local variances, the authors estimate the noise parameters
by finding the curve that intersect most of the scatter-points. In this way
they reduce the effect of outliers that usually appear far from the majority
of the scatter-points. In a similar work, Amer and Dubois [2005] evaluate,
using directional derivative filters, the uniformity of each patch that gen-
erated a data point. Comparing the uniformity against a threshold, the
algorithm decides whether to use the scatter-point (if the patch elements
are homogeneous) or to discard it. Finally, since the outliers have been
already excluded, a simple least square (LS) fitting is adopted. In [Sutour
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et al., 2015] the authors divide the image in non-overlapping blocks; based
on the Kendall’s 7 coefficients, adopted to find the correlation between el-
ements from the same block, the blocks are then classified as homogeneous
or heterogeneous. The heterogeneous blocks are discarded, while the homo-
geneous ones are used to compute the local statistics for the fitting of the
mean-variance curve. An important aspect of the algorithm is that a ro-
bust fitting is performed by minimizing the ¢; error of the residuals. Similar
works can be found in [Meer et al., 1990; Lee, 1981; Mastin, 1985], however
we decide not to go into further details.

An interesting variant has been proposed by Boulanger et al. [2010].
They divide the image into adaptive blocks whose size depend on the vari-
ance of their elements (homogeneity). If the variance of a block matches
the variance model (Fisher test is used to compare the two), then the block
is considered homogeneous, otherwise the block is further split into four
parts and each sub-block is then analyzed as before. Finally, the authors
perform noise parameters estimation via robust linear regression of the local
estimates.

2.4.2 Segmentation-based methods

We now describe the most relevant segmentation-based approaches for noise
estimation. Gravel et al. [2004] segment the observed noisy image into
homogeneous samples, that are each used to compute a scatter-point. The
segmentation is performed by first smoothing the observed image, and then
by grouping pixels with similar intensity. This leverages the fact that a
smoothing operator suppresses the noise, and facilitates the segmentation
process. Pixels from edges and texture are excluded from the estimation,
since the segmentation is inaccurate in those regions. The noise parameters
are finally estimated using a weighted regression of the scatterplot points.
Another type of segmentation is proposed in [Liu et al., 2006], where
the authors do not filter the image, but they bin the image elements using a
K-means clustering method. A robust fitting algorithm is then adopted to
cope with possible inaccuracies of the K-means clustering: the noise param-
eters are estimated by fitting a lower envelope of the scatterplot, computed

22



2.5. Block matching and 3-D filtering (BM3D)

by maximizing a likelihood function that takes into consideration the possi-
ble overestimation of the scatter-points variances. Similarly, Foi et al. [2008]
filter the observed image, segment it, and then maximize a likelihood func-
tion to estimate the noise parameters. A major novelty introduced by this
work is that it takes under consideration the clipping of the data, i.e. values
of the image that exceed certain boundaries are replaced by the values of
the boundaries.

2.4.3 Alternative approaches

In our work [Publication II| we show that the restriction on the use of ho-
mogeneous samples is not necessary to correctly estimate the affine noise
variance in (2.20), and like the methods [Mékitalo and Foi, 2014; Pyatykh
et al., 2013] we estimate the noise parameters without any segmentation
of the image. The algorithm in [Mékitalo and Foi, 2014| estimates the
noise by exploiting the stabilizing capability of the generalized Anscombe
transformation. In particular, the authors try to find the parameters for
the transformation that best stabilizes the standard deviation of the trans-
formed image, and assume those as the final estimates. The algorithm in
[Pyatykh et al., 2013], instead, estimates the noise parameters by analyzing
the last eigenvalues of the singular value decomposition (SVD) of homoge-
neous patches from a noisy image. These eigenvalues depends only on the
noise, and therefore are used to estimate the noise parameters.

2.5 Block matching and 3-D filtering (BM3D)

Since the denoising methods from Publication I and Publication III involve
the use of the BM3D algorithm, in this section we discuss the key features
of its original implementation [Dabov et al., 2007b], also useful for under-
standing Chapter 4. Although introduced a decade ago, BM3D still gives
state-of-the-art results. It can be considered a hybrid algorithm that per-
forms collaborative filtering by exploiting the sparsity of groups of similar
patches extracted from different parts of the image (i.e. nonlocality).
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2.5.1 Grouping and transform

The first step of BM3D is the grouping of similar blocks. In this step the ob-
served image is divided into overlapping reference blocks; for each reference
block the algorithm looks for similar blocks in its surroundings (search win-
dow). The similarity criterion is the Euclidean patch difference, intended
as the sum of the squared pointwise differences between corresponding pix-
els in the two blocks (i.e. squared fo-norm). Each group of similar blocks
is then collected and stacked together in a 3-D volume, that is eventually
transformed to decorrelate its pixels, and to collect most of the group energy
into few transform coefficients. In BM3D, a separable 3-D transform is ap-
plied to the group: first, a 2-D transform (e.g. 2-D DCT or 2-D wavelet) is
applied to each block individually, then, a 1-D transform (Haar) is applied
to the obtained 2-D coefficients along the remaining orthogonal dimension.

Since multiple reference blocks overlap, and 3-D volumes usually share
common pixels, eventually the algorithm produces multiple estimates of the
same pixel. The overlapping will be taken into account when producing the
final estimated image.

2.5.2 Collaborative filtering

Once the 3-D spectrum is computed, we can proceed to filter the group.
Since the amount of redundant information of a group of similar patches
is abundant, the 3-D transform should promote sparsity of the spectrum
coefficients. A very sparse 3-D spectrum may result from spatial local regu-
larity of the patch content, nonlocal regularity (i.e. repeated spatial content
across the different patches in the group), or a combination of both. In or-
der to perform denoising we apply a hard-thresholding operator to the 3-D
spectrum to zero the small coefficients that only depend on the noise power
(variance). The threshold used for shrinkage is set proportional to the stan-
dard deviation of the noise affecting the signal.
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2.5.3 Aggregation

Once all the groups are filtered, we compute the inverse transform and we
aggregate the estimates into the final image. In BM3D the aggregation
is done via convex combination of all the overlapping estimates, where the
weights are inversely proportional to the residual variance of the correspond-
ing group. In this way, we give larger weights to pixels belonging to groups
enjoying a sparser 3-D spectrum.

2.5.4 Second iteration with Wiener filter

A second iteration of the algorithm is usually performed to improve the
denoising results. Since we have already an approximation of the noise-
free data, in this second stage the block matching is performed on the
previously denoised image. Then, the similar blocks are extracted from the
noisy image at the corresponding coordinates. The group is transformed
like in the previous stage, and shrunk by Wiener filtering. In particular, we
extract also the corresponding group from the previously denoised image,
and we use its spectrum as pilot signal for the Wiener filter. Note that the
Wiener filter is applied only in the second stage because it requires a pilot
signal for denoising, and at the first iteration we do not have at our disposal
such signal.

As a side note, it has been tested that iterating BM3D more than once
does not provide any benefit, and does not improve the estimation. On
the contrary, in most cases the PSNR. of the denoised image in successive
iterations decreases compared to the output of the first Wiener stage.

2.5.5 BM3D extensions

Several BM3D extensions have been developed in the last ten years |Bo-
racchi and Foi, 2008; Dabov et al., 2007a; Maggioni et al., 2014]. A direct
improvement, for example, is presented in [Dabov et al., 2009], where the
2-D DCT transform is replaced by an adaptive PCA transform. This al-
gorithm gives state-of-the-art performance due its outstanding capability
of both, sparse representing piece-wise smooth areas from the image, while
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preserving fine details due to the PCA adaptability. However, perform-
ing PCA for each group of similar patches is more time consuming than
adopting a fixed 2-D transform.

2.6 Quality metrics

In order to quantitatively evaluate the performance of a denoising filter,
one needs objective quality metrics. We mainly use the peak-signal-to-
noise-ratio (PSNR) and structural similarity index (SSIM) [Wang et al.,
2004].

The PSNR is defined as

2

PSNR = 10log; f\’dngg (2.22)

where ymax is the maximum value of intensity in the image y, and MSE is
the mean squared error

MSE =+ 3" (y (2) — 3 ()%, (223)
e

with ¢ being the estimate of the noise-free signal y. In other words, the
PSNR is the logarithm of the ratio between the maximum value of intensity
in the image and the average estimation error, and it is higher for better
estimates.

Although the PSNR is conventionally the main quality metric adopted in
literature, it presents some shortcomings. For example, it does not take into
account that some type of artifacts are more noticeable to the human visual
system compared to others [Wang et al., 2004]. In fact, since it is essentially
based on the MSE, the PSNR does not consider at all any structure in the
image. In this thesis we also consider the SSIM metric, that takes also into
consideration the changes in structural information.
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Chapter 3

Contribution to noise
estimation

In this chapter we first introduce a novel idea for affine noise variance esti-
mation where we use heterogeneous samples to compute the mean-variance
scatter-points. We prove that the sample mean and sample variance applied
to heterogeneous samples still are unbiased estimators of the population
mean and variance of a specific point of the affine relation that we want
to estimate; consequently the only problem is handling outliers generated
when separating noise from the observed signal. We then show, using a basic
prototype algorithm, that the influence of these outliers can be effectively
mitigated adopting robust estimators. In the second part of the chapter
we instead introduce a more traditional noise estimation model that can
be used to estimate the noise variance with any order of dependency with
respect to the signal mean, and that is based on the framework presented
in Section 2.4. In particular, we introduce a robust fitting of the scatterplot
points using as regression tool a maximum-likelihood estimator that models
each mean estimate with a Gaussian distribution, and each standard devia-
tion estimate with a Gaussian-Cauchy mixture distribution. In this way we
include in our model the possibility that some of the scatter-points standard
deviations are outliers wrongly estimated.
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3. CONTRIBUTION TO NOISE ESTIMATION

3.1 Affine noise variance estimation using
heterogeneous data

The general idea that we introduce is that, in case of affine noise variance,
sample estimators of mean and variance applied to heterogeneous samples
extracted from the noisy image are unbiased estimators of points of the
variance curve whose parameters we want to estimate. This is in contrast
with most of the methods found in literature. The hypothesis of affine
variance, although being restrictive, is well suited to approximate noise
variance of signal-dependent classic models such as Poisson and Poisson-
Gaussian. A pseudo-algorithm based on our proposed idea is the following.
Let us consider a noisy image z corrupted by Poisson-Gaussian noise. We
extract random patches (e.g. squared blocks) from z; we then compute the
first two centered moments (mean and variance) for each patch individually.
The computed pairs are then collected on a scatterplot, on which we fit a
parametric model whose parameters we want to estimate.

3.1.1 Patch statistics and noise analysis

Let us suppose for the moment that, in an ideal scenario, we can perfectly
extract the noise component from the observed image z. Denoting with W a
random block from z, and with W# the corresponding noise counterpart, in
Publication IT we prove that the expectation of standard estimators of mean
and variance, applied respectively to W and W# | are unbiased estimators of
the patch noise-free signal mean and of the noise variance. In other words,
the expectations of the mean-variance pairs lie on the mean-variance curve
that we want to estimate.

Considering the noise heteroskedastic Gaussian (2.18), we can express
the probability density functions (p.d.f.’s) f and fWH of, respectively, W
and W# as

Wy - W W ()~ L (2=
(@) =l (@), pl (0) ~ Lo (5, (3.1)
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3.1. Affine noise variance estimation using heterogeneous data

wH _ & wH wH ~ Lz
@) = 5 Ml @), T (@)~ Lo (2), (3.2)
k=1

where R is the number of Gaussian functions that compose the mixture, ¢ is
the standard normal distribution, pZV and pkWH are, respectively, the p.d.f.’s

of the k-th Gaussian distributions of f" and fWH, Ak is the proportion of
the elements of the k-th population respect to the total number of elements
in W, i.e. 2521 Ar = 1, my, is the mean of the k-th Gaussian function in

W and s2 is the variance of both pkW and pkWH. Trivially we have

R;
yw =Y \em, (3.3)
k=1

with yw being the mean of the block W. From the general expression of
the variance of a mixture of Gaussian distributions |[Johnson et al., 1994|,
we obtain

R
ot = Z ALsi. (3.4)
k=1
Considering the affine noise variance model (2.20),
2 _
sy = amy + b.

Consequently,

R R
O"z/V Z Apamy + Z b=
k=1 k=1 (35)

R
a Z Aemyg +b = ayw +b.
k=1

This means that the point (yw,03,) belongs to the variance curve (2.20).
This result constitutes the core of our idea, because it proves that in this
ideal scenario there is no difference in applying sample mean and sample
variance to homogeneous or heterogeneous samples, since they both give
mean-variance pairs that belong to the mean-variance curve to be estimated.
However, the assumption of perfect separation of the noise from the observed
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3. CONTRIBUTION TO NOISE ESTIMATION

signal is very strong. In the next section we analyze the estimation errors,
in terms of MSE, of the proposed framework in the practical case of natural
images.

3.1.2 Outliers, robust estimators, and estimation errors

In our work we use a wavelet function to high-pass the observed image z, and
to extract a signal that could be approximated as zero-mean, with variance
equal to the noise variance at the corresponding location; we estimate the
local variances using this high-pass filtered image. However, the zero-mean
approximation is accurate only in smooth regions of the image, because
the high-frequency of texture and edges generate, in the high-pass image,
non-zero coefficients that sum to the noise coefficients. If not taken into
consideration, the high-frequency coefficients from edges and texture cause
overestimation of the local variances, and eventually an overall biased esti-
mation of the noise parameters. Therefore, we treat those high-frequency
coefficients as outliers, and we reduce their effect on the overestimation of
the variance by using a robust variance estimator. In particular we use the
median of absolute deviation (MAD) as estimator of the patch standard
deviation. The expression of the MAD is

MAD = med {|[W# —med {W7}|}, (3.6)

where med is the median operator. Since we model the noise as a mix-
ture of zero-mean Gaussian random variables, we can estimate the mean
directly from the observed patch using a standard estimator of the mean.
For coherence we estimate the mean using the median.

It is common practice to characterize the statistics of the adopted esti-
mators applied to specific types of data; therefore, we give an expression of
the MSE of our estimator for our particular scenario. We consider as error
the minimum distance (point-line distance) between the estimated mean-
variance point from a patch and the mean-variance line that describes the
noise variance affecting the patch. Since it is quite challenging to find its
exact analytical expression, we compute it via a Monte Carlo simulation
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3.1. Affine noise variance estimation using heterogeneous data

in which we artificially generate random noisy blocks containing piecewise-
smooth regions, and we apply our estimator to them. We perform the
estimation for a wide range of noise parameters and for several percentages
of edges in the patch. Finally, in Figure 3.1 (reproduced from Publica-
tion II) we report the root mean normalized squared error (RMNSE) in
function of the amount of edges By, in a patch, and for 4 different patch
size n. We average normalized errors because it makes little sense to average
together errors corresponding to different noise magnitudes. In particular,
we normalize each estimation error dividing it by the MSE of the estimator
applied to a flat patch and affected by noise with constant variance, i.e.
ideal easiest case:

1 L e?
RMNSE(B%m) — Fp W’ (37)
i=1 Uu)

where V), is the total number of patches used for the estimation of the point

at (Bg,n), e? is the squared estimation error, and &> ((}EL) is the squared

estimation error of our estimator applied to a flat patch affected by noise
2

with variance o7 , i.e. the orthogonal projection of the estimated patch
2

variance 62 on the ground-truth variance curve o2 (y).

3.1.3 Procedure

We now give a brief description of the prototype algorithm that we have
used to validate our assumptions.

e High-pass filtering: the observed image z is convolved with a 2-D
high-pass kernel in order to extract its noisy component. In this par-
ticular implementation, we use a Daubechies kernel to generate the
2-D function.

e Local estimation: we take, at random, N blocks from z and its cor-
responding noise image. With these blocks we compute, respectively,
mean and variance with the aforementioned estimators med and MAD.
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Figure 3.1: Root mean normalized squared error (RMNSE) of the estimators
in function of the percentage of edges By, in the patch and the number of
samples n in a patch. This result has been computed with a Monte Carlo
simulation.

The mean-variance pairs are the abscissa and ordinate of the scatter-
plot points that we are going to fit.

e Fitting: once the scatterplot has been computed, we use a least square
(LS) method to fit a line on the cloud of points, to finally estimate
the parameters a and b of our noise model.

The presented prototype algorithm has been implemented using elementary
tools. This has been done on purpose, to prove that the proposed scheme
gives valid results independently from the complexity of the adopted tools.
In the next section we show the performances of this algorithm compared
to a state-of-the-art method of Foi et al. [2008].
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Figure 3.2: Scatterplots and estimated functions (continuous lines) for out-
of-focus (leftmost column, red color) and complex natural (central columns,
blue color) images. The images have been taken with a Canon PowerShot
590, at different ISO and with different exposure times. In the same scat-
terplots are shown the estimated functions (dashed lines) computed with
the reference algorithm [Foi et al., 2008].

3.1.4 Results

In Figure 3.2, reproduced from Publication II, we compare our estimation
results (continuous lines) with the reference algorithm [Foi et al., 2008|
(dashed lines). This comparison is meant to validate our assumptions on
the use of heterogeneous data; therefore, we evaluate the performance of
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3. CONTRIBUTION TO NOISE ESTIMATION

the proposed algorithm under different acquisition conditions. We consider
two type of images: out-of-focus images (OoF) (leftmost column, red color),
and natural images (central column, blue color). We include the OoF case
because it well approximates the ideal case described in Section 3.1.1, where
the wavelet kernel well separates the noise from the noisy image. We thus
consider the estimates from OoF images as ground-truth, and we evalu-
ate the estimates from natural images by comparison with respect to the
corresponding OoF cases.

The first thing one can notice is that the continuous lines are always
close to the corresponding dashed lines. This means that the proposed
prototype algorithm gives results comparable to the state-of-the-art method
in all cases. This is an important result because it practically confirms our
hypothesis. Furthermore, in the case where the proposed algorithm fails,
i.e. where the blue continuous line is far from the red continuous one, also
the algorithm |Foi et al., 2008] fails. In general, the performances of both,
proposed and reference algorithms, drop when reducing the level of noise
(large ISO). This proves that challenging cases for the proposed scheme are
challenging also for algorithm based on the conventional framework. For
this purpose, we show in Figure 3.3 (from Publication II) a complete failure
in estimating the noise parameters. In fact, due to the underxposure and
the large presence of texture in the image, the proposed algorithm (red), as
well as the reference one (green), estimate a line completely different from
the ground-truth (black).

The most relevant conclusion that we can draw from the presented ex-
periments is that, in case of affine noise variance, processing homogeneous
samples has no advantage compared to processing heterogeneous samples,
and that estimation algorithms can thus be simplified by avoiding segmen-
tation.
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3.2. Robust noise estimation for any parametric variance function

x 10~

N w S o {=2) ~
T T T T T

0O 0.1 0.2 0.3 0.4

Figure 3.3: Left: challenging image. Right: scatterplot and estimated lines
with the proposed prototype algorithm (red) and by [Foi et al., 2008] (green).
The result is compared with the ground-truth (black).

