110 research outputs found

    Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

    Get PDF
    This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images

    10411 Abstracts Collection -- Computational Video

    Get PDF
    From 10.10.2010 to 15.10.2010, the Dagstuhl Seminar 10411 ``Computational Video \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Nephroblastoma in MRI Data

    Get PDF
    The main objective of this work is the mathematical analysis of nephroblastoma in MRI sequences. At the beginning we provide two different datasets for segmentation and classification. Based on the first dataset, we analyze the current clinical practice regarding therapy planning on the basis of annotations of a single radiologist. We can show with our benchmark that this approach is not optimal and that there may be significant differences between human annotators and even radiologists. In addition, we demonstrate that the approximation of the tumor shape currently used is too coarse granular and thus prone to errors. We address this problem and develop a method for interactive segmentation that allows an intuitive and accurate annotation of the tumor. While the first part of this thesis is mainly concerned with the segmentation of Wilms’ tumors, the second part deals with the reliability of diagnosis and the planning of the course of therapy. The second data set we compiled allows us to develop a method that dramatically improves the differential diagnosis between nephroblastoma and its precursor lesion nephroblastomatosis. Finally, we can show that even the standard MRI modality for Wilms’ tumors is sufficient to estimate the developmental tendencies of nephroblastoma under chemotherapy

    Estimating Appearance Models for Image Segmentation via Tensor Factorization

    Full text link
    Image Segmentation is one of the core tasks in Computer Vision and solving it often depends on modeling the image appearance data via the color distributions of each it its constituent regions. Whereas many segmentation algorithms handle the appearance models dependence using alternation or implicit methods, we propose here a new approach to directly estimate them from the image without prior information on the underlying segmentation. Our method uses local high order color statistics from the image as an input to tensor factorization-based estimator for latent variable models. This approach is able to estimate models in multiregion images and automatically output the regions proportions without prior user interaction, overcoming the drawbacks from a prior attempt to this problem. We also demonstrate the performance of our proposed method in many challenging synthetic and real imaging scenarios and show that it leads to an efficient segmentation algorithm
    • …
    corecore