3.2 Robust noise estimation for any parametric
variance function

As mentioned above when discussing about Figure 3.3, edges and texture
in an image can heavily interfere with noise estimation. In particular, they
may create outliers that, if not considered in the model, eventually lead to
overestimation of the noise. In this section we introduce a robust model
for noise estimation that includes the potential presence of outliers among
the scatter-points. The model can be used to estimate noise variance that
depends on the signal mean according to any parametric function. This
is a far more general setting than the affine model treated in Section 3.1,
and thus we cannot apply the heterogeneous estimation method under this
hypothesis.

Based on this model, we propose an algorithm that first segments the
observed noisy image, grouping pixels with same expectation. Then, it
computes the mean and the standard deviation of the groups (referred to as
bins) using the segmented samples. Each group therefore represent a point
(i.e. mean-standard deviation pair) in the scatterplot that is eventually
fitted to estimate the noise parameters. Since, among the computed stan-
dard deviations, there could be outliers, we propose to use a fitting method
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to take into account this possibility. We maximize a likelihood function in
which each scatter-point standard deviation is modeled as realization of a
mixture of a Gaussian and a Cauchy random variable: the heavy tails of
the Cauchy distribution are capable of representing the possibility that a
point in the scatterplot is an outlier, and lies far from its mean. In fact,
compared with a Gaussian distribution, whose bell is mostly confined in the
range +£30, the Cauchy distribution presents a much lower decay rate. We
favour the Cauchy distribution over other heavy tailed distributions such
as Laplacian because it is a symmetric bell-shaped function that resembles
the Gaussian distribution; consequently, the resulting mixture is similar to
a Gaussian distribution in the vicinity its mean value, hence being more
suited for modeling estimation errors in the lack of outliers.

3.2.1 Segmentation and local statistics

The first step of the algorithm consists in computing the local mean-standard
deviation pairs that are used for fitting. We filter the observed image using
two filters to generate high- and low- pass versions of z. Since in smooth
areas the standard deviation of the high-pass image is approximately equal
to the standard deviation of the noisy image, the high-pass image is used
for the estimation of the local standard deviations. We instead use the
low-pass image to perform segmentation and to compute the mean of each
bin. We adopt sample mean and sample standard deviation as estimators of
the local statistics. Since both estimators are unbiased only in smooth re-
gions, before computing the local estimates we discard samples that belong
to edges and texture. To do so we compute, with a second derivative filter,
the wvariation of the image, and we discard the pixels where the derivative
is large.

Once the samples have been grouped in bins, we compute mean and
standard deviation of each bin using the sample mean applied to the low-
frequency samples and the sample standard deviation applied to the high-
frequency samples.
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Figure 3.4: Effect of clipping on the standard deviation curve.

3.2.2 Clipping

All acquisition devices have a finite dynamic range that may not represent
the large variation in luminosity in the scene. The device usually replaces
values of intensities that exceed the range with the boundary values; in other
words, an observed image Z is usually generated as Z = max (0, min (1, 2)),
where the range of the image is normalized in [0, 1], and the acquired image
is denoted with z. This procedure is commonly known as clipping.

It is clear that the noise statistics are not preserved by the clipping oper-
ator; in other words, if the acquired image z is affected by Poisson-Gaussian
noise, the statistics of the noise affecting the clipped image Z are not the
same. Since we observe Z, and we want to estimate the noise affecting the
image z, we have to take into consideration the clipping effect in our es-
timation model. It is out of the scope of the thesis to describe accurately
the mathematical model for clipping, however this has been discussed ex-
tensively by Foi et al. [2008], and we report here the main results, in order
to give the reader an idea of how we deal with clipping.

In Figure 3.4, reproduced from Publication I, we show the effect of clip-
ping on the standard deviation curve. While the curve ¢ of the noise stan-
dard deviation affecting z is a square-root function of the noise-free signal y,
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the standard deviation & of the clipped data Z is substantially different from
o. In [Foi et al., 2008], the authors find the analytical expression that gives
the clipped standard deviation & (y) in function of the original curve o (y).
Using this transformation, we are able to build a fitting model that, from
the local statistics of the clipped data, estimates the noise parameters a and
b of o (y). In particular, we find the curve that, after transformation (i.e.
clipping), best fits the scatterplot of the local estimates that we computed
on clipped samples. In this way we cope with the problem of clipping in the
fitting (last) step. This is an important result, because the proposed fitting
method for clipped data can be used in any algorithm, independently from
the method used for computing the scatter-points.

3.2.3 Robust fitting

In [Foi et al., 2008], the authors model each local mean-standard deviation
pair as a bi-variate Gaussian random variable centered on the standard
deviation curve. Considering each estimate independent, they maximize
a likelihood function in which the joint probability is simply given by the
product of each distribution. However, in challenging cases, e.g. highly
textured images, a large number of outliers might be present among the
mean-standard deviation pairs. We cope with this possibility by modifying
the distribution model that represent each local estimate. In particular,
we model the standard deviation estimates as realizations of a mixture of
zero-mean Gaussian and Cauchy distributions, where the mixture coefficient
adapt to the particular image under interest [Publication I]. Since there are
no outliers among the estimates of the local means, we model the mean
estimates as realizations of Gaussian random variables.

The main advantage of using a Gaussian-Cauchy mixture is that the
Cauchy distribution better adapts to the possibility to have samples far from
the mean value. In particular, since the Cauchy distribution has heavier
tails compared to the Gaussian distribution, it better models outliers that
lie far from the curve that we want to fit. In normal conditions, i.e. using
only a Gaussian distribution, the outliers would heavily influence the final
estimate; the adoption of Cauchy distributions, instead, includes them as
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Figure 3.5: Underexposed raw image and the relative scatterplot of mean-
standard deviation pairs, severely corrupted by outliers.

part of the model, and models them as improbable realizations far from the
distribution mean.

We also include the mixture coefficient in the optimization process, i.e.
the likelihood is optimized considering as variables the noise parameters and
the mixture coefficient. In this way we adapt our model to the amount of
textured areas in the observed image. In particular, when the final estimate
of the mixture coefficient gives a distribution that is mostly Gaussian, we
can assume that the amount of texture (or/and edges) in the observed image
is relatively low. On the other hand, if the final mixture coefficient gives
more weight to the Cauchy distribution, it is reasonable to assume that the
image contains large amount of texture and edges.

3.2.4 Results

We now show the advantage of using a robust estimator compared to the
non-robust version from [Foi et al., 2008]. Figure 3.5, reproduced from
Publication I, shows a typical challenging case, in which the estimation is
severely affected by the amount of texture and by the lack of scatter-points.
On the left side of the figure we show the image on which we perform
noise estimation, and on the right we show the results of the proposed
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method compared to the original one. In the scatterplot we report the
mean-standard deviation pairs (red dots), the ground-truth o (y), the curves
estimated with the proposed algorithm Gy (y) and Fnew (y), and with the
reference one 644 (y) and 301d (y). We denote with the symbol “on top of
a variable the curve estimated from the clipped data, and with the symbol
" the final estimate.

Since the observed picture is underexposed, the algorithm segments the
image in a limited amount of bins. As a consequence, we have only few
local estimate, each corresponding to a bin. Furthermore, several of the
local estimates are outliers, that has been miscalculated due to the lack of
samples per bin, or mostly due to the heavy presence of texture and edges
in the image. Note how, in fact, the reference algorithm is influenced by
these outliers, and fails to fit a correct curve over the scatter-points. On
the other hand, the presented robust estimator, although partially misled
by outliers, well estimates most of the standard deviation curve.
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Chapter 4

Contribution to denoising

In the first part of this chapter we introduce a spatially adaptive 1-D group
transform for BM3D based on the spatial coordinates of similar blocks.
The adaptive transform increases the sparsity of the transform coefficients,
and consequently improves the filtering results from shrinkage. We also
use the same spatial information to design an algorithm based on alpha-
rooting [Dabov et al., 2007c| that, adaptively, enhances local image features
depending on their orientation with respect to the coordinates of similar
features at other locations.

In the second part of this chapter we propose a model for iterative
denoising of Poisson images. The proposed model is based on the VST
denoising framework, and exploits convex combinations of noisy signal and
its previous estimate to improve the signal-to-noise-ratio (SNR) of the signal
to be stabilized. We prove that, especially for low signal intensities, the
performance of the stabilization, and in general of the denoising filter, are
vastly improved, outperforming the state of the art.
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4.1 Collaborative filtering based on coordinates of
similar features

As mentioned in Section 2.5, the BM3D algorithm performs a 3-D transform
of groups of similar blocks via separable 2-D+1-D transform, in which a 2-
D DCT (or wavelet) applied separately to each block is followed by a 1-D
Haar transform in the orthogonal (nonlocal) direction. It is clear that in this
scheme the spatial information (i.e. coordinates) of similar blocks is never
used. However, the spatial coordinates of the grouped blocks is a feature
that could be exploited to enhance the sparsity of the 3-D group spectrum.
Let us consider, for example, the case in which similar blocks lie on a surface
that smoothly changes its average intensity. Since, before applying the 3-D
transform, the blocks are reordered according to their similarity with respect
to the reference block, the Haar transform may not be effective at sparsifying
the spectra of the blocks. By using, instead, polynomials that approximate
the smooth variation of the surface from which the blocks are extracted, we
can improve the sparsity of the 3-D spectrum coefficients. From this idea,
we propose a novel 1-D transform based on the spatial coordinates of the
similar blocks, that adapts to the particular group that we are processing
[Publication III]. We then use the principal directions of the coordinates of
similar blocks to derive an enhancement algorithm that adaptively chooses
whether to soften or sharpen selective coefficients of the group spectrum.

4.1.1 Orthogonal polynomials transform

We now describe how to generate the set of orthogonal polynomial (OP)
functions that we use as 1-D transform basis in the presented extension
of BM3D. Denoting with np the number of similar blocks in a group, we
consider a collection of np bi-variate polynomial functions defined over the
image spatial domain, and linearly independent over the coordinates of sim-
ilar blocks. We then sample the functions at the spatial coordinates of the
blocks, and we rearrange them as columns of a matrix P. We compute
the QR decomposition of P (Gram-Schmidt factorization) to generate an
orthogonal basis ) whose elements (matrix columns) are bi-variate polyno-
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Figure 4.1: Example of adaptive basis functions generated by orthogonal
polynomials for two different groups of similar blocks (purple areas). At
each row we show the first 6 basis functions of the corresponding group.
Observe how the basis functions adapt to the group coordinates.

mial functions sampled at the spatial coordinates of the similar blocks. We
use the matrix Q as 1-D transform in BM3D.

In Figure 4.1, reproduced from Publication III, we show two examples
of basis functions (visualizing the first 6 basis functions for each basis)
obtained from the block coordinates of two different groups. On the top
row we show the basis functions of a group aligned along an edge, while
on the bottom row we plot the basis functions of a group from a uniform
region. Note how the basis functions strongly adapt to the particular blocks
spatial coordinates, and how the proposed 1-D transform introduces a new
level of adaptability to BM3D.

The scenario in which one can distinctly appreciate the advantages of
the proposed adaptive transform compared to the standard Haar transform
is when the search window is on an area that smoothly varies, like for
example the shoulder of Lena (shown in Figure 4.2). In this scenario, the
polynomial functions better represent such smooth changes compared to the
Haar transform.

4.1.2 Directional enhancement

The spatial coordinates of similar blocks may indicate whether the blocks
contain an edge or not. In fact, if the blocks are aligned, it is reasonable
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to assume that the they contain an edge, and that the direction of the
edge is aligned with the blocks. An example can be seen in the first row
of Figure 4.1, where we show the basis of a group of blocks (purple area)
whose reference one (white block) lies on an edge. Here, it is clear that
the blocks are aligned with the direction of the edge. On the bottom row,
instead, we report similar blocks from a uniform region; note how the blocks
are scattered, and a principal orientation cannot be discerned.

We propose a directional algorithm that exploits the above spatial infor-
mation to enhance the content of similar blocks by increasing or decreasing,
individually, each spectrum coefficients; this results in, respectively, sharp-
ening or softening of the corresponding basis functions. Let us consider the
set of blocks spatial coordinates S; we compute its PCA decomposition as
S = UAVT. By definition, the columns of U indicate the two principal
directions along which the cloud of points is oriented; at the same time,
the diagonal elements of A are the length of these components: the larger
the value, the more the cloud is aligned with the corresponding principal
component. Based on the ratio between the first and second component,
we can decide whether to sharpen or soften a block. In fact, if the ratio
between the first and second component is large, then the set of coordinates
is mostly oriented on a thin line. On the contrary, if the ratio is close to
one, the blocks coordinates are spread uniformly on a broad area, suggest-
ing that the blocks are extracted from a regular region. In this way we can
sharpen the blocks from an edge, and we can soften the blocks from a uni-
form area. This concept is similar to the tensor methods developed by Feng
and Milanfar [2002] and Weickert [1999], that estimate weather an image
region is an edge or a smooth area based on the principal components of its
gradient.

Since we use the alpha-rooting sharpening method [Dabov et al., 2007¢|,
we also adapt the sharpening and softening to specific 2-D transform coef-
ficients. In particular, for each 2-D spectrum coefficient, we compute the
energy (in terms of ¢ norm) of the derivative of its corresponding basis
function in the directions of the two principal components of the coordi-
nates of the group. Based on the ratio between them, we decide whether to
sharpen the coefficient, if the ratio is larger than one, or to soften it, if the
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ratio is smaller than one. In this way we perform at the same time softening
along an edge, while sharpening the edge itself. In our implementation, we
adjust the sharpening/softening strength with the ratio between first and
second principal component of the set of coordinates S: if the ratio is large
we sharpen more compared to a case in which the ratio is close to 1.

4.1.3 Results

In Figure 4.2, reproduced from Publication III, we report a detail of Lena
denoised with the proposed method compared to the standard BM3D (Haar
1-D transform); the image has been corrupted by additive Gaussian noise
with standard deviation o = 35. We specifically report the shoulder detail
because it is where the proposed algorithm visibly outperforms its canonical
counterpart.

In Figure 4.3, also reproduced from Publication III, we denoise and
sharpen Peppers (we show only a detail) corrupted by AWGN with stan-
dard deviation o = 20. On the left-bottom we report the results from the
proposed enhancement scheme, while on the right-bottom we show the con-
ventional alpha-rooting result, with constant alpha coefficient. As a mean
of comparison, on the top-right position of the same figure we also report
the result of the proposed denoising algorithm with no sharpening applied.
Note how the proposed enhancing algorithm sharpens the edges of the image
while softening the piecewise smooth areas. In contrast, the standard alpha-
rooting algorithm sharpens all the image details indiscriminately, enhancing
in some cases artifacts introduced by the denoising algorithm itself.

Finally, to show the adaptive sharpening strength of the proposed alpha-
rooting filter, we report in Figure 4.4 the ratio between the principal compo-
nents of each coordinates set of similar blocks. Red areas indicate high ratio
(edges), while blue areas approach the value 1 (smooth regions). We remind
the reader that we do not perform directly sharpening on the red areas, but
for the red areas we perform sharpening only on the transform coefficients
whose corresponding basis functions have most variations orthogonal to the
edge, while we soften the coefficients whose corresponding basis functions
mostly vary along the edge.
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PSNRHaar = 29.72 PSNRop = 29.90

Figure 4.2: Denoising of Lena corrupted by i.i.d. Gaussian noise with ¢ =
35. From left to right, top to bottom: original image, noisy observation,
image denoised by the standard BM3D algorithm, images denoised by the
proposed algorithm based on adaptive orthonormal polynomials. Notice the
improvement, particularly in smooth regions, such as the shoulder area.

4.2 Poisson image denoising
We now introduce a denoising model for Poisson images [Publication IV]
based on the variance-stabilizing transform (VST) framework described in

Section 2.3.2. We propose an iterative method in which, at each iteration,
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4.2. Poisson image denoising

Figure 4.3: Enhancement of Peppers corrupted by Gaussian noise with
o = 20. From left to right, top to bottom: Details of Peppers noisy image;
denoised image with no sharpening; image denoised and enhanced by the
proposed algorithm; conventional alpha-rooting.

we compute a convex combination of the previous estimate and the noisy
signal in order to increase the SNR of the signal to be deionised. This
algorithm has proved to be very effective especially for low-count images,
where a standard VST approach fails to stabilize the data, and consequently
performs poor denoising. We show that, also for low-count images, a VST
approach is still valuable, and gives state-of-the-art results within the pro-
posed iterative framework.
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Figure 4.4: Left: Peppers noisy image with ¢ = 20. Right: ratio between
the lengths of the principal axes of the group coordinates: higher values are
shown in red, and lower values in dark blue.

4.2.1 Inverse Anscombe transform

The algebraic inverse f~! of the Anscombe transform is a biased inverse
transformation

FHES(2) 1 yh) #E{z |y}, (4.1)

and therefore cannot be used for practical applications. This is due to the
fact that the Anscombe forward and algebraic inverse transforms are non-
linear transformations, and therefore the algebraic inverse does not commute
with the expectation operator, resulting in the disequality (4.1).
Anscombe [1948] proposes an asymptotically unbiased inverse transfor-
mation for large intensity values. However, the bias becomes significant
for y < 5. This problem has been considered an intrinsic fault of the for-
ward Anscombe transform, and for a period of time VST Poisson denoising
algorithms were neglected in favour of algorithms designed to directly de-
noise Poisson data [Salmon et al., 2014; Giryes and Elad, 2014|. However,
the interest on the VST framework has been rekindled when Mékitalo and
Foi [2011] noted that the inaccuracy of the VST framework for low inten-
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Distribution of z given y Distribution of /\1_22 given y, with A; = 0.2
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Figure 4.5: Effect of convex combination on the data distributions and on
the standard deviations of the stabilized data.

sity signals is essentially due to the inverse transform; there, the authors
propose an exact unbiased inverse transform that is unbiased in the range
[24/3/8, +00), achieving, in combination with the BM3D filter, state-of-
the-art performances. Most importantly to our scope, we derive an exact
unbiased inverse for our data like Mékitalo and Foi [2011] do in their work.
Details are given in Section 4.2.3.

4.2.2 Noisy+festimate convex combination

For low count signals the forward Anscombe transform, and forward vari-
ance stabilizing transformations in general, become inaccurate. To improve
the stabilization we propose an iterative approach in which, at each itera-
tion, we sum to the noisy image its previous estimate in order to increase
the SNR of the image to be stabilized, and consequently to make the trans-
formation more accurate.
We propose the following normalized convex combination
Zi . )\iZ + (1 — )\z) :gz‘_l

== 2 , (4.2)
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where 0 < \; < 1 and 7 is iteration index. In our implementation \; changes
at each iteration ¢ and for each image z; in Section 4.2.6 we give more details
about the parameters selection.

The expectation and variance of )\;221- are
E {)\i_zéi]y} = var {\; 2%y} = A\ . (4.3)

Compared to the SNR of the observed image z, the SNR of the new image
/\i_222~ increases, and the Anscombe transform better stabilizes it. In Sec-
tion 4.2.5 we give the explicit relation between SNR and the combination
coefficient \;.

Figure 4.5, reproduced from the supplementary to Publication IV, shows
on the left side the Poisson distributions for 5 different means (and vari-
ances). Note how most of these distributions overlap, making any VST
inaccurate. The right side of Figure 4.5, instead, shows the correspond-
ing normalized convex combinations using A; = 0.2. Due to the convex
combination and the normalization, the distributions shift to higher values
of mean; and most importantly, the distributions overlap less compared to
their original counterparts. This is the main reason why the Anscombe
transform is more accurate for the convex combinations. Furthermore, in
the legends of Figure 4.5 we also report the standard deviations computed
from the stabilized Poisson distributions and from the stabilized convex
combinations. Note how the latter are close to 1 also at low intensities
y < 1.5.

4.2.3 Forward and inverse VST adopted
Forward VST and filtering

Although the variable \; ?z; in (4.2) is not Poisson distributed, it has been
proved that this family of combinations is still stabilized (asymptotically)
by the Anscombe transform [Bar-Lev and Enis, 1990]|. This result justifies
using the forward Anscombe transform f to stabilize A;QZi.
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4.2. Poisson image denoising

Once the noise variance has been made signal-independent, we denoise
the image f ()\l-_Qii) with a filter for additive noise

D; = [f(\7?%)], (4.4)

where @ is the filter and D; is the filtered image. In our implementation we
use BM3D, but any other filter for removal of additive noise can be used
instead.

Inverse transform

Although we use the canonical forward Anscombe transform, the exact un-
biased inverse introduced in [Mékitalo and Foi, 2011] is biased for the convex
combination of variables that we propose.

We derive the exact unbiased inverse transformation for D; in (4.4) by
computing the expectation E { f ()\Z_ 2@) ]y} for a finite grid of values y and
A; in this way we obtain the inverse mapping

E{f(\%%) |y} —y (4.5)

for the grid points. Then, we interpolate the results to compute the inverse
mapping at the specific coordinates A; and D;. For elements outside the
grid we derive an analytical asymptotic form. For mathematical details we
refer the reader to Publication IV.

4.2.4 Binning

The main advantage of combining observed signal and previous estimates is
that it improves the stabilizing performance of the Anscombe transform by
increasing the SNR of the signal to be stabilized. In fact, the Anscombe for-
ward transform is inaccurate for very low intensity (very low count) signals,
and by increasing the SNR, we improve its stabilizing accuracy. Considering
that initially we have poor estimates of the noise-free signal, at these first
iterations the VST is not able to correctly stabilize the signal. To cope with
this problem, at early stages of the algorithm we increase the SNR with
binning.
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Binning By, is an operator that replaces each h; x h; block from an
image with the sum of the elements within the block. Since it commutes
with (4.2), we express the binned convex combination as

Bi,; [zi] = XiBn; [2] + (1 = Ai) By, [§i-1] - (4.6)

Since By, [z] ~ P (Bn, [y]) = P (E{Bn, [#]ly}), and modeling g;—1 as
y, we have that By, [2;] (respectively )\Z-_2Bhi [2i]) is subject to the same
conditional probability of Z; (respectively A 222-), which means that the
adoption of binning does not interfere with the subsequent VST, denoising,
and inverse VST. Thus, we use binning in combination with the forward
Anscombe transform.

Debinning

Once the stabilized signal has been filtered and the inverse transform ap-
plied, it is necessary to perform debinning. We call debinning B, L the
inverse operator of binning, and its main purpose is to upscale the resultmg
image to its original size. During this process, clearly, the binned samples
are also divided by the number of pixels in each bin, to make each binned
value the mean of the block (and not the sum of its elements). In [Salmon
et al., 2014; Giryes and Elad, 2014| debinning is performed via interpolation.

However, in this way it is not guaranteed that By, [B;il [:p]] = x, i.e. the
local means over the bins do not coincide with the input of debinning. In

our implementation of debinning, instead, we guarantee the aforementioned
condition by alternating, iteratively, binning and interpolation.

4.2.5 SNR as function of )\; and h;

It is convenient to express the dependency of the SNR with respect to the
combination coefficient A\; and the bin size h;.
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4.2. Poisson image denoising

Considering that binning is essentially the sum of the pixels inside a
block, the SNR of a given binned block of pixels from z is

B2 {By, [ ()]}

SNR (B, [2 (2,;)]) = 101ogyq var { B, [z (Qn,)]}

=10log;y > y(x),

z€Q,

(4.7)
where Q. are the coordinates of a bin of size h; x h;, and z (Qp,) is the
block from z at the coordinates €2,.

From the expectation and variance in (4.3), the SNR of a combined pixel
is

24z (x
SNR (2 () = 10logy m — 101ogyg %y (). (48)

Finally, the SNR of binned and combined data is

E*{Bp, [z ()]}
var { By, [z (Qn,)] }

1
SNR (Bp, [z (Qn,)]) = 101ogy = 10log 2 Z y(z),

g CEGth
4.9)

where Z; (Q4,) is approximated as A\jz; (Qp,)+ (1 — Xi) y (Qp,). Since y (x) >
0, Vo € Qp,, and \; <1, then for any z € Qp,

Nej

SNR (th [Z (th)])
SNR (B, [zi (2n,)]) = > SNR (z (z)) =y (z),
SNR (% (x))
(4.10)
proving that binning and convex combination indeed increase the SNR, of
the signal to be stabilized.

Finally, we give the dependence of the SNR in (4.9) upon the coefficients
A; and h;:

SNR (Bp, [Zi (4,)]) = 101ogy

P

Y (Qn,) (4.11)
where 7 (€p,) is the average intensity of the block y (24,).
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4.2.6 Algorithm parameters

The set of parameters that the algorithm uses are
e the number of iterations K;
e the initial hy and final hg bin sizes;
e the last value of the combination coefficient Ax (since A\ = 1).

The aforementioned parameters are determined adaptively for each observed
image z based on the image quantiles; for a detailed description of the
adaptive parameters calculation process we refer the reader to the supple-
mentary to Publication IV. Note that the available online code [Azzari and
Foi, 2016a] can be used to reproduce the results from Publication IV, and
also returns the values of the parameters used to denoise, individually, each
input image z.

An important requirement of the parameters is that the bin size and
combination coefficient both decrease at each iteration, i.e. h; < h;_1 and
Ai < A;i—1. In this way, initially, the proposed denoising algorithm increases
the SNR mostly by binning with large bin size, to compensate the lack of
an accurate previous estimate. Then, it gives increasingly more relevance to
the convex combination by decreasing the bin size h; and the combination
coefficient \;.

4.2.7 Results

The proposed algorithm has been tested against the methods [Salmon et al.,
2014; Giryes and Elad, 2014; Makitalo and Foi, 2011; Rond et al., 2015;
Pyatykh and Hesser, 2015] on a dataset of 11 images. Table I and Table
IT in Publication IV show the comparison in terms of PSNR and execution
time, and proves that the proposed algorithm gives best overall results. An
example is reported in Figure 4.6, where we compare the denoising of the
image Bridge at peak 1. Note how the proposed iterative scheme preserves
details that the other algorithms are unable to recover from such very noisy
observations.
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4.2. Poisson image denoising

Original image y NLSPCA (19.18 0.30) SPDA (19.36 0.32)

—

Poisson image z (3.49 0.04)  Proposed (19.81 0.36) VST+BM3D (19.43 0.34)

Figure 4.6: Denoising of Bridge at peak 1. PSNR (dB) and SSIM [Wang
et al., 2004] are given in brackets. For clarity, z is visualized on a compressed
range.

A relevant feature of the the proposed method is that its execution
requires a tiny fraction of the time required by the other methods. The only
algorithm as fast as the proposed one is the VST+BM3D method [Mékitalo
and Foi, 2011], that however performs poorly for very low counts. This
marks an additional advantage compared to the other methods. The low
execution time is mainly due to binning and to the fact that the algorithm
performs at most 4 iterations.

In Figure 4.7, reproduced from Publication IV, we show the robustness of
the proposed framework with respect to the adopted AWGN denoising algo-
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BM3D (19.81dB 0.362)

J

BLSGSM (19.57dB 0.347) KSVD (19.72dB 0.341) SAFIR (19.60dB 0.338)

Figure 4.7: Denoising of Bridge at peak 1 adopting different AWGN filters.
PSNR and SSIM of § are given in brackets.

rithm; there, we give the denoising results (PSNR and SSIM) of our frame-
work for 6 different filters: standard BM3D [Dabov et al., 2007b|, BM3D

with Shape-Adaptive Principal Components Analysis (SAPCA) [Dabov et al.

2009], Non-Local Means (NLM) [Buades et al., 2005, Structure-Adaptive
Filtering for Image Restoration (SAFIR) [Boulanger et al., 2008, Bayesian
Least Squares-Gaussian Scale Mixture (BLSGSM) [Portilla et al., 2003], K-
SVD algorithm (KSVD) [Elad and Aharon, 2006]. Most of these results
outperform those obtained by the algorithms used for comparison in Ta-
ble I of Publication IV, proving the robustness of the proposed iterative
framework.
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Chapter 5

Discussion and Conclusions

The presented work provides novel and innovative solutions for two main
problems in image processing: noise estimation and denoising.

The common framework for noise estimation found in literature is based
on the assumption that the best way of estimating the noise parameters is
to segment and isolate parts of the image with equal statistics, using then
these statistics to fit the model. Based on this approach, in Publication I we
propose a robust fitting that uses mixtures of random variables (Gaussian-
Cauchy) to include in the model the probability of having outliers among the
scatter-points. The mixture coefficient is also embedded in the optimization
to incorporate the fact that different images might present different amount
of outliers. Compared to its non-robust counterpart (where only Gaussian
distributions are used) the presented algorithm gives better estimates, es-
pecially for challenging cases. A possible way to further improve the robust
fitting would be to adopt different mixture coefficients for different local
estimates, and to include them into the optimization step. This would give
more adaptability to the algorithm, since it would model different scatter-
points with different mixture distributions. However, the optimization of
multiple mixture coefficients could produce unstable and/or over-fitted re-
sults, resulting in erroneous estimates. Moreover, it would also increase the
number of parameters to be estimated in the optimization, hence increasing
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significantly the execution time.

We then propose a novel approach to the problem of affine noise variance
estimation for Poisson-Gaussian noise, in which we show that it is also possi-
ble to perform noise estimation by jointly processing heterogeneous elements
[Publication II]. This idea has been validated theoretically and via experi-
ments, based on an elementary prototype implementation. To improve the
noise estimation accuracy, one could develop an estimation algorithm based
on the same model, yet exploiting more sophisticated components 1) to per-
form signal decomposition and 2) to estimate the noise parameters from the
scatterplot of the local estimates. The noise separation could be performed,
for example, via PCA decomposition and shrinkage, while the fitting could
be improved by formulating a statistical model of the local estimates, and
by optimizing a likelihood function that incorporates those statistics (as
proposed in Publication T).

Further, we develop a spatially adaptive transform for denoising AWGN
based on the spatial information of similar blocks from an image. In particu-
lar, a group of similar blocks is transformed using an adaptive 1-D transform
generated from orthogonal polynomials sampled at their spatial coordinates
[Publication III]. The advantages of a spatially adaptive transform are espe-
cially appreciable in cases in which similar blocks lie on a smoothly varying
area. We then exploit the blocks coordinates to develop an adaptive im-
age enhancement algorithm based on alpha-rooting. Since usually aligned
blocks contain an edge directed along the alignment, while scattered blocks
are from an uniform region, we amplify via alpha-rooting only the coeffi-
cients whose basis functions have large variations orthogonal to the align-
ment direction (i.e. the principal direction of the blocks coordinates), while
softening the basis functions that have large variations along the edge. In
this way, we sharpen the features orthogonal to the edge, sharpening the
edge itself, while we smooth along the direction of the edge. The current
version of the algorithm only performs one iteration of denoising, stopping
after hard-thresholding, therefore the next step would be the development
of the Wiener counterpart.

Finally, in Publication IV, we consider the problem of denoising Poisson
images. We propose an iterative algorithm based on the VST scheme that,
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at each iteration, increases the SNR of the signal to be stabilized via convex
combination with the previous estimate, and via binning. This increases
the stabilization capabilities of the VST, that is inaccurate for low SNR.
The presented algorithm outperforms the state of the art in terms of quality
(PSNR and SSIM) and execution time. A natural evolution of the presented
framework is the extension to spatial deconvolution of images corrupted by
Poisson noise; we are currently working on the matter, and we are developing
an iterative algorithm based on the same iterative binning+VST scheme for
deblurring of images corrupted by Poisson noise.

5.1 Automatic noise estimation and denoising

As a fit conclusion to the thesis we present an experiment in which, auto-
matically, we estimate the parameters of the noise affecting an image using
the method from Publication II, and we then denoise using the method
proposed in Publication IV. The image is the blue channel of a raw picture
taken using a Nokia N9 smartphone at ISO 3200.

10

0 005 01 015 02 025 03

Yi
Figure 5.1: Automatic estimation of the noise variance affecting the blue
channel of a raw image acquired with a Nokia N9 smartphone at ISO 3200.
We report the scatterplot of the local statistics (mean-variance pairs) and
the estimated noise variance function.
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Figure 5.2: Denoising of a raw image acquired with a Nokia N9 smartphone
at ISO 3200. Left: noisy image. Right: denoised image.

By modeling the noise as Poisson-Gaussian, we estimate the noise pa-
rameters @ and b (2.20) using the algorithm from Publication II. The es-
timated function is shown in red in Figure 5.1; in the same figure we also
report the local statistics of the image. We then transform the noisy image

Z as 1 b
=224 —, 5.1
Z=rt 3 (5.1)

to make expected value and variance of 2’ equal:

E{Z(2)} = %y (x) + a—b2 = var {2 (2)} . (5.2)

Thus, if we ignore the actual shape of the noise distribution, we can treat
2" as a Poisson image and denoise it with the iterative algorithm from Pub-
lication IV.

On the left side of Figure 5.2 we show the noisy observations z, while
on the right side we show the denoising result.

The entire procedure was automatic and unsupervised.
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GAUSSIAN-CAUCHY MIXTURE MODELING FOR
ROBUST SIGNAL-DEPENDENT NOISE ESTIMATION
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Department of Signal Processing, Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland

ABSTRACT

We introduce an adaptive Gaussian-Cauchy mixture model-
ing for the likelihood of pairwise mean/standard-deviation
scatter points found when estimating signal-dependent noise.
The maximization of the likelihood is used to identify the
noise-model parameters, following an adaptive mixture pa-
rameter that controls the balance between the Gaussian and
the heavy-tailed Cauchy. This renders the estimation robust
with respect to outliers, typically present in large quantities
among the scatter points from images dominated by texture.
The modeling is directly suited to describing also observa-
tions subject to clipping, i.e. under- or over-exposure. Exper-
iments on a dataset of badly exposed and highly textured im-
ages demonstrate the effectiveness of the adaptive Gaussian-
Cauchy mixture likelihood for the accurate estimation of the
noise standard-deviation curve.

Index Terms— Signal-dependent noise, robust estima-
tion, mixture modeling, clipping

1. INTRODUCTION

With signal-dependent noise we refer to a model of noise
with variable standard deviation that depends on the particu-
lar intensity value of the affected signal. This model has been
widely adopted by the scientific and engineering community,
because it well approximates the noise affecting data acquired
by many sensing devices, including imaging sensors such as
CCD and CMOS cameras.

The common procedure [1-8] for signal-dependent noise
estimation consists in dividing the data or image of interest
into uniform or homogeneous regions. Each group of samples
is then used for the estimation of a mean-standard deviation
pairs. The collection of such pairs yields a cloud of points
scattered around the curve that describes the dependency of
the noise standard deviation from the mean of the signal. Fi-
nally, in order to estimate the noise standard-deviation curve,
a global parametric model is fitted to the points.

The global fitting can be hampered by outliers among the
mean and standard deviation pairs. This problem becomes

Contact info: firstname.lastname @tut.fi
© This work was supported by the Academy of Finland (project no. 252547).

particularly relevant when dealing with images with numer-
ous highly textured regions.

The estimation of the standard-deviation curve is further
complicated by the inevitably limited range of the sensing de-
vice, which causes clipping of data whenever it falls outside
an admissible interval. In imaging, this phenomenon may oc-
cur when the scene is under- or over-exposed.

To provide a unique and reliable solution to these two
distinct problems, we introduce a novel likelihood function
based on an adaptive Gaussian-Cauchy mixture modeling of
the mean and standard-deviation pairs. The presented work
generalizes the method [1], significantly improving its robust-
ness against outliers. The estimation algorithm based on the
introduced Gaussian-Cauchy mixture likelihood provides ac-
curate estimates of the noise standard-deviation curve from
images that can be badly exposed as well as dominated by
texture.

The remainder of the paper is organized as follows. In
Section 2, we introduce the observation model for signal-
dependent noise, also considering the case of clipped data.
The important affine variance model is presented too. Sec-
tion 3 briefly describes the first part of the algorithm, which
deals with the estimation of the mean-standard deviation pairs
that constitute the scatterplot. The core of our contribution
is given in Section 4, with a complete description of the pro-
posed robust Gaussian-Cauchy mixture likelihood. The maxi-
mization of the likelihood with an adaptive mixture parameter
is also explained. Section 5 provides experimental validation
of our approach over a dataset of real raw images affected by
clipping and high-frequency texture, confirming the effective-
ness of the proposed adaptive mixture modeling.

2. PROBLEM STATEMENT

Let us consider a noisy image z as the sum of a noise-free
image y and noise with signal-dependent standard deviation
o (),

2(x) =y(x)+o(y(x)Ex), (Y]
where x € X C N2 denotes the spatial coordinate of a pixel,
and ¢ (x) is a standardized random variable with zero-mean
and unitary variance. We model the noise as spatially inde-
pendent (i.e. diagonal covariance matrix). For the sake of
simplicity and in agreement with the analysis in [1, 9], we
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Fig. 1: Effect of clipping on the standard deviation function
in case of affine variance (2) [9]. Due to clipping, the standard
deviation G(3) goes to zero as it approaches the bounds (0, 1).

treat £ (x) as a standard normal, i.e. £ (x) ~ N (0, 1), so that
only the standard deviation of o (y (x)) £ (x) depends on the
particular value of the noise-free signal y (x).

Our goal is to robustly estimate the function o : R — R*
that links the noise standard deviation o (y) to the signal y.

A peculiar and recurrent signal-dependent noise model is
the affine variance model that well approximates the noise
affecting digital image sensors:

o* (y (%)) = ay (x) +b. @
According to this model, the noise 7 (y (x)) has variance that
affinely depends on the signal intensity. In this case,the esti-
mation of the curve o(y) can be reduced to the estimation of
a and b.

The output of any imaging device has a limited range,
which, without loss of generality, we assume rescaled to the
[0,1] interval. Here, 0 and 1 are the lowest (i.e. darkest) and
highest (i.e. brightest) values, respectively. Values of z that
exceed these bounds are inevitably clipped, i.e. they are re-
placed by the bounds themselves:

Z(x) = max (0, min (z (x),1)). 3)
Throughout the text, the tilde decorationis used to indicate
variables and quantities subject to clipping.
The noise model for the observed clipped image Z can be ex-
pressed as ~

2(x) =g (x)+5 (7 (x)€(x), @)
where § is the expectation of the clipped data z, and & (g (x))
is the standard deviation of the clipped noisy data. Clipping
causes an apparent distortion of the standard-deviation curve
that describes the signal-dependent noise model, as illustrated
in Fig. 1. In particular, the noise standard deviation ap-
proaches zero whenever the intensity approaches the range
bounds 0 and 1. A comprehensive analysis of the interplay
between clipping and signal-dependent noise models can be
found in [9].
The difference between & (¢ (x)) and o (y (x)) constitutes a
dramatic deviation from the traditional affine-variance model
(2). This makes the estimation of the noise parameters partic-
ularly difficult when portions of the image are not correctly
exposed.

76

3. LOCAL ESTIMATION OF MEAN-STANDARD
DEVIATION PAIRS

Overall, the proposed approach is characterized by two
main stages: first, an estimation of a collection of expecta-
tion/standard deviation pairs (i.e. the construction of a scat-
terplot); and, second, the maximization of a likelihood model
that explains these estimates (i.e. the fitting of a global para-
metric curve to the scatterplot). Our present contribution con-
cerns the latter stage only, as described in detail in the next
section. For the former stage, we leverage, without modifi-
cation, the first stage of the original algorithm [1], which we
briefly summarize here below.

The pairwise estimates of standard deviation and mean
are computed from a high-pass and from low-pass version of
the image, respectively denoted as 2%9°* and 22PP, These are
obtained by convolving Z with a 2-D wavelet function 1 and
its scaling function ¢, respectively:

M= (oY) and  PP=](Ee),

To=0.  [ul,=1 = Te=1L

where |, is the decimation operator, here used in order to
discard every second row and second column of an image.

It can be shown [1] that the standard deviation (std) of the
detail coefficients is comparable to plugging the expectation
of the approximation coefficients into the standard deviation
function 5:

std {EV9} o~ & (B {zvPP}) . 5)

The approximation (5) becomes locally accurate in uniform
regions of Z. Therefore, in order to reliably compute the local
mean-variance pairs excluding texture areas (non-uniform re-
gions), it is necessary to segment 2.
For the sake of brevity, we refer the reader to [1] for the tech-
nical details about the segmentation. The obtained segments
Si, i = 1,..., N, include pixels whose expected intensity
values belong to a narrow intensity interval, and can thus be
treated as level sets.

Finally, for each level set S;, we estimate its mean g; and
standard deviation &; as the sample mean and sample median
of Z%¥4PP and ‘z‘“’dﬂ / 0.6745 restricted on S;, respectively.

4. ROBUST ML FITTING OF A GLOBAL
PARAMETRIC MODEL

The global optimization step requires a model of the distribu-
tions of §; and &;. In the ideal case without outliers, the esti-
mates follow normal distributions of the forms, respectively,

G ~ N (5,67 @) i), 60~ N (6 (5:),62 () di) (6)

where the coefficients ¢; and d; are scaling parameters that
depend on the number of samples n; in the level set S; [1].
However, in case of images dominated by texture, the high-
frequency components of y can introduce severe outliers in
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the local estimates &;, and consequently mislead the estima-
tion of the noise model parameters, as illustrated in Fig. 3.
The Cauchy PDF is characterized by heavy tails, which makes
it suitable for estimation in presence of outliers.

The PDFs of the estimates are therefore expressed as

o (@ilgi = 9) = an (839,57 (9) ei) »
9 @il =9) = 1= X g (656 (5).5° @) di) (D)
+ X ge (6126(5).5% (5) di) .
where g and g are the normal and Cauchy PDFs with loca-
tion parameter y and scaling parameter v:

5 1 _Ge-w?
on (w3 pv?) = \/27r7e w7,
v

2
ge (zp,1?) = ——————.
™ (u2 +(x— u)z)

and \ € [0, 1] is the mixture coefficient between these distri-
butions.

The joint probability density can be expressed as the product

0 ((3:,63) [gi = 9) = o Wilyi = 9) 0 (Gilgs = §)-

Given the distributions of all the pairs {g;, 5‘,’]‘{\;1. we finally
obtain the posterior likelihood function L integrating all the
densities @ ((9:.03) |y; = §) with respect to the prior density
o (y) of y as

=

LON=]] [ ol@a)li =D ®

i=1

where € is an m-dimensional vector composed by the model
parameters to be estimated. The vector 8 determines univo-
cally both the clipped standard-deviation curve & () and the
(unclipped) standard-deviation curve o (y). E.g., 8 = [a,b],
i.e. m = 2, in case of the affine mean-variance relation (2).
The integration in (8) makes the distributions independent
from the unknown value of y. Similar to [1], in our exper-
iments we assume a uniform prior density .

A principal feature of the proposed approach consists in treat-
ing the mixture coefficient A as an unknown variable. There-
fore, our optimization is performed with respect to m + 1
parameters, i.e. the vector 8 and the mixture coefficient A:

0= argmax L(6,)). )
6€R™ \€[0,1]

Note that the maximization of L corresponds to optimizing
the fit of the clipped standard-deviation curve & (3) to the
scatterplot, because the probabilities of the points (7;, ;) are
determined by this curve through the PDFs (7). The value of
A upon maximization of (9), denoted as ;\, provides an indi-
cation of the amount of outliers in the scatterplot. When es-
timating noise in an image dominated by texture, one can ex-
pect to obtain A~ 1, i.e. the mixture reduces to a Cauchy dis-
tribution; conversely, if the image is mostly smooth or piece-
wise smooth, A~ 0, i.e. the mixture reduces to a Gaussian.

0 0.2 0.4 0.6 0.8 1

Fig. 2: Top: Raw image (blue channel) with extensive por-
tions of high-frequency texture and overexposed areas. The
image was captured with a Fujifilm FinePix S9600 camera
at ISO 800. Bottom: Mean vs. standard deviation diagram.
The red scatterplot points correspond to individual mean and
standard-deviation estimates (y;,5;). Note the presence of
outliers in the scatterplot. The standard-deviation curves
501,; () and Gnew () fitted through maximization of the origi-
nal and of the proposed robust likelihood functions are shown
as dashed lines. The respective unclipped curves 641a(y) and
Gnew (y) are drawn as solid lines and are compared against the
ground truth o(y) (dotted line).

4.1. Numerical Solution

We solve (9) numerically, using the Nelder-Mead iterative
downhill simplex method [10], under the constraint A € [0, 1].
Similar to [1], we initialize the optimization from a very
rough least-square (LS) solution. For what concerns A, in our
experiments we use 1 as initial value, in order to account for
the worst-case scenario of a scatterplot corrupted by several
outliers.

We remark that the need for solving (9) numerically does
not follow from introducing the Cauchy term in the mixture,
but was already necessary with the Gaussian-only model [1]
due to the heteroskedasticity.

5. EXPERIMENTS ON HIGHLY TEXTURED
IMAGES

To validate the effectiveness of the robust likelihood with
adaptive mixture of Gaussian-Cauchy distributions, we com-
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pare the proposed approach against the original algorithm [1],
which is based on a Gaussian likelihood (i.e. fixed A = 0).
The corresponding estimated standard-deviation curves are
denoted as o,.e“(") and oold( ) for the clipped model (4),
and as Gpew(y) and Go14(y) for the unclipped model (1), re-
spectively. A typical example of a clipped highly textured
image is shown in Fig. 2. The image has been taken with a
Fujifilm S9600 camera at ISO 800. The effect of clipping can
be easily seen at the right in the scatterplot, where the red dots
drop towards the limiting coordinate (0, 1).

The textures in the image cause overestimation of the stan-
dard deviations, producing outliers, which can be seen in
the scatterplot particularly for 7 € [0.1,0.3] U [0.6,0.9].
The original algorithm [1] results in the unclipped standard-
deviation curve 614(y) (solid gray line), which misestimates
the ground-truth curve o (y)' (dotted line). On the contrary,
the proposed mixture model is by design robust to outliers
in the scatterplot, and 6\ (y) is in good agreement with the
ground-truth o/(y). The estimated A is 1; which indicates that
the amount of outliers is significant and justifies the use of a
heavy-tailed distribution for modeling the likelihood.

‘We have also verified the advantage of the proposed robust
algorithm on the NED dataset [11]. This challenging dataset
consists of 25 heavily textured raw images captured with a
Nikon D80 camera, at ISO values from 100 to 320. In Ta-
ble 1 we report the average normalized integral error (ANIE)
over all images in the dataset, each channel separately. The
normalized integral errors are computed as

NIE = /‘ //ldy

where fr(y) is the estlmated clipped standard deviation curve,

& (y) is the ground-truth curve, and Q = {75 (7) > 0}.
The proposed robust algorithm systematically improves over
the previous one. While the numerical values in the table may
be difficult to appreciate, Fig. 3 gives a clear illustration of
the kind of misestimation problems resolved through the pro-
posed adaptive Gaussian-Cauchy mixture modeling. As can
be seen in the figure, large regions of texture yield severe out-
liers in the estimation of mean-standard deviation pairs and a
considerable amount of points in the scatterplot are far from
the correct parametric trend.

Matlab codes implementing the proposed algorithm are
available [12].

6. DISCUSSION AND CONCLUSIONS

The experiments and results described in Section 5 confirm
the advantage of adopting a robust global fitting model when
dealing with highly textured images. The presented algo-
rithm, with its adaptive Gaussian-Cauchy mixture, is robust
to outliers and ensures more reliable results than the previous

!The ground-truth curve has been estimated from an ideal texture-free
image obtained with out-of-focus optics, as described in [1].
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ANIE | Red Green Blue
| Proposed | 0.3088 | 0.6036 | 0.3157
| Old | 0.4399 | 0.8387 | 0.3708

Table 1: Average normalized integral errors (ANIE) from the
estimates on the NED dataset. The results for each channel is
shown separately.

1

Fig. 3: Underexposed raw image (red channel) with intensity
range normalized to [0, 1] from the NED dataset [11], and the
relative scatterplot of mean-standard deviation pairs, severely
corrupted by outliers. The noise curve 6,1q estimated by the
method [1] is directly impacted by the outliers and results in
a failure. The proposed method provides instead a robust fit
to the scatterplot and the estimated curve Gpew, although not
perfect, achieves a reasonable approximation of the underly-
ing noise model.

algorithm based on a Gaussian-only modeling. The benefit of
the presented approach is particularly significant in challeng-
ing cases with severe outliers. Through the automatic opti-
mization of the mixture parameter, we conveniently encom-
pass also less problematic images attaining high precision.

As can be seen in the figures, the outliers 6; do typically
lie in the right heavy tail (i.e. overestimation) of the condi-
tional PDF (7) given the true . Therefore, one may question
the role of the left heavy tail. However, when maximizing
the likelihood (8) starting from an inaccurate guess @, it can
happen that the candidate function & fits the overestimated &,
while the non-overestimated values appear instead as outliers
in the left tail of the PDF (7). Thus, the left heavy tail effec-
tively prevents (9) from getting stuck at such local maxima.

The proposed likelihood model is relatively independent
of the procedure utilized to produce the scatterplot pairs; thus,
the proposed optimization is relevant to a wide class of algo-
rithms based on similar fitting of a standard-deviation curve.
A special feature of our model consists in the explicit treat-
ment of the clipping due to under- or over-exposure (3)(4),
commonly encountered with imagers having limited dynamic
range. Moreover, while in this paper we have considered only
the affine variance model (2), we note that the procedure is
independent of the specific parametric model between 6 and
a2 (1). In particular, the algorithm [12] can handle any poly-
nomial order.
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Indirect estimation of signal-dependent noise with
non-adaptive heterogeneous samples
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Abstract—We ider the of signal-d d
noise from a single image. Unlike conventional algorithms
that build a scatterplot of local mean-variance pairs from
either small or ptively selected h data
our proposed approach relies on arbitrarily large patches of
heterogeneous data extracted at random from the image. We
demonstrate the feasibility of our approach through an extensive
h ical lysis based on mi of G ian distributi
A prototype algorithm is also developed in order to validate the
approach on simulated data as well as on real camera raw images.

Index T N L ignal-d
son noise.

noise, Pois-

I. INTRODUCTION

The popularity of signal-dependent noise models, in which
the variance of the noise affecting the signal depends on
the mean of the signal, is based on the fact that they well
approximate noise affecting data of several kinds of acquisition
devices, e.g., raw data from a CCD camera. Figure 1 illustrates
how the signal-dependent noise differently affects bright and
dark regions of an image, and shows a curve that describes
the typical mean-variance relation of imaging sensors. Con-
ventional methods [1], [6]-[13] estimate points of such mean-
variance curve isolating and separately processing segments or
patches of the signal with common mean and noise variance,
so that on each segment or patch simple sample estimators of
mean and variance can be applied. In this way, a scatterplot in
the mean-variance plane is produced. Then, a curve is fitted
to the scatterplot, yielding an estimate of the relation for the
whole range of the signal.

In this paper we show that, contrary to common belief, the
estimation can be accurate even if each scatterplot point is esti-
mated from a heterogeneous sample (e.g., a patch whose pixels
can have very different mean values). We justify this result
through a mathematical modeling based on mixtures of normal
distributions. Thus, unlike conventional signal-dependent noise
estimation techniques that preprocess the image in order to
work with homogeneous samples, our approach applies robust
estimators to arbitrarily large patches of heterogeneous data
extracted at random from the image.

Our analysis is focused on the camera noise models such as
the affine-variance model depicted in Figure 1. For the sake of

Contact email: firstname.lastname @tut.fi.

© This work was supported by the Academy of Finland (project no. 252547).
Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
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(b) Noisy realization.
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Figure 1. Detail of the "Peppers" image corrupted by signal-dependent noise
with affine variance (2), with parameters a = 0.01 and b = 0.002.

clarity and due to length limitation, we restrict the presentation
to the 2-D image case; nevertheless, the introduced concepts
and the proposed approach apply universally to 1-D signals as
well as to multidimensional data.

The paper is organized as follows. In Section II we introduce
the considered signal-dependent noise model and we describe
the conventional approach for its estimation. Next, we present
our novel noise estimation technique and a prototype algorithm
that exploits it, discussing its difference w.r.t. conventional
methods. In Section IIT we study the main factors contributing
to estimation errors, through a theoretical analysis and a Monte
Carlo simulation. In Section IV we show the effectiveness of
the method in real applications by estimating noise affecting
raw data from a CCD camera, and a comparison with a state-
of-the-art algorithm. Finally, in Section V and Section VI we
provide discussions and conclusions.

II. METHOD
A. Problem statement

Let us consider a noisy observation z of a deterministic
noise-free signal y, corrupted by additive spatially uncorrelated
noise with signal-dependent variance:

2(x) = y(x) + o (y(x))&(x), (5]
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Figure 2. Scatterplot of the mean-variance pairs (7},,{75), fitted line &(y) =
ay + b, and ground truth line o(y) = ay + b from the "Peppers” image,
corrupted by noise with parameters a = 0.01 and b = 0.0017. We use 1000
blocks of size 16 x 16, each yielding a point in the scatterplot.

where o : R — R* is a function giving the signal-dependent
standard deviation of the noise, x € XC Z? is the pixel
coordinate, and £ : X — R is a zero-mean independent
random noise with standard deviation equal to 1. Our goal
is to estimate the function o.

The expectation of z(x), denoted as E{z(x)}, is the noise-
free signal y(x); at the same time, the variance var{z(x)}
and the standard deviation std{z(x)} of z(x) are, respectively,
o2(y(x)) and o(y(x)), because var{y(x)} = 0.

As discussed in [2], the term &(x) can generally have a
different probability distribution for each different coordinate
x, ie. £(x1) = &(x2) if X1 # Xo; in order to simplify the
mathematical model, we approximate &(x) as a normal distri-
bution A(0,1). In this way the noise can be considered het-
eroskedastic Gaussian, with zero mean and signal-dependent
variance 02(y(x)), i.e. o(y(x))§(x) ~ N (0,0%(y(x))).

To provide practical experimental results of our method,
we shall refer to the affine noise variance model [5], which
is one of the most suitable for modeling the noise in digital
image sensors. According to this model, the noise variance is
approximated as

o*(y(x)) = ay(x) + b, )

where ay (x) and b are, respectively, the variances of the
signal-dependent and signal-independent parts of the noise.
The former part is due to a photon-counting process (Poisson
distribution), while the latter is caused by a combination
of dark noise (Poisson distribution) and thermal-electronic
noise (normal distribution). Because of a central-limit theorem
argument and because of the good approximation of the
Poisson by a Gaussian, the normal approximation of &(x) is
valid. For (2), the problem of estimating o2 can be reduced
to the estimation of the two constants a and b.
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B. Conventional approach

The conventional approach for the estimation of signal-
dependent noise is to segment the image into regions where
pixels have constant intensity, and hence, because of (1),
constant noise; then, the mean and noise variance are estimated
for each region independently. In this way it is possible to
create a scatterplot that relates the noise-free intensity values
of y (abscissa) with the respective noise variances (ordinate),
that, finally, is used to approximate the function o(y) in (1)
(or equivalently the function o2 (y)).

There are different methods for partitioning the image, with
different complexity and accuracy. The partition can be made,
e.g., by simply using pixels extracted from a sufficiently small
window from the noisy image [9], with the constraint that the
intensity does not change much within the window [7], [8], or
by segmenting the image into level sets (bins) with individual
intensity values [1], [6], [10], [11], [13]. More sophisticated
techniques, such as DCT-based estimators [12], have been
also proposed. However, the backbone idea is still to exploit
homogeneous samples for the actual noise estimation.

The rationale of these techniques is that, being the segments
homogeneous, also the noise variance is homogeneous, as can
be trivially concluded from (1). Hence, standard estimators of
the sample mean and sample variance can be directly applied
to the segments, yielding unbiased estimates of the mean and
noise variance. In other words, the resulting scatterplot points
are distributed about the noise variance curve o2(y).

C. Main idea

In contrast with the common procedure based on relatively
small homogenous segments, we show that the estimation
of each scatterplot point can be performed processing large
heterogeneous samples. As we shall demonstrate, considering
a heterogeneous group of elements taken from z, the expecta-
tions of the estimators of its mean and noise variance are still
a coordinate of a point that belongs to the function o2(y).
Consequently, it is not necessary to partition the image into
segments of constant intensity levels and noise variances, but it
is possible to process together parts of the image corrupted by
noise with various variance values, without compromising the
estimation. In particular, adaptive segmentation is no longer
required in order to estimate signal-dependent noise, but its
only advantage consists in limiting the positive bias due to
outliers that could occur when estimating the variance. In this
way we can avoid the segmentation step and, consequently,
simplify the entire process.

We define our approach indirect because the pair estimated
from one block does not represent directly a single relation
mean-noise variance, like for the conventional methods, but
it represents the mean and the variance of an heterogeneous
group of elements, i.e. a mixture of distributions.

An example of the scatterplot computed from the blocks taken
at random positions from the whole noisy image in Figure 1(a)
is shown in Figure 2 (black dots), with its estimation of o(y)
and the ground truth.
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(b) Windowing in 2.

(a) Windowing in z.

Figure 3. Example of 16 x 16 windows at random position in = and at
corresponding positions in 2.

D. Prototype algorithm

The simplest algorithm that can leverage the above idea can
be divided in three basic steps:

(a) High-Pass Filtering: most of the energy of the noise-free
signal y is usually confined to the lower frequencies of z,
thus, applying an high-pass filter to z permits to extract the
zero mean noise from it [3]. We obtain the high-frequency
part of z, referred to as 27, by convolving z against a 2-D
high-pass function ¢ (e.g., a wavelet):

H=zoy, 3)

where ¢ has zero mean, i.e. Zlu(z) =0, and £?-norm
equal to one, i.e. >, 4% (i) = 1.

(b) Local Estimation: once the detail image 2! is computed,
we randomly choose N coordinates within the image z,
like in Figure 3; then, from these locations, N square
blocks W7, i =1,...,N, of size y/n x \/n are extracted
from z. Similarly, N blocks W/, i = 1,..., N, of the
same size and from the same positions of W}, are ex-
tracted from 2/ . We estimate the means y; from the blocks
W7, while from W/ we estimate the corresponding noise
variances Jf, In this way, for each block W7, we obtain
a pair (§;,62) which can be represented by a point in the
scatterplot. The pairs (Ql,&f) are, therefore, the estimates
of the blocks means and noise variances (y,,,af).
Because the blocks are taken from random positions
within the image, each block may contain pixels having
various expected intensity levels. Therefore, the distribu-
tion of noise in a single block W; can be considered as
a mixture of normal distributions with different variances.
This marks a principal difference with the conventional
methods that look for uniform blocks (or regions) for the
estimation, and that model the noise within a single block
as realization of a single normal distribution with given
mean and variance.

In the next section we investigate the effects of exploiting
elements taken from a mixture instead of from a single
normal distribution.

Fitting: in order to estimate the parameters that describe
the curve o2 (y), we fit the pairs (g}i,&f), i=1,...,N,
using a least squares (LS) method, which is the simplest

(c

N

fitting technique at our disposal.

III. ESTIMATION ERROR
A. Noise analysis

Let us model image blocks as composed by R; regions
(piecewise modeling), with R; < n, and let W/ denote the
noise-free block corresponding to W7.

We shall refer as ideal the case in which, in WiH , the amount
of energy due to y is negligible with respect to the noise
energy. For example, this is the case when W}/ can be treated
as piecewise constant with edges having small excursions with
respect to the noise standard deviation, or, equivalently, when
the high-pass filter perfectly extract the noise component from
2. In this case, the elements of W7 and W are, respectively,
realization of two mixtures of R; normal distributions with
probability density functions (p.d.f’s):

R
i () = ;Ai“pm), Pi~N (mp,s?), @)

R
@) =S 2 @), ol ~N(0,53), &
k=1

where pj and p,{,’ are, respectively, the p.d.f’s of the k-th
normal distributions of f7 and f, )\,(f) is the proportion of
the elements of the k-th population respect to the total number
of elements n, my, is the mean of the k-th normal function in
fZ, i.e. the k-th intensity value in W/, and s is the variance
of both pj. and pf . It is important to notice that the ideality
of this case relies mainly on the fact that the variances of the
k-th distributions are equal.

Trivially we have

Ri
i =Y M m. ()
k=1

Exploiting the moments of a general mixture of normal
distributions', and the fact that all the pkH have zero mean,
we obtain

R;
ai=3> Nt @
k=1

Considering now the particular Poisson-Gaussian noise, it
follows that the elements of W/ can be individually modeled
as realizations of independent normal random variables with
variances defined by the affine transformation (2) of Wzy:

57 = amy, +b.

2

!The expectation m and the variance s> of a mixture of G normal

distributions are
G
m=y vgmy,
k=1

2=

Ma

Vk [(mk —m)®+ Sﬂy

k=1

where 1y, s and vy, are, respectively, the expectation, the variance and the
proportion of the k-th normal distribution [4].
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Consequently, noting that Eg;l )\;:) =1,

R; R; .
o2=3 /\,(J)amk + 3 )\g)b =
k=1 k=1 ®)
SING -
a]\;l Ay mg +b=ay; +b.

This means that the point (yl,af) belongs to the line (2).
Therefore, if §; and 67 are computed, respectively, with
unbiased estimators of the population mean and variance of a
mixture of normal distributions, the points (g{,&f) will yield a
cloud scattered about the line (2), and the only error occurring
in the computation of the pair (1]{,&3) is the one due to the
variances of the estimators.

The above proof shows that, in ideal conditions, the presented
algorithm ensures correct estimation even using blocks af-
fected by different noise levels.

Let us now consider a more practical scenario where the

presence of the noise-free signal W/ is is still appreciable,
influenced by strong edges and texture in W/ In this case, the
noise distribution in W/? can no longer be approximated as
a mixture of zero-mean normal distributions. In practice, this
means that W7 does not contain only noise, and that, among
its detail coefficients, there could be elements that introduce
a bias in the estimation of o2. Consequently, the estimation
error does not depend only on the variance of the estimator,
but it is also influenced by the presence of edges in W/.
To reduce the effect of these outliers, we use the median of
absolute deviation (MAD) [15], [16] as robust estimator of
o% and, for coherence, the median (med) as estimator of the
mean:

9 = med {W7}, )
. [MaD (w1 ]?

Here, MAD {W}} = med {[WH —med {W/}|}, and
®~! denotes the inverse cumulative distribution function
(c.d.f.) of the standard normal distribution, and the constant
factor 1 / o1 (%) = 1.4826 makes the estimator asymptoti-
cally unbiased in case of i.i.d. normal samples.

When using MAD, it is important to consider that the relation
(8) may fail, because of the potential discrepancy between the
mean and the median of distributions that are not i.i.d. normal.
Nevertheless, the use of the MAD estimator on WiH can be
justified because of the Gaussianization of the coefficients
resulting by a transformation of the type (3) [2]. We support
this thesis providing, in the next section, an accurate study of
the robust estimators errors in practical applications.

B. Error analysis

As described in the previous section, the estimation error
is composed by two parts: one due to the variance of the
estimators (the only one in the ideal case), and one due to the
presence of outliers (e.g., edges). In this section we analyze
quantitatively how these outliers affect the computation of the
pairs (§,.67).

For this purpose we performed a Monte Carlo simulation
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Figure 4.  Examples of the patches Wzy used in the Monte Carlo simulation,
with different block sizes n and percentages of boundaries By,.

where we compute the average estimation error on a pair
(y;,02) from a block containing a certain amount of edges:

o for each task, a patch containing a random number of
regions and corrupted by affine signal-dependent noise is
created;
the patches are then grouped depending on the amount
of edges within them;
the mean-noise variance pairs are then estimated;
the estimation errors are computed for each block;
finally, the errors are averaged, separately, for each group.

In this way, we compute the average estimation error in
function of the amount of edges in the block.

We now describe more accurately the entire process.

1) Patch generation and grouping: we generate patches
W/ containing a random number of regions; each region
of each patch is piecewise smooth with piecewise smooth
boundaries (examples are shown in Figure 4). The minimum
and maximum intensity values of each region are realization of
random variables uniformly distributed in [0, 1]. The patches
are then grouped depending on the percentage of edges By,
within them. Every patch is corrupted by the noise defined
in (2), and filtered as described in (3). In this way we create
W7 and WH, which are used for computing §; and 62,
respectively. The noise parameters a and b are chosen, for each
patch, as realization of random variables uniformly distributed
respectively in [0,0.002] and [0, 0.0006], in order to operate on
noise ranges comparable to those considered in, e.g., [1], [2],
which are representative of typical consumer camera sensors.

2) Error computation and normalization: for every patch,
the estimation error ¢; is computed as the distance between the
point (g; 12) estimated with (9) and (10), and the ground-truth
line ay+b, i.e. the distance between (§j;,67) and its orthogonal
projection (§j;, ,67, ) on the line ay + b.

Intuitively, the estimation errors of the mean and variance
are function of the noise variance that we are estimating,
i.e. larger noise variance implies larger estimation error.
Consequently, estimation errors on patches having the same
amount of edges, but affected by different noise levels, can
be significantly different. We normalize the square estimation
error €7 by dividing it by the mean square error (MSE) (67, )
that we would have had if we were performing the estimation

2To eliminate the boundary artifacts in the computation of Wf’ . we create
a bigger patch (padding) in order to discard the boundaries once the filtering
is performed.
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on a flat patch containing only one region, and affected by
constant noise variance frfl. In this way, the normalized error
becomes an index of the goodness of the estimation with
respect to the simplest possible case, i.e. a single flat region.
Let us now show how the MSE () depends on the noise
variance 52 of a generic flat patch W, denoting W" its
filtered version:

MSE{med{W”}} =var{12ned{wz}} = an

v* (0°) = 3,07,
MSE{MAD {W!1}} —var {(MAD{W"}} = |,
v ((7 ) =507,

&% (5%) = v* (5?%) sin® (0) + v* (57%) cos® (), (13)

where v*(52) and v (52) are, respectively, the variances of
the median and MAD estimators applied to the patches W’
and W, and « is a constant that depends on the function® 1)
that we use to filter W~ in order to obtain T . The MSEs
of the estimators coincide with their variances because the
patches are flat and the estimation errors have zero mean, i.e.
the samples are unbiased because there are no outliers.

In (13), the terms sin” (6) and cos? () are used to compute the
orthogonal components of (11) and (12) to the line ay +b, the
only components of the variances that mislead the estimation,
with 6 being the angle between the line ay + b and the
horizontal axes, i.e. § = arctan(a).

We can finally define the normalized square estimation error
é2 as

2
52 i

EZZW.

14

3) Averaging and error trend: Figure 5 shows the root
mean square error (RMSE) and the root mean normalized
square error (RMNSE) resulting from respectively averaging
the estimation errors e? and é2 over groups of patches having
the same percentage of edges By,. We separately consider four
different window sizes n.

The RMNSE curves in Figure 5(b) are approximately mono-
tonically increasing with common minimum 1 at By, = 0,
where patches are composed of a single region and have
no internal edges. Note that the patches W, are piecewise
smooth, and not perfectly flat as in the ideal case; nevertheless
at By, = 0 the RMNSE is practically 1. This means that, when
By, = 0, the RMSE essentially coincides with the standard
deviation of the estimator and, when By, > 0, the estimation
errors are almost entirely due to the presence of edges.

IV. EXPERIMENTS ON CAMERA RAW IMAGES

To validate the proposed algorithm in a practical context,
we apply it to raw images from a digital camera. The images
are shown in the left and center columns of Figure 6 and were
taken using a Canon PowerShot 90 10-Megapixel camera. We

3In our experiments 9 is generated by separable convolution of one 1-D
Daubechies wavelet kernel,

¥ =1v1p ®¥ip,

where ¢ p=[— 3,0.807, —0.460, —0.135, 0.085, 0.035]. For this 1,
we empirically computed ov = 9.9076.

14% 18%

(b) Root mean normalized square error (RMNSE).

Figure 5. RMSE and RMNSE as function of the percentage of edges B
within each block, for block size n = 82,162,322, 642, The estimations
have been performed using the robust estimators in (9) and (10).

adjusted the exposure times in order to avoid clipping (e.g.,
overexposure). The pictures were acquired with various ISOs
and exposure times, so to have realizations of different noise
levels [14].

In the rightmost column of Figure 6, the lines estimated
by the proposed prototype algorithm (continuous lines) are
compared against those estimated by a state-of-the-art al-
gorithm [1] (dashed lines), here used as reference method.
This algorithm first preprocesses the image in order to detect
and exclude edges and texture from the noise estimation; it
then partitions the remaining image into segments of constant
intensity level; a scatterplot is thus obtained by applying a
robust unbiased estimator of the variance on each segment,
with each point of the scatterplot being modeled according to
a bivariate normal distribution; the noise model parameters a
and b are finally estimated through a maximum a posteriori
fitting. For these experiments, our prototype algorithms uses
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(a) Out-of-focus image.

(d) Out-of-focus image.

(g) Out-of-focus image.

(e) Natural image.

(h) Natural image.
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(c) Scatterplot and fitted lines.
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(i) Scatterplot and fitted lines.

Figure 6. Scatterplots and estimated functions for out-of-focus (red clouds and red continuous lines) and complex natural (blue clouds and blue continuous
lines) images. The images have been taken with a Canon PowerShot $90, 1SO 3200 (first row), ISO 2500 (second row), and ISO 200 (third row) using
exposure times respectively equal to 1/1000, 1/600, and 1/125. The estimation is performed using 2000 patches for each channel ([R, B; G1, G2]) of size

64 x 64. The dashed lines show the functions estimated by the ref. [1].

blocks of size 64 x 64, and, in order to reduce the variability
of the results on the particular random choice of the block
positions, 2000 patches are extracted from each color channel
of the images.

In Section III-A we discussed the theoretical behavior of our
method in the ideal conditions where the extracted patches are
free of edges (By, = 0 in Section III-B). In order to reproduce
these assumptions, the raw images include 3 out-of-focus
(OoF) pictures, shown in the leftmost column of Figure 6.
The lines estimated by the two algorithms (red continuous
and dashed lines) are always close to each other, confirming
that, in the ideal case, the proposed algorithm gives results
congruent to those of the reference algorithm.

The 3 pictures of a complex natural scene, shown in the
center column of Figure 6 are used to investigate the practical
case. The lines estimated with the proposed algorithm (blue
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continuous lines) are again close to the reference ones (blue
dashed lines), confirming that the proposed algorithm performs
similar to the reference algorithm also on complex images.

In Figure 6, the OoF and natural pictures that are on the
same row were acquired under the same operating conditions
(ISO, exposure time, ambient temperature) and are hence
corrupted by noise with the same parameters [14]. Therefore,
the blue solid and dashed lines in each subplot may be
expected to coincide with the respective red lines. Indeed,
for large ISO (top and middle rows of Figure 6), the lines
estimated from OoF and natural images are very close to each
other, because the large noise variance makes easier for the
algorithms to separate the noise from the noise-free signal.
In case of small ISO (bottom row), instead, the estimation
from the natural image diverges from the OoF ones, for both
proposed and reference algorithms, since the variance of the
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(proposed)
(reference)

G0 0.1 0.2 0.3 0.4

Figure 7. Example in which both proposed and reference algorithm fail
the estimation due to the presence of several outliers. Top: image with large
highly textured areas from the NED dataset [20]. Bottom: scatterplot of
mean-variance pairs with corresponding noise line 62,,,(y) estimated by the
proposed prototype algorithm (red). The result is compared with the line
:"72“(;/) estimated using the reference algorithm (green) and the ground-truth
a2(y) (black). Due to the overwhelming presence of outliers in the scatterplot,
both the proposed and the reference algorithm fail to correctly estimate the
noise line.

noise is small with respect to the signal. The degradation of
accuracy of the proposed algorithm is comparable to that of
the reference one.

In Figure 7 we report the result 6f)m(y) of the proposed
prototype algorithm applied to an image that contains large
highly textured areas. The image belongs to the NED dataset
[20] of raw images with large areas of high-frequency texture,
which makes noise estimation particularly challenging. The
image has been captured with a Nikon D8O at ISO 125, and
the response of the sensor has been linearized by a calibrated
nonlinear correction function. In the same scatterplot we also
present the mean-variance pairs and the line [rif(y) estimated
with algorithm [1], and the ground-truth line o2(y) too. Both
scatterplots reveal the presence of several outliers in the inten-
sity range y € [0, 0.1], mostly generated by textures present on
the mountains. These outliers cause the misestimation of the
lines fitted by either the proposed and the reference algorithm?*.
This result confirms that textures and edges are the main
cause of misestimation, since they affect similarly proposed
and reference algorithm, and that the scatterplot points can be
estimated using heterogeneous samples.

To evaluate the impact of the block size, we repeat the

4A robust variant of [1] was recently published [19] while the present article
was already in pi The variant models the scatterplot points as an adaptive
mixture of Gaussian and Cauchy distributions, and thus yields more accurate
results in cases with outliers such as that illustrated in Figure 7.

ISO 3000 ISO 3000

0 02 04 06 08 1 0 02 04 06 08 1

(a) Out-of-focus image. (b) Natural image.

1SO 2500 1SO 2500

© 02 04 06 08 1 ©0 02 04 06 08 1

(¢) Out-of-focus image.

(d) Natural image.

1SO 200 1SO 200

0 02 04 06 08 1 0 02 04 06 08 1

(e) Out-of-focus image. (f) Natural image.

Figure 8. Lines estimated from the images in Figure 6 separately
using 2000 patches for each channel ([R,B;G1,G2]) of size n =
82,162,322, 642,1282. The results are compared with the estimates of the
reference algorithm.

experiment presented in Figure 6 separately using patches of
size n = 82,162,322, 642,128; the results are reported in
Figure 8. The lines estimated from the OoF images, showed
on the left column of the figure, are relatively close to each
other independent of the block size. Observing the results from
natural images, showed on the right column of the figure, we
can notice, especially at low ISO, that estimates from larger
blocks are less affected by overestimation bias.

Finally, to illustrate the essential role of the robust estima-
tors in alleviating the bias effect due to outliers from edges
and texture, we performed the same Monte Carlo simulation
described in Section III-B, using the sample mean and sample
variance to estimate the scatterplot points. In Figure 9 we show
the RMNSE of these non-robust estimators in comparison
to that of the med-MAD (9)-(10). Note how the robust
estimators, and in particular the MAD, drastically reduce the
error.

V. DISCUSSION

In Section III-B, as well as in Figure 8, we demonstrated
that the average estimation error of the points (y;,02) may
get smaller if larger blocks are used in conjunction with
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Figure 9. Root mean normalized square error (RMNSE) of the pairs median-
MAD and sample mean-sample variance for blocks of size n = 322. Robust
estimators lead to such a reduction of error also for the other block sizes.

robust estimators, in spite of the fact that the samples get
more heterogeneous. However, there is also an inevitable
trade-off in the choice of the block size: when using large
patches it is unlikely that the mean (or median) y; reaches
the extremes of the distribution of the image intensity values
y. As a consequence, the scatterplot may cluster about the
point (¢, ac + b), ¢ being the mean (or median) of y over
the whole image, and, thus, the accuracy of the estimated line
may be degraded. On the other hand, smaller patches allow
the scatterplot points to distribute on a wider interval, at the
expense of higher estimation variance for each point, and risk
of larger bias on some of them. While the variance errors
may cancel out through the curve fitting, the bias errors will
eventually corrupt the final estimate unless a robust line fitting
is utilized.

In Figure 9, the average error for robust and standard
estimators are compared, demonstrating the complete failure
caused by non robust.

Our analysis and algorithm are developed and validated
on the specific affine-variance model (2), and may fail for
a generic non-affine o%(y). On the other hand, if o2 is well
approximated by a locally (i.e. separately on each block) affine
function of y, we can still use the proposed algorithm, ensuring
accurate results. However, in many cases (e.g., in the case of
clipping) it can be difficult to verify the local affinity of o2
without any strong assumptions on the image y.

Let us discuss also about ways how to possibly improve
the estimation accuracy. In its prototype implementation, our
algorithm is limited by the accuracy of the MAD estimator and
thus cannot reach the accuracy of algorithms (e.g., [17]) that
adopt more sophisticated estimators for the estimation of the
variance. Likewise, the simplest LS fitting method is not robust
to outliers in the scatterplot. Therefore, the use of a better
variance estimator and a better (e.g., robust) fitting algorithm
[19] could further improve the estimation, so to possibly deal
with highly textured images such as the example in Figure 7.

Adaptive procedures such as segmentation may be crucial
for alleviating the impact of high-frequency texture on the
variance estimation, but we especially emphasize that this is
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not a peculiarity of signal-dependent noise models, and it ap-
plies also to constant-variance (homoskedastic) noise models,
including additive white Gaussian noise (AWGN). In fact, the
advanced methods [17] and [18] are developed for AWGN
estimation. As shown in our theoretical and experimental
analysis, the fact that the variance of the noise is not constant
(heteroskedasticity), and depends instead on the signal, does
not per se imply an additional need for adaptive segmentation.

Finally, let us note that the proposed model deals with
the estimation of signal-dependent noise that is spatially
uncorrelated, i.e. noise with diagonal covariance matrix. It is
nevertheless possible to extend the proposed approach also
to the correlated-noise case. If the correlation model (i.e. the
shape of the noise power spectral density (PSD)) is known,
one can compute the noise energy in the high-pass image 27
from which the blocks VVLH are extracted, and hence normalize
the output of the variance estimator based on the product
of the PSD with the spectrum of . This product can be
preconditioned by suitably downsampling the data prior to
analyzing the noise; downsampling may be also desirable, as
a means to reduce the amount of data to be processed.

VI. CONCLUSIONS

As opposed to conventional methods that require homo-
geneous samples for the estimation of mean-variance pairs,
our approach to signal-dependent noise estimation utilizes
arbitrarily large samples of possibly heterogeneous data. The
approach is backed by a Gaussian-mixture modeling, which
shows that the individual mean-variance estimates computed
from the heterogeneous samples are still representative of the
true mean-variance curve. An elementary prototype algorithm
based on this modeling is presented for the estimation of
signal-dependent noise from a single image. The algorithm
extracts large heterogeneous samples from random locations
in the image. This corresponds to a fundamental difference
versus traditional algorithms, which often involve an adaptive
segmentation of the image into narrow homogeneous seg-
ments, and it also results in a simplification of the estimation
procedure. This approach can be therefore suitable in all
applications where a simple noise estimation algorithm is
required, and which has to operate on non-intelligent devices.
Experiments on real data demonstrate the reliability of the
algorithm applied to natural images, showing that its results
are comparable with those from a state-of-the-art method.
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COLLABORATIVE FILTERING BASED ON GROUP COORDINATES
FOR SMOOTHING AND DIRECTIONAL SHARPENING
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ABSTRACT

Groups of mutually similar image blocks are the key ele-
ment in nonlocal image processing. In this work, the spatial
coordinates of grouped blocks are leveraged in two distinct
parts of the transform-domain collaborative filtering within
the BM3D algorithm. First, we introduce an adaptive 1-D
transform for 3-D collaborative filtering based on sampling 2-
D smooth functions at the positions of grouped blocks. This
adaptive transform is applied for improved decorrelation of
the 2-D spectra of the grouped blocks. Second, we propose a
directional sharpening procedure whose strength varies adap-
tively according to the relative orientation of the transform
basis functions with respect to the group coordinates. Exper-
iments confirm the efficacy of the proposed adaptations, for
denoising as well as for sharpening of noisy images.

Index Terms— BM3D, adaptive transforms, collabora-
tive filtering, denoising, sharpening.

1. INTRODUCTION

BM3D [1] is one of the most effective nonlocal image denois-
ing algorithm. Its state-of-the-art performance is based on
the so-called grouping and collaborative filtering approach,
which consists in 1) stacking mutually similar image blocks
into 3-D groups, 2) a 3-D transformation of the groups into
typically very sparse group spectra; 3) shrinkage of these
spectra; 4) inversion of the 3-D transform and 5) aggregation
of the resulting block estimates at their original local within
the image.

A peculiarity of this procedure is that steps 2), 3), and 4)
are carried out irrespective of the positions that the grouped
blocks had in the image, with the 3-D transform realized as a
separable composition of a 2-D block transform with a stan-
dard 1-D decorrelating transform along the stacking dimen-
sion of the group.

We here introduce a procedure for the adaptive design of
a 3-D separable decorrelating transform based on the spatial
coordinates of the similar blocks that enter the group, thus

This work was supported by the Academy of Finland (project no.
252547).

Fig. 1: Details of a noisy realization of the Peppers image. The pur-
ple area highlights patches similar to the white reference ones. Note
how the patches that contain an edge are typically organized along
the edge itself, in collinear relative positions (left); conversely, uni-
form regions yield groups of blocks scattered without a clear pattern
(right).

leading to a spatially consistent collaborative filtering of the
nonlocal features of the data.

The proposed procedure is designed to enhance BM3D
performance whenever the extracted similar blocks spectra
can be approximated as smooth functions of the blocks’ spa-
tial coordinates, while maintaining its usual performances in
the generic case. We thus define, in Section 3, an adaptive
orthonormal transform based on the spatial coordinates of the
blocks entering the group.

Further, observing that the relative positions of the blocks
in the group can be indicative of the block content (see Fig.
1), in Section 4 we also devise a sophisticated modification
of collaborative sharpening [2] where both the position of the
blocks and the dominant direction of each basis function mod-
ulate the strength of enhancement of the corresponding spec-
trum coefficient.

2. OBSERVATION MODEL AND BM3D

Let us consider a noisy observation z of a noise free signal y
corrupted by additive i.i.d. Gaussian noise 7,

z(z) =y () +n(2), (1)

where # € X C R? are the coordinates of the samples and
n(-) ~ N (0,02). The goal is to estimate y from z.

Image blocks are denoted by a capital letter and a sub-
script that indicates the top-left coordinate of the block; e.g.,
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Fig. 2: Sharpening of Peppers corrupted by Gaussian noise with ¢ = 20. From left to right: Peppers noisy image; denoised image with no
sharpening; ratio between the lengths of the principal axes of the group coordinates: higher values are shown in red, and lower values in dark
blue; image denoised and sharpened by the proposed algorithm (adaptive 0.7 < a < 1.8); conventional alpha-rooting (constant o = 1.5).

Z, is a block extracted from z at position x.

In the basic BM3D formulation [1], the image z is raster
scanned and for each position xr and corresponding refer-
ence block Z,,, we find the ordered set S, of the coordi-
nates of the NV blocks most similar to Z,,. The similarity is
measured by computing the ¢3-distances of the blocks con-
tent. The blocks are then stacked together in a 3-D volume
ngR , that is subsequently transformed through the 3D sepa-
rable linear transform 73p, filtered, and synthesized with the
3D inverse transform Tap '

{f'szR =T ! (T (73D (Zsm))) , 2

where ?Sm is the filtered 3-D volume, and Y is a shrink-
age operator, such as hard-thresholding or a Wiener filter. For
the success of the procedure it is important that the underly-
ing unknown spectrum 73p (Ysj,u) is sparse, as this permits
to effectively attenuate the noise without introducing severe
bias [1]. The coordinates S, do not play any role in the
collaborative filtering (2) applied to Zs, ; Su; regain their
significance only when the block estimates Y,z € Sep» are
extracted from Ys,»,rl and aggregated at their original position
into the resulting image estimate 7.

3. ADAPTIVE GROUP TRANSFORM BASED ON
GROUP COORDINATES

Although a number of works [3, 4] have discussed the per-
formance limits of denoising, indicating that BM3D is es-
sentially attaining a performance bound on complex natural
images, it is otherwise established that nonlocal methods of-
ten yields suboptimal results when filtering simpler images,
such those composed by large regular surfaces. Thus, in this
work, we aim at improving the effectiveness of collaborative
filtering on such large regular content by embedding a smooth
local model within the 3-D transform 73p, while maintaining
comparable performance on complex heterogeneous images.

For simplicity, we consider the usual separable decom-
position of 73p into a spatial 2-D transform 73p (e.g., DCT,
DWT [1], PCA [5]) followed by orthonormal 1-D transform
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Tip along the stacking dimension, and focus our attention on
the latter. In particular, a curious feature of 71p, is that its par-
ticular choice bears negligible influence on the denoising per-
formance, as long as 71p is chosen from fixed non-adaptive
transforms having a DC term [1]. However, here we consider
an adaptive design for 7;p.

Sa. . - .
Let ® = {qﬁ,}l-:l“l be a collection of bivariate functions
¢; : X — R, such that the one-dimensional vectors

{65 (Se} 2! 3

form a set of linearly independent generators for RIS=el. we
can then build the |S;, | % | Sy, | matrix P whose columns
are the aforementioned vectors. Since the functions ¢; are
linearly independent, i.e. rank (P) = |S,,, |, we can apply the
QR decomposition (Gram-Schmidt orthonormalization) to P.
In this way we obtain

QR=P, “)

where () is an orthonormal matrix and R is an upper-
triangular matrix. We can interpret () as an orthonormal
transform for inputs of length |S,|. Most importantly, the
columns of @ (i.e. the basis functions of the transform) in-
herit from ® the regularity w.r.t. S, ; such spatially adaptive
orthonormalization of P can be seen as a particular case of
shape-adapted transforms [6]. We use such @Q as a direct
replacement of 71p in BM3D.

By design, the proposed transform yields sparser spec-
tra when the individual 7op-spectrum coefficients of the
blocks in Yy, ~agree with the regularity of ® over z € Sax-
The validity of this assumption can be different for different
Tap-spectrum components and different S, ; it is reason-
able to expect that high-frequency components of the Top
spectrum meet this assumption to a lesser degree than the
low-frequency ones. In practice, for each group, ® is ex-
pressed with respect to the principal axes of S, and in the
orthonormalization (4) the basis functions ¢; are sorted so
to maximize their independence over S,.. The principal
axes play an essential role also in the following adaptive
sharpening strategy.
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Fig. 3: Example of adaptive bases for the Tip transform generated by orthogonal polynomials. On the top row, we show the first 6 basis
functions for the group in Fig. 1(left), whose blocks are aligned along an edge. On the bottom row, we show the first 6 basis functions for the
group in Fig. 1(right), located within a uniform area. Observe how the bases change depending on the group coordinates.

4. DIRECTIONAL SHARPENING WITH ADAPTIVE
TRANSFORM-DOMAIN ALPHA-ROOTING

The collaborative-filtering framework allows to conveniently
sharpen the noisy image z without amplification of the noise
through alpha-rooting of the thresholded 73p spectrum [2].
Here, instead of adopting an alpha-rooting of the image with
constant « [2], we propose to amplify the 73p-spectrum coef-
ficients ¢ (i) with adaptive c (i) that can be different for each
i, 7 being the index within the T3p spectrum:

sign [t (4)] [t (0)] | £57 ift(0)#0 G)
t (i) otherwise,

1
t(i) ‘wm

tagi) (1) =

where t ;) (i) is the amplified T3p coefficient and ¢ (0) is the
Tsp-spectrum DC.

Specifically, we adapt « (¢) based on 1) the ratio between
the major and minor axes of the group coordinates, as well
as on 2) how the orientation of the major axis agrees with the
orientation of the 75p basis functions that contribute to the in-
dividual coefficients ¢ (i) via Tip. If the major axis is sensibly
longer than the minor one, the blocks are mostly distributed
along the major axis: this occurs when the group includes pix-
els from a straight edge in the image. Conversely, when the
axes’ lengths are similar, the blocks are scattered, indicating
that the group is likely from a wide regular region. This fea-
ture is shown in Fig. 2(center), where we show the ratio be-
tween major and minor axis for Peppers. Thus, when the ratio
between the axes’ lengths is large, we assume that the image
features an intensity change in the direction orthogonal to the
major axis, while when the ratio is close to 1, we assume that
the group contains a regular region (see Fig. 1). Therefore,
when sharpening the blocks content, it is reasonable 1) to use
large « values only in the presence of an intensity change, i.e.
when the ratio is large, and 2) to amplify only those coeffi-

cients whose corresponding basis functions are characterized
by variations collinear with those of the image, i.e. orthogonal
to the major axis. We thus compute individually the energy
(¢2 norm) of the derivative of each Top-transform basis func-
tion in the direction of the major and minor axes, namely £
and E,. If B > Ej, we perform sharpening (a (i) > 1),
otherwise we soften the coefficient (« (¢) < 1). Hence, we
modulate o (7) monotonically with £, — Ej with rate pro-
portional to the axes ratio.

5. EXPERIMENTS

In our experiments we use bivariate orthogonal polynomials
for ®. In Fig. 3 one can appreciate how the bases given by
@ adapt to the particular relative positions of the grouped
blocks. On the top row, we show the first six basis elements
of the 71p transform of the group of blocks from the edge in
Fig. 1(left). The first six basis functions shown in the bottom
row are for the group from the flat area in Fig. 1(right), and
are visibly different from the former ones. In the figure, we
also show the continuous surfaces obtained by applying R~!
to ®.

In order to compare the performances of the proposed
algorithm with respect to the standard BM3D, we denoise
a standard set of eleven natural images (Lena, Cameraman,
Peppers, etc.) corrupted by i.i.d. Gaussian noise with o =
15,35 (1). We further consider a piecewise smooth test im-
age (Fig. 4,bottom) to validate the advantage of the proposed
scheme in its ideal conditions.

To clearly discriminate the performances of the two im-
plementations, and also because collaborative sharpening had
not been designed within a two-stage algorithm [2], we re-
strict our analysis to the hard-thresholding only. Furthermore,
in order to have a fair comparison, we use the same parame-
ters for both implementations except for the parameter A of
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Detail of Lena Noisy image o = 35

PSNR=29.72 PSNR=29.90

Piecewise smooth

Noisy image o = 35

PSNR=35.36 PSNR=36.42

Fig. 4: Denoising of Lena (top) and piecewise-smooth test image (bottom), both corrupted by i.i.d. Gaussian noise with ¢ = 35. From left
to right: original images, noisy observations, images denoised by the standard BM3D algorithm, images denoised by the proposed algorithm
with collaborative filtering based on adaptive orthonormal polynomials (see Fig. 3). Notice the improvement, particularly in smooth regions,

such as the shoulder of Lena.

the hard-thresholding operator Y in (2), that has been opti-
mized for the two algorithms independently, so to maximize
the PSNR average over the dataset of natural images.

The PSNR differences between the proposed and the
original implementation are, in terms of meanzstandard-
deviation over the natural images dataset, 0.076 + 0.063 and
0.12 4 0.065 for o = 15 and o = 35, respectively, i.e. there
is a marginal but recurrent improvement. For the piecewise-
smooth test image, the gain is instead 0.63dB and 1.28d B for
the two noise levels, which is significant and confirms the ad-
vantage when the blocks spectra vary smoothly with respect
to the group coordinates. Fig. 4 compares the results of the
two implementations for Lena and for the test image, where
one can appreciate the improvement on Lena’s shoulder as
well as on the gradients of the bottom figure.

Finally, Fig. 2 compares the conventional sharpening
algorithm [2] with constant & = 1.5 against the proposed
one with adaptive 0.7 < «a (i) < 1.8. Although the two
methods yield similar enhancement of the edges, the former
one presents spurious artefacts particularly noticeable over
smooth regions and in the vicinity of edges. These artefacts
are instead mitigated by the proposed adaptive alpha-rooting,
because the sharpening is strong only across edges, while
softening occurs along edges (due to the different a.(¢) for dif-
ferently oriented 7>p-spectrum basis functions) and smooth
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areas are merely denoised (due to the axes’ length ratio being
close to unity).

6. DISCUSSION AND CONCLUSIONS

We introduced an adaptive 1-D transform for 3-D collabo-
rative filtering based on sampling 2-D smooth functions at
the positions of grouped blocks. Experiments demonstrate a
slight improvement over the standard BM3D on complex nat-
ural images and a substantial advantage on images character-
ized by large piecewise regular regions. These improvements
are confirmed both quantitatively and qualitatively. This is
consistent with results on the performance limits in image de-
noising, that predict only a small room for further improve-
ment over BM3D on complex natural images. The proposed
approach is further extended to a sharpening algorithm where
the group coordinates determine an adaptive alpha-rooting
whose strength can vary from group to group as well as within
each group spectrum. Unlike the traditional alpha-rooting that
amplifies the whole spectrum indiscriminately, the proposed
method enables a directional sharpening which is only acting
across edges, thus reducing the visibility of artefacts within
smooth regions as well as along edges. The proposed scheme
is not limited to denoising and sharpening, but it is relevant to
any application of 3-D collaborative filtering.
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Variance Stabilization for Noisy+Estimate
Combination in Iterative Poisson Denoising

Lucio Azzari and Alessandro Foi

Abstract—We denoise Poisson images with an iterative algo-
rithm that progressively improves the effectiveness of variance-
stabilizing transfor i (VST) for G ian denoising filters.
At each iteration, a combination of the Poisson observations with
the denoised estimate from the previous iteration is treated as
scaled Poisson data and filtered through a VST scheme. Due to
the slight mismatch between a true scaled Poisson distribution
and this combination, a special exact unbiased inverse is designed.
We present an implementation of this approach based on the
BM3D Gaussian denoising filter. With a computational cost
at worst twice that of the non-iterative scheme, the proposed
algorithm provides significantly better quality, particularly at low
SNR, outperforming much costlier state-of-the-art alternatives.

Index Ter: image d
son noise, Anscombe transformation, iterative filtering.

hoton-limited i

Pois-

I. INTRODUCTION

Denoising of images affected by Poisson noise is commonly
executed by: 1) applying a variance stabilizing transformation
(VST) to standardize the image noise, 2) denoising the image
with an additive white Gaussian noise (AWGN) filter, 3)
returning the image to its original range via inverse transforma-
tion. The most common VST for this purpose is the Anscombe
transformation [1], [2]. Since, at very low counts (e.g., less
than one count per pixel, with SNR«O0dB), the Anscombe
transformation can be quite inaccurate [3], denoising algo-
rithms specifically designed for Poisson noise [3], [4] were
developed to provide better performances than combinations
of VST with Gaussian filters.

However, being inexpensive, simple, and independent from
the adopted denoising algorithm, the Anscombe transform is
still very appealing, and in this letter we propose an iterative
algorithm based on the VST framework that is capable of
dealing with challenging cases with extremely low SNR, and
that outperforms state-of-the-art algorithms, both in terms of
image quality and execution time.

At each step we apply the VST approach to a combination
of the initial observed image and its most recent estimate
to increase the SNR of the signal to be denoised, and con-
sequently to improve the effectiveness of the stabilization
and filtering. We analyze the statistics of this combination,
which deviate from a Poisson distribution, and introduce the
corresponding exact unbiased inverse to be used in this VST
framework. We present an implementation of this approach
based on the BM3D Gaussian denoising filter [5]. With a com-
putational cost at worst twice that of the non-iterative scheme,

This work was supported by the Academy of Finland (project no. 252547).
The authors are with the Department of Signal Processing, Tampere Univer-
sity of Technology, Tampere, FI-33101, Finland (e-mail: lucio.azzari @tut.fi;
alessandro.foi @tut.fi).

the proposed algorithm provides significantly better quality,
particularly at low and extremely low SNR, outperforming
much costlier state-of-the-art alternatives.

II. PRELIMINARIES AND MOTIVATION

Let z be an observed noisy image composed of pixels z(x),

x€QcZ? modeled as independent realizations of a Poisson

process with parameter y(x) > 0:

Y(x)F X ey
z2(x)! z e NU{0)

0 elsewhere.

z2(x) ~POy(x), Pz(x) [y(x)) = {

The mean and variance of z(x) coincide and are equal to y(x):
E{z(x) ly(x)} = var{z(x) |y(x)} = y(x) .

For conciseness, henceforth we will omit x from notation.

Our goal is to compute an estimate § of y from z. To
this purpose, in the archetypal VST framework, the Anscombe
forward transformation a [1] yields an image

a(z) =24z +3%

which can be treated as corrupted by AWGN with unit
variance. Thus, it can be denoised using any filter @ designed
for AWGN. If the denoising is ideal, we have

®la(z)] = Efa(2) |y}.
The so-called exact unbiased inverse of a [2]
L] E(a(2) |y} = Elzly) =y,

is used to return the denoised image to the original range of
z, thus yielding an estimate of y:

=17 (@[a@)]).

However, for small y, when the SNR is very low, the
stabilization is imprecise and the conditional distribution of
a(z) is far from the assumed normal, in terms of both scale
and shape, leading to ineffective filtering with ®. This issue
has been commonly addressed either by applying VST after
binning, i.e. by stabilizing sums of adjacent pixels instead of
individual pixels [3], [4], [6]-[10], or by similarly stabiliz-
ing transform coefficients [11] (essentially inserting the VST
within the denoising method itself). All these stratagems aim
at increasing the SNR of the data subject to the VST.

In this letter, we introduce an alternative and more direct
way to improve the SNR prior to VST, by combining the noisy
observation z with a previously obtained estimate of the noise-
free data y, leading to the following simple iterative algorithm.
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III. PROPOSED ITERATIVE ALGORITHM

A subscript index denotes a symbol’s instance at a particular
iteration, e.g., ¥; is the estimate of y at iteration i.

We initialize the algorithm by setting i = z. At each
iteration i = 1,..., K we compute a convex combination of
Yi—1 and z

Zi=diz+ (1= A) Di-1, (1)

where 0 < 2; < 1. Provided we can treat §;_; as a surrogate
for y, we have E{Z|y} =y=,l‘.’2var(f,'|y); thus Z; has higher
SNR than z for any A; < 1. We then apply a VST f; to Z;
and obtain an image Z; = fi(Z;), which we denoise with a
filter ® for AWGN to obtain a filtered image D; = @ [Z;].
Assuming D; = E{f;(Z;)|y}, the exact unbiased inverse of f;,
[l‘ : E{fi(Z)ly} = E{Zily} =y, brings this image to the
ongmal range, yielding

A
= 1D,

which is either used for the next iteration if i < K, or output
as final estimate $x =3.
Let us provide further details on the above basic procedure.

A. Forward variance-stabilizing transformation

Consider the scaled variable A,TZZ,- and let us model §;_; as y.
Setting g; (1) = A;t — ! ~y, the conditional probability

Ai

M g (a75) envio

elsewhere .

P(472zily) = @

Unless A; =1, this is not a Poisson distribution. However, the
mean and variance of 4722,- do always coincide:
E{A z“y}—var{/l2 }_/1 y.

Hence, /1;22,» resembles 7’(/1’ y) and indeed one can prove
[12] that it is asymptotically stabilized by the Anscombe
transformation a. Thus, we set f;(-) = a(/l;z (-)).

B. Exact unbiased inverse transformation
The exact unbiased inverse Iff‘ is defined upon (2) as
E(fi@ly) =y a(47%5) P(47%4]y) > E(zlyl =y, 3)
Zi:qi(A;%2i ) eNUI0)

We have IA'~/1 217, with I' I7 [2]. The appendix describes
how to accuralely compute (3) in practice.

C. Binning

It is natural to combine the convex combination (1) with a
linear binning; this can be especially beneficial at the first
iterations, when J;_; is a poor estimate of y. Specifically, a
binning operator B, can be applied to Z;, yielding a smaller
image where each block (i.e. bin) of h; X h; pixels from Z;
is replaced by a single pixel equal to their sum. B, clearly
commutes with (1) and

B, [Zi] = i By, [2] + (1 = A1) By, [Ji1] -
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Algorithm 1 Iterative Poisson Image Denoising via VST

1 Jo=2

2: fori=1to K do

3: z+ (1= 2)%iq
47 ﬁ ('Bh [Zi])

5 Di=®[Z%]

& 3i=81[1}Dy)]

7: end for

8: return § = jx

Algorithm 2 Debinning §; = ;' [Z,(D)]

I: $i0=0

2: for j=1to J do

31y = LD - By, 9141

4 9 =max {0, Fij-1 +Un, [h'zr_,-]}
s

6:

: end for
: return y;

YiJ

Since By, [z] ~ P (B, [v]) = P(E{By,[z]ly}), and modeling
again ;-1 as y, we have that By, [Z;] (resp. A7 B;,,[&,]) is
subject to the same conditional probability of Z; (resp. /11722,-),
which means that the adoption of binning does not interfere
with the subsequent VST, denoising, and inverse VST. Thus,
we can define Z; = f; (B, [Z]) without modifying f; .

Debinning: An inverse binning operator 8, " is applied after
the exact unbiased inversion,

3 = 8, [7}D0)],

returning a full-size image estimate §; such that
By, [9:] = I (D). “
All the above steps are summarized in Algorithm 1 and as

30 = B L@ [ (Bu [z + (1= )3 D] -

IV. IMPLEMENTATION AND RESULTS
For @ we adopt the BM3D denoising algorithm [5]; yet, other
AWGN filters such as [13]-[20] may be used as well, and
also lead to competitive results as shown in the supplementary
material [21].

In the debinning step, to compute B];'[If;l'(Di) B IﬁA‘(D,)
is first divided by h,?. i.e. by number of pixéls in the bin, and
upscaled to the size of z via cubic spline interpolation Uy, . To
enforce the constraint (4), the output of interpolation is recur-
sively binned by Bj, and subtracted from the target Iff'(D,v),
giving a residual which is upsampled and accumulated. This
subroutine, summarized in Algorithm 2, is an instance of the
recursive shaping regularization with nonnegativity [22], [23].

Our current implementation' of Algorithm 1 is determined
by four parameters: K (number of iterations), Ak, hi, hx (first
and last bin sizes); other values of A; and h; are defined as
A l—K—(l—/lK) and h; = max{hg, h—2i+2}. We use

"Matlab software available at http://www.cs.tut.fi/~foi/invansc/
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Table I
PSNR (dB) DENOISING RESULTS VS [2]-[4], [7], WITH AND WITHOUT 3x3 BINNING. AVERAGES OVER 5 NOISE REALIZATIONS. P*IP VALUES FROM [7].

Method Peak | Flagyse Houseyse Camye: Mang > Bridgeyse Saturnyse Peppersyse Boats» Couples;> Hillg,: || Timeyge
NLSPCA [3] 0.1 14.60 17.63 16.63 18.35 16.71 20.45 16.17 18.14 18.49 18.80 89s
NLSPCA bin [3] 15.32 18.66 17.23 18.41 16.99 18.91 16.22 18.89 18.84 19.47 11s
SPDA [4] 13.51 14.58 14.34 - 14.67 17.57 14.34 - - - 8h
SPDA bin [4] 15.27 18.29 16.83 18.72 17.00 21.53 16.15 18.99 18.94 19.39 12min
PP 7] 13.30 18.30 16.88 - 16.45 21.55 16.28 - - - few mins
VST+BM3D [2] 12.38 15.69 15.44 16.95 15.60 18.40 15.15 16.22 16.50 16.79 0.70s
VST+BM3D bin [2] 13.97 18.22 16.99 18.61 16.93 20.09 15.84 18.91 18.62 19.23 0.11s
Proposed 16.01 18.48 17.45 18.96 17.30 21.64 16.45 19.32 1931 19.68 0.48s
NLSPCA [3] 0.2 16.47 18.63 17.63 19.18 17.56 21.36 17.21 19.14 19.22 19.74 90s
NLSPCA bin [3] 15.63 19.21 17.87 19.12 17.40 19.67 16.69 19.48 19.37 19.99 12s
SPDA [4] 16.65 17.45 16.75 - 16.96 20.67 16.70 - - - 5h
SPDA bin [4] 17.41 18.95 17.80 19.73 17.81 22.90 17.25 19.85 19.72 20.36 27min
PP 7] 14.82 19.48 17.82 - 17.54 23.05 17.31 - - - few mins
P4IP bin [7] 17.26 19.96 18.58 - 17.54 23.79 17.44 - - - ~30s
VST+BM3D [2] 13.53 17.79 16.90 18.69 17.12 21.38 16.96 18.23 18.47 18.80 0.69s
VST+BM3D bin [2] 16.85 19.27 17.88 19.82 17.70 2294 17.19 19.79 19.71 20.09 0.12s
Proposed 17.49 19.68 18.40 19.94 18.13 23.13 17.54 20.09 20.03 20.48 0.83s
NLSPCA [3] 0.5 18.61 20.17 19.20 20.59 18.49 22.89 18.69 20.37 20.42 21.14 96s
NLSPCA bin [3] 15.76 2048 18.26 19.77 18.17 21.65 17.69 20.11 20.01 20.67 19s
SPDA [4] 20.02 19.96 18.75 - 18.52 2537 18.55 - - - 4h
SPDA bin [4] 18.40 20.57 18.87 20.70 18.57 25.93 18.52 20.84 20.70 21.35 23min
PP 7] 16.50 20.93 19.27 - 18.47 25.19 18.86 - - - few mins
VST+BM3D [2] 15.58 19.61 18.46 20.39 18.26 23.75 18.41 19.99 20.01 20.74 0.71s
VST+BM3D bin [2] 18.19 21.41 19.47 21.15 18.71 2581 18.78 20.94 20.83 21.72 0.11s
Proposed 18.60 21.54 19.79 21.25 19.08 25.78 19.05 21.19 21.14 21.84 0.83s
NLSPCA [3] 1 19.68 21.57 20.25 21.46 19.02 2475 19.50 21.19 21.14 21.94 86s.
NLSPCA bin [3] 15.77 20.78 18.40 19.87 18.26 22.83 17.78 20.19 20.11 20.82 16s
SPDA [4] 2297 22.14 20.15 - 19.30 27.05 19.97 - - - Sh
SPDA bin [4] 18.99 20.99 19.43 21.15 18.84 27.40 18.93 21.19 20.97 21.50 25min
PP 71 19.07 22.67 20.54 - 19.31 27.05 20.07 - - - few mins
VST+BM3D [2] 18.46 21.64 20.19 21.62 19.43 25.82 19.71 21.47 21.14 21.92 0.78s
VST+BM3D bin [2] 19.28 2253 20.69 22.07 19.59 27.59 20.22 21.97 21.81 2272 0.10s
Proposed 19.74 23.04 21.07 22.30 19.86 2727 20.44 2217 22.08 22.85 0.82s
NLSPCA [3] 2 19.70 23.16 20.64 2237 19.43 26.88 20.48 21.83 2175 22.68 87s
NLSPCA bin [3] 15.52 20.85 18.35 19.87 18.32 21.27 17.78 20.29 20.21 20.98 12s
SPDA [4] 24.72 2437 21.35 - 20.17 29.13 21.18 - - - 6h
SPDA bin [4] 19.26 21.12 19.53 21.66 18.87 28.54 19.17 21.43 21.24 21.94 25min
PAIP 7] 21.04 24.65 21.87 - 20.16 28.93 21.33 - - - few mins
VST+BM3D [2] 20.79 2379 21.97 23.11 20.49 27.95 22.02 22.90 22.65 23.34 0.82s
VST+BM3D bin [2] 19.91 24.10 21.43 23.03 20.36 29.26 2145 22.92 22.84 2375 0.10s
Proposed 21.18 24.62 22.25 23.40 20.69 28.85 21.93 23.30 23.12 23.88 0.82s
NLSPCA [3] 4 20.15 24.26 20.97 2293 20.21 27.99 21.07 22.49 2233 2351 123s
NLSPCA bin [3] 15.52 20.94 18.27 19.88 18.32 22.02 17.72 20.29 20.25 20.99 13s
SPDA [4] 25.76 25.30 21.72 - 20.53 3113 22.20 - - - 8h
SPDA bin [4] 19.42 22.07 19.95 22.18 19.26 29.71 20.19 21.76 21.69 22.82 31min
PAIP (7] 2249 26.33 23.29 - 21.11 30.82 23.88 - - - few mins
VST+BM3D [2] 2293 25.49 23.82 2432 21.51 29.41 24.01 24.16 24.10 24.47 0.74s
VST+BM3D bin [2] 2043 2549 22.22 23.99 21.13 30.87 2257 23.92 23.84 24.69 0.10s
Proposed 2351 26.07 24.10 24.52 21.71 30.38 24.04 24.53 24.34 24.82 1.41s

decreasing h; since binning can cause loss of image details
and it becomes progressively less useful when A; gets larger
and the role of §;_; dominates in improving the SNR of the
VST input. Obviously, 8; and 8]" are identity operators.

The Poisson image z is the only input to our algorithm; the
parameters K, Ak, hi, hx are adaptively selected based on
the quantiles of z, following a training [21] over 6 images
not included in the experiments test dataset; we fix J = 9.

PSNR (dB) results of the proposed algorithm and [2]-[4],
[7], as well as their versions with binning, are reported in
Table I. Table II gives a separate comparison with [8], over
the different dataset of 256x256 downscaled images adopted
by its authors. The tables demonstrate the superior overall
performance of the proposed algorithm, also confirmed by
visual inspection of the examples in Figure 1.

The complexity of Algorithm 1 is dominated by the filter
@ and possibly by the debinning operators B,;l. The overall
execution time depends especially on the number of iterations
K and on hg, which sets the size of the largest image to be
filtered by @; all our results have K <4. Table I and Table 1T
report also the average execution times for 256x256 images.
‘We ran the proposed algorithm and [2]-[4] on a single thread
of a 3.4-GHz Intel i7 CPU; the runtimes for [7], [8] are taken
from the respective articles, where [8] uses a 3.3-GHz Intel i7,
and [7] also uses an Intel i7. The proposed algorithm and [2]
are significantly less expensive than any of the other methods.

V. DISCUSSION AND CONCLUSIONS

We presented an iterative VST framework for Poisson denois-
ing. The iterative combination with a previous estimate refines
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Table 11
PSNR (dB) DENOISING RESULTS VERSUS THOSE REPORTED IN [8]. AVERAGES OVER 5 NOISE REALIZATIONS.
Method Peak | Peppers,sz Bridge,sx Boatys: Coupleys: Hillyse Mandrillysee  Manyse || Time,seo
MMSE est [8]] 20.38 19.55 20.24 20.26 20.98 18.43 20.49 i
Proposed 20.44 19.86 20.65 2047 21.23 18.56 20.50
MMSE est [8]| 2 22.26 20.65 21.28 2122 22.05 18.98 21.60
Proposed 21.93 20.69 21.46 21.40 2232 19.14 21.62
MMSE est [8]] 4 23.92 21.60 2232 2226 2323 19.56 22.79
Proposed 24.04 21.71 22.53 22.52 23.29 19.65 22.75
Table TIT

Original image y NLSPCA (19.18 0.30)  NLSPCA bin (18.31 0.26)

.,. g

Poisson image z (3.49 0.04) SPDA (19.36 0.32) SPDA bin (18.93 0.29)

Proposed (19.81 0.36)

VST+BM3D (19.43 0.34) VST+BM3D bin (19.590.34)

Figure 1. Denoising of Bridge at peak 1. PSNR (dB) and SSIM [24] of §
are given in brackets. For clarity, z is visualized on a compressed range.

the stabilization and helps to cope with extreme low-SNR
cases, in which a standard VST approach [2] underperforms
even when endowed with binning.

To analyze the importance of embedding the VST frame-
work within the iterations, in Table III we compare our results
from Table I with those by a simplified version of Algorithm 1,
where the VST is external to the loop: f; and If’l are replaced
by identity operators and a and If are applied outside of the
algorithm. The significant gain in the table confirms that the
improvement over [2] is not a mere consequence of a better
denoising due to iterative filtering at multiple scales.

Also PYIP [7] relies on iterative AWGN filtering to de-
noise the Poisson z. In contrast to P*IP, which formulates
an optimization problem to be solved upon convergence of
ADMM [25] iterations, each iteration of Algorithm 1 attacks
the Poisson denoising problem directly, so any J can be
treated as an estimate of y, with y; already coinciding with
[2]. This results in a more efficient, stable, and substantially
faster procedure, where @ (e.g., BM3D) is used as explicit
denoiser for AWGN with variance 1 set by the VST without
need of empirical tuning.
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PSNR GAIN (AVERAGE OVER ALL IMAGES IN TABLE I) OF ALGORITHM |
OVER ITS SIMPLIFICATION WITH external VST (SEE SECTION V).

[ Peak I A R A
[ PSNR (@B) gain | 0.64 | 0.66 | 038 | 022 | 0.07 | 0.13 |

The proposed algorithm achieves state-of-the-art quality
in only a tiny fraction of the time required by competitive
algorithms.

APPENDIX: COMPUTING THE EXACT UNBIASED INVERSE
As in [2], we compute E{a(l’zi,)\y} numerically over a finite
grid of values of y and A;, from which we interpolate I/I‘ 3)
at values within the grid range. Outside of the grid range
we leverage the available implementation [2] of the exact
unbiased inverse for Poisson 7. : E{a(/l‘.‘zg“)|y} - /I,TZy,
where ;2 ~ P (A;%y), through the composition

E{a(172)]y} — E{a(?0h} — 4%y =y )

To deal with the first of the three mappings (5), we study
the difference between E{a(/lfzii) y} and Efa(};2{)|y}A For

p~P(u), the mean of a generic g(p) =2+/(p+d)/y is [1], [26]

—o fHurd(y 1 _n
Ele(p) ) = 254 (1 - s+ ©
1 5 3pt4p
F 16 Goray T (urd)” +0( ))
It yields E{a(/l z,)|y when ;1 v, y=a;, d="1 %/l,»,
and E{a(A 2{)|y} when pu=1"2y, y=1, d—> Then
E{a(1;20]} ~Ela(122)]y} = 29y d0(y ). ()

which is however expressed as a function of y, while (5)
requires a function of E{a(1’22)|y}. From (6), we can ap-
proximate large y as

v=(¥E{a(;22)y)) +0(1). ®
On substituting (8) into (7) we obtain
E{a(4720)|y} - Efa(a; z,)|y ©

_ o - oo 4
= "T‘ ( {a(/l,-zzi)‘y +0( {a(/l,-ZZi)|y})
Outside of the grid range we can discard the higher-order terms
from (9) and compute If?"(D,-) using If [2] as

A
LDy = A I7(D; +
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Supplementary to the manuscript
“Variance Stabilization for Noisy+Estimate
Combination in Iterative Poisson Denoising”

Lucio Azzari and Alessandro Foi

SupPL.I. CONVEX COMBINATION AND VARIANCE STABILIZATION
Here we show that the increase of SNR due to the convex combination (Equation 1, in the manuscript) results in a direct
improvement of the stabilization by the Anscombe transformation.
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Figure Suppl.L.1. Effect of convex combination on the data distributions and on the standard deviation of the stabilized data.

The plot at the left in Figure Suppl.I.1 shows the Poisson distributions P(z|y) with mean and variance y = 0.1,0.5,1,1.5,2.
At the right, we show the distributions P(/l:ZZily) (Equation 2 in the manuscript) of the data obtained after the convex
combination with 21=0.2. Note how the convex combination results in a shift of the distributions towards higher mean values
and how the overlap between different distributions is reduced. Because of this reduced overlap, different distribution can
benefit from the different slopes of the Anscombe transformation at the corresponding locations; this leads to a significantly
more accurate stabilization. In particular, in the legends we report the standard deviations of the stabilized distributions, which
for the combined data is much closer to the target value 1.

SUPPL.II. EXPERIMENTS WITH DIFFERENT GAUSSIAN DENOISING FILTERS

Our manuscript reports extensive Poisson denoising results obtained by the proposed iterative VST framework, adopting the
Block-Matching and 3D collaborative filtering (BM3D) algorithm [Suppl.1] as the specific Gaussian denoising filter used inside
the iterations. Here we report the corresponding results obtained upon replacing BM3D by each of the following Gaussian
denoising filters: BM3D with Shape-Adaptive Principal Components Analysis (SAPCA) [Suppl.2], Pointwise Shape-Adaptive
Discrete Cosine Transform filter (SADCT) [Suppl.3], Non-Local Means (NLM) [Suppl.4], Anisotropic Foveated Non-Local
Means (FOVNLM) [Suppl.5], Structure-Adaptive Filtering for Image Restoration (SAFIR) [Suppl.6], Bayesian Least Squares
- Gaussian Scale Mixture (BLSGSM) [Suppl.7], K-SVD algorithm (KSVD) [Suppl.8], Non-Local Means via Smooth Patch
Ordering (NLMPO) [Suppl.9].

Table Suppl.IL.1 and Table Suppl.IL.2 show that the presented framework gives excellent results consistently over these diverse
set of Gaussian denoisers. In fact, most of these results are superior to those by state-of-the-art Poisson filters considered in
Table I and Table II of the manuscript. A few examples are visualized in Figure SuppL.IIL.1.
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TABLE I IN THE MANUSCRIPT.

Table Suppl.IL1
PSNR (dB) DENOISING RESULTS OF THE PROPOSED FRAMEWORK ADOPTING DIFFERENT AWGN DENOISERS. THE NOISY IMAGES ARE THE SAME OF

[Method [Peak [Flagys House,se» Cam,se Mang . Bridge)se Saturnyse  Peppers)se  Boats;» Couples;» Hillg 5
BM3D [Suppl.1] 0.1 16.01 18.48 17.45 18.96 17.30 21.64 16.45 19.32 19.31 19.68
SAPCA [Suppl.2] 15.88 18.02 17.59 18.99 17.25 21.78 16.52 19.35 19.24 19.66
SADCT [Suppl.3] 13.94 18.41 17.42 18.89 17.16 20.62 16.32 19.41 19.21 19.63
NLM [Suppl.4] 13.24 17.94 17.32 18.52 16.73 21.19 15.95 18.79 18.79 19.25
FOVNLM ([Suppl.5] 13.72 18.03 17.51 18.61 16.98 21.40 16.10 19.13 18.91 19.25
SAFIR [Suppl.6] 14.24 18.48 16.97 18.55 16.99 20.73 16.19 19.15 18.90 19.38
BLSGSM [Suppl.7] 13.18 17.72 16.47 18.72 16.89 20.80 16.08 19.06 19.00 19.52
KSVD [Suppl.8] 14.94 18.07 17.03 18.38 16.89 20.55 1591 19.18 18.81 18.94
NLMPO [Suppl.9] 16.12 18.09 17.44 18.67 17.16 21.80 16.26 19.29 19.12 19.40
BM3D [Suppl.1] 0.2 17.49 19.68 18.40 19.94 18.13 23.13 17.54 20.09 20.03 20.48
SAPCA [Suppl.2] 17.35 19.52 18.34 19.88 18.02 23.09 17.60 19.92 19.90 20.32
SADCT [Suppl.3] 15.30 19.41 18.29 19.82 18.00 21.72 17.35 20.16 19.97 20.48
NLM [Suppl.4] 13.89 18.74 17.81 19.32 17.39 22.18 16.86 19.40 19.41 19.91
FOVNLM ([Suppl.5] 14.81 19.00 18.25 19.51 17.60 2293 17.08 19.79 19.62 19.92
SAFIR [Suppl.6] 16.18 19.72 18.16 19.79 17.79 22.54 17.38 19.99 19.82 20.20
BLSGSM [Suppl.7] 14.71 18.76 17.51 19.68 17.81 21.93 17.13 19.91 19.84 20.38
KSVD [Suppl.8] 17.23 18.81 18.14 19.36 17.54 22.28 16.98 19.80 19.59 19.95
NLMPO [Suppl.9] 18.28 19.55 18.27 19.70 17.81 23.44 17.35 19.72 19.78 20.06
BM3D [Suppl.1] 0.5 18.60 21.54 19.79 21.25 19.08 2578 19.05 21.19 21.14 21.84
SAPCA [Suppl.2] 18.46 21.54 19.91 21.26 19.03 2572 1921 21.19 21.08 21.78
SADCT [Suppl.3] 17.01 21.07 19.80 21.18 19.03 23.81 19.01 21.18 21.05 21.82
NLM [Suppl.4] 16.97 20.31 19.41 20.82 18.43 25.37 18.50 20.73 20.57 21.09
FOVNLM [Suppl.5] 17.63 21.01 19.78 21.14 18.71 2553 18.75 20.96 20.76 21.31
SAFIR [Suppl.6] 18.92 21.23 19.59 21.17 18.80 24.98 18.94 21.04 20.93 21.62
BLSGSM [Suppl.7] 16.48 20.42 18.84 20.92 18.80 24.15 18.67 20.96 20.85 21.64
KSVD [Suppl.8] 18.74 21.08 19.71 21.07 18.82 24.87 18.95 21.09 20.87 21.37
NLMPO [Suppl.9] 19.41 21.72 19.90 21.26 18.95 26.16 19.01 21.05 20.94 21.63
BM3D [Suppl.1] 1 19.74 23.04 21.07 22.30 19.86 2727 20.44 22.17 22.08 2285
SAPCA [Suppl.2] 19.54 23.05 2117 22.36 19.86 27.39 20.57 22.28 22.08 2283
SADCT [Suppl.3] 18.44 22.51 20.94 22.20 19.82 2548 20.40 22.06 2197 22.79
NLM [Suppl.4] 17.89 21.50 20.46 21.85 19.33 26.95 19.86 21.56 21.41 22.07
FOVNLM [Suppl.5] 18.93 2230 20.93 22.19 19.54 27.07 20.18 21.88 21.68 22.31
SAFIR [Suppl.6] 20.36 22.90 20.87 22.26 19.65 26.72 20.42 21.94 21.86 22.67
BLSGSM [Suppl.7] 17.53 21.92 19.96 21.93 19.59 25.51 19.98 21.90 21.75 22.62
KSVD [Suppl.8] 20.19 22.26 20.83 22.04 19.67 26.59 20.34 21.90 21.67 22.40
NLMPO [Suppl.9] 20.67 23.07 21.09 2224 19.70 27.87 20.36 21.94 21.81 22.63
BM3D [Suppl.1] 2 2118 24.62 22.25 23.40 20.69 28.85 21.93 23.30 23.12 23.88
SAPCA [Suppl.2] 20.86 24.65 2235 23.46 20.67 29.10 2218 23.38 23.12 23.88
SADCT [Suppl.3] 19.97 23.94 22.02 23.27 20.57 27.20 21.89 23.03 2293
NLM [Suppl.4] 18.89 22.84 21.37 22.85 20.12 28.28 21.22 22.41 2228
FOVNLM ([Suppl.5] 20.30 23.82 21.99 23.20 20.31 28.65 21.66 22.80 2259
SAFIR [Suppl.6] 21.74 24.64 22.17 23.35 20.42 28.66 22.09 23.13 2291
BLSGSM [Suppl.7] 18.47 23.30 21.00 22.93 20.38 27.08 21.16 22.88 2273
KSVD [Suppl.8] 21.49 23.52 21.73 22.92 20.30 28.27 21.52 22.63 2242
NLMPO [Suppl.9] 21.84 24.64 2222 23.21 20.38 29.67 21.82 23.05 2277 3.
BM3D [Suppl.1] 4 2351 26.07 24.10 24.52 21.71 30.38 24.04 2453 24.34 24.82
SAPCA [Suppl.2] 22.85 2577 24.11 24.57 21.69 30.80 24.25 24.52 24.33 24.77
SADCT [Suppl.3] 21.69 25.46 23.66 24.41 21.61 28.96 2391 24.27 24.15 24.82
NLM [Suppl.4] 20.81 23.88 22.79 23.89 21.04 29.10 23.18 23.51 23.28 24.02
FOVNLM [Suppl.5] 21.65 25.07 23.61 24.27 21.28 29.97 23.74 24.08 23.70 24.35
SAFIR [Suppl.6] 23.11 26.38 23.99 24.56 21.48 30.70 24.25 24.46 24.17 24.80
BLSGSM [Suppl.7] 20.16 24.81 22.38 24.06 2141 28.76 2291 24.10 23.89 24.62
KSVD [Suppl.8] 23.58 24.50 2! 24.00 21.22 29.32 23.51 23.85 23.48 24.24
NLMPO [Suppl.9] 2397 26.40 24. 24.38 21.40 3141 24.14 24.37 24.06 24.62

SUPPL.ITI. PARAMETER TRAINING AND ADAPTIVE SELECTION

As mentioned in Section IV of the manuscript, our implementation of the algorithm has four parameters, namely K, Ax, hi,
and hg. We have tested multiple combinations of values for these parameters over a training set of 6 images and for different
peak values. We remark that none of these images has any overlap with the test images in the manuscript. For each peak,
we selected the set of parameter values that yields the highest PSNR average over the training images at that particular peak.
We also compute the 21 uniform 5% quantiles of each noisy image, and model the quantile distribution of a generic training
image at each peak as a 21-dimensional multivariate normal, whose mean and diagonal covariance are given by the sample
means and by the sample variances of the 21 quantiles over all training images at that peak. Thus, for each peak, we have
a set of four selected parameter values, and the sample means and sample variances of the image quantiles at that peak. All
these data, for all peaks, are stored in a look-up table. Our idea is to leverage the quantile distribution as a proxy for the peak,
from which to identify an appropriate set of parameter values for any given input image not found in the training set.
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Table Suppl.I1.2

i

PSNR (dB) DENOISING RESULTS OF THE PROPOSED FRAMEWORK ADOPTING DIFFERENT AWGN DENOISERS. THE NOISY IMAGES ARE THE SAME OF

TABLE II IN THE ORIGINAL MANUSCRIPT.

[Method

[ Peak [ Peppersysqz  Bridge,sx Boalysx  Couple,se Hill,se Mandrillyse Man,seo |
BM3D [Suppl.1] 0.1 16.45 17.30 17.91 17.86 18.43 16.84 17.21
SAPCA [Suppl.2] 16.52 17.25 17.75 17.91 18.48 16.60 17.23
SADCT [Suppl.3] 16.32 17.16 17.75 17.73 18.21 16.87 17.15
NLM [Suppl.4] 15.95 16.73 17.33 17.52 17.95 16.63 16.83
FOVNLM ([Suppl.5] 16.10 16.98 17.59 17.57 18.04 16.47 16.92
SAFIR [Suppl.6] 16.19 16.99 17.65 17.36 18.05 16.71 16.80
BLSGSM [Suppl.7] 16.08 16.89 17.16 17.60 17.78 16.66 16.83
KSVD [Suppl.8] 1591 16.89 17.40 17.34 17.37 16.67 16.65
NLMPO [Suppl.9] 16.26 17.16 17.65 17.45 18.12 16.62 17.07
BM3D [Suppl.1] 02 17.54 18.13 18.74 18.62 19.16 17.36 18.17
SAPCA [Suppl.2] 17.60 18.02 18.64 18.53 19.10 17.23 18.19
SADCT [Suppl.3] 17.35 18.00 18.64 18.46 19.04 17.44 18.10
NLM [Suppl.4] 16.86 17.39 17.92 18.13 18.64 17.22 17.69
FOVNLM [Suppl.5] 17.08 17.60 18.27 18.20 18.60 17.13 17.78
SAFIR [Suppl.6] 17.38 17.79 18.41 18.25 18.89 17.32 17.84
BLSGSM [Suppl.7] 17.13 17.81 18.17 18.34 18.85 17.15 17.86
KSVD [Suppl.8] 16.98 17.54 18.36 18.08 18.42 17.17 17.62
NLMPO [Suppl.9] 17.35 17.81 18.64 18.30 18.90 17.38 17.91
BM3D [Suppl.1] 0.5 19.05 19.08 19.80 19.65 20.40 18.08 19.48
SAPCA [Suppl.2] 19.21 19.03 19.75 19.63 20.35 18.05 19.54
SADCT [Suppl.3] 19.01 19.03 19.83 19.50 20.29 18.09 19.45
NLM [Suppl.4] 18.50 18.43 19.29 19.18 19.73 17.89 18.99
FOVNLM [Suppl.5] 18.75 18.71 19.60 19.37 19.90 17.94 19.27
SAFIR [Suppl.6] 18.94 18.80 19.59 19.26 20.06 18.04 19.17
BLSGSM [Suppl.7] 18.67 18.80 19.33 19.33 19.94 17.90 19.21
KSVD [Suppl.8] 18.95 18.82 19.72 19.39 19.88 17.91 19.25
NLMPO [Suppl.9] 19.01 18.95 19.77 19.51 20.23 18.05 19.38
BM3D [Suppl.1] 1 20.44 19.86 20.65 2047 21.23 18.56 20.50
SAPCA [Suppl.2] 20.57 19.86 20.65 20.43 21.21 18.53 20.56
SADCT [Suppl.3] 20.40 19.82 20.61 20.35 21.19 18.55 20.45
NLM [Suppl.4] 19.86 19.33 20.13 19.96 20.63 18.39 20.02
FOVNLM [Suppl.5] 20.18 19.54 2043 20.20 20.80 18.48 20.34
SAFIR [Suppl.6] 20.42 19.65 20.44 20.20 20.88 18.51 20.28
BLSGSM [Suppl.7] 19.98 19.59 20.31 20.16 21.02 18.41 20.19
KSVD [Suppl.8] 20.34 19.67 20.50 20.22 20.86 18.42 20.25
NLMPO [Suppl.9] 20.36 19.70 20.50 20.26 21.05 18.50 20.40
BM3D [Suppl.1] 2 21.93 20.69 21.46 21.40 22.32 19.14 21.62
SAPCA [Suppl.2] 2218 20.67 21.46 21.35 22.28 19.13 21.69
SADCT [Suppl.3] 21.89 20.57 21.39 21.25 2221 19.10 21.53
NLM [Suppl.4] 21.22 20.12 20.95 20.78 21.57 18.95 21.13
FOVNLM [Suppl.5] 21.66 20.31 21.21 21.03 21.81 19.09 21.50
SAFIR [Suppl.6] 22.09 20.42 21.26 21.09 22.08 19.05 21.49
BLSGSM [Suppl.7] 21.16 20.38 21.13 21.04 22.05 19.03 21.25
KSVD [Suppl.8] 21.52 20.30 21.14 20.90 21.78 18.99 21.17
NLMPO [Suppl.9] 21.82 20.38 21.23 21.00 2201 19.01 21.38
BM3D [Suppl.1] 4 24.04 21.71 2253 22.52 23.29 19.65 2275
SAPCA [Suppl.2] 24.25 21.69 22.59 22.50 2323 19.68 22.82
SADCT [Suppl.3] 2391 21.61 22.38 22.36 23.20 19.62 22.67
NLM [Suppl.4] 23.18 21.04 21.85 21.79 22.51 19.45 22.30
FOVNLM [Suppl.5] 23.74 21.28 22.20 22.08 22.71 19.60 22.65
SAFIR [Suppl.6] 24.25 21.48 22.32 22.30 23.10 19.51 22.71
BLSGSM [Suppl.7] 2291 21.41 22.17 2213 23.00 19.64 2232
KSVD [Suppl.8] 23.51 21.22 22.10 21.92 22.61 19.46 22.32
NLMPO [Suppl.9] 24.14 21.40 22.39 22.21 23.00 19.46 22.55

Therefore, our denoising algorithm, given an input unknown noisy Poisson image, proceeds as follows in order to decide the
values for the four parameters. First, it computes the input image’s 5% quantiles. Next, it compares them against the look-up
table: specifically, it computes the likelihoods that the quantiles of the input image belong to the quantile distributions measured
in the training for each peak. Finally, each of the four parameters is computed as the weighted average of the parameters in
the look-up table, using the above likelihoods as weights over all training peaks.

‘We emphasize that using the look-up table or computing the quantiles is computationally inexpensive and particularly it is

insignificant when compared to other parts of the denoising process.

[Suppl.1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Transactions
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