9 research outputs found

    Half-tapering strategy for conditional simulation with large datasets

    Full text link
    Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (Half-Taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.Comment: 39 pages, 2 Tables and 11 Figure

    New Developments in Covariance Modeling and Coregionalization for the Study and Simulation of Natural Phenomena

    Get PDF
    RÉSUMÉ La gĂ©ostatistique s’intĂ©resse Ă  la modĂ©lisation des phĂ©nomĂšnes naturels par des champs alĂ©atoires univariables ou multivariables. La plupart des applications utilisent un modĂšle stationnaire pour reprĂ©senter le phĂ©nomĂšne Ă©tudiĂ©. Il est maintenant reconnu que ce modĂšle n’est pas assez flexible pour reprĂ©senter adĂ©quatement un phĂ©nomĂšne naturel montrant des comportements qui varient considĂ©rablement dans l’espace (un exemple simple de cette hĂ©tĂ©rogĂ©nĂ©itĂ© est le problĂšme de l’estimation de l’épaisseur du mort-terrain en prĂ©sence d’affleurements). Pour le cas univariable, quelques modĂšles non-stationnaires ont Ă©tĂ© dĂ©veloppĂ©s rĂ©cemment. Toutefois, ces modĂšles n’ont pas un support compact, ce qui limite leur domaine d’application. Il y a un rĂ©el besoin d’enrichir la classe des modĂšles non-stationnaires univariable, le premier objectif poursuivi par cette thĂšse.----------ABSTRACT Geostatistics focus on modeling natural phenomena by univariate or multivariate spatial random fields. Most applications rely on the choice of a stationary model to represent the studied phenomenon. It is now acknowledged that this model is not flexible enough to adequately represent a natural phenomenon showing behaviors that vary substantially in space (a simple example of such heterogeneity is the problem of estimating overburden thickness in the presence of outcrops). For the univariate case, a few non-stationary models were developed recently. However, these models do not have compact support, which limits in practice their range of application. There is a definite need to enlarge the class of univariate non-stationary models, a first goal pursued by this thesis

    Multivariate Mat\'ern Models -- A Spectral Approach

    Full text link
    The classical Mat\'ern model has been a staple in spatial statistics. Novel data-rich applications in environmental and physical sciences, however, call for new, flexible vector-valued spatial and space-time models. Therefore, the extension of the classical Mat\'ern model has been a problem of active theoretical and methodological interest. In this paper, we offer a new perspective to extending the Mat\'ern covariance model to the vector-valued setting. We adopt a spectral, stochastic integral approach, which allows us to address challenging issues on the validity of the covariance structure and at the same time to obtain new, flexible, and interpretable models. In particular, our multivariate extensions of the Mat\'ern model allow for time-irreversible or, more generally, asymmetric covariance structures. Moreover, the spectral approach provides an essentially complete flexibility in modeling the local structure of the process. We establish closed-form representations of the cross-covariances when available, compare them with existing models, simulate Gaussian instances of these new processes, and demonstrate estimation of the model's parameters through maximum likelihood. An application of the new class of multivariate Mat\'ern models to environmental data indicate their success in capturing inherent covariance-asymmetry phenomena

    Spatial interpolation

    Get PDF
    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are presented.Sampling strategies for collecting spatial data (both the number of observations and their location in the region to be studied) are discussed. It is shown that nested sampling is unsuitable if data are to be collected in an area in order to determine the spatial semivariogram, because semivariogram values for only a few distances are obtained. Furthermore, grid sampling is preferable to nested sampling if spatial interpolation is intended. Sequential sampling is advantegeous if the mean of a variable within an area is to be estimated and there is no spatial correlation. Sequential sampling requires only about 30% of the number of observations required by standard sampling schemes.In this thesis universal kriging and cokriging (that is kriging and cokriging in the presence of a trend) are formulated in terms of regression procedures. Universal kriging is a special case of universal cokriging. Multivariate increments are extensions of univariate increments and of multivariate stationary variables. Conditions are formulated which permissible polynomial pseudo-covariance and pseudo- crosscovariance functions describing the spatial structure of the variables (or their increments) and their interaction, respectively, have to obey. The coefficients of these functions have been estimated by using the restricted maximum likelihood (REML) method. A practical application of universal cokriging is described.The application of spatial interpolation in soil science is examined. One of the studies described investigates the problems of scale and the use of soil survey information on moisture deficits caused by groundwater extraction in the Mander area in the Netherlands. In another study the available water and the infiltration rates on terraces of the Allier river in the Limagne area in France are investigated. Cokriging becomes more precise as compared to kriging (and there is a concomitant reduction in costs) if the predictand is strongly correlated with the covariable. This is particularly true if the sampling of the covariable is denser than that of the predictand and the costs of sampling of the covariable are much less than those of sampling the predictand. Stratification of the survey area, e.g. by means of soil map delineations increases the precision of predictions when applying cokriging. An obvious gain in precision is achieved for homogeneous soil units, where the measured values are relatively small, and there is no spatial structure. Also, the use of cokriging permits fewer observations as compared to kriging, if a certain predescribed precision of predictions is defined. When simulation calculation models are used, e.g. to obtain values for moisture deficits, one should first calculate model results for every observation point, and then interpolate, rather than interpolate the input variables, and then calculate model results.</TT

    Caractérisation stochastique des hétérogénéités hydrostratigraphiques appliquée à la modélisation hydrogéologique régionale

    Get PDF
    RĂ©sumĂ© L’une des principales sources d’incertitude des modĂšles hydrogĂ©ologiques porte sur les hĂ©tĂ©rogĂ©nĂ©itĂ©s hydrostratigraphiques. Ces derniĂšres jouent un rĂŽle majeur sur l’écoulement de l’eau souterraine et le transport des contaminants. Pourtant la caractĂ©risation hydrogĂ©ologique inclut trĂšs rarement l’évaluation de l’effet de l’incertitude des hĂ©tĂ©rogĂ©nĂ©itĂ©s. Cette situation s’explique en partie par la difficultĂ© Ă  reproduire, de maniĂšre satisfaisante, ces caractĂ©ristiques physiques en modĂšles Ă©quivalents. Peu ou pas de mĂ©thodologie complĂšte et efficace permet d’effectuer la modĂ©lisation hydrogĂ©ologique rĂ©gionale dans un cadre stochastique tout en quantifiant l’incertitude des hĂ©tĂ©rogĂ©nĂ©itĂ©s inter et intra unitĂ©s. La difficultĂ© de simuler efficacement les hĂ©tĂ©rogĂ©nĂ©itĂ©s inter unitĂ©s de ce type de contexte est un frein Ă  la modĂ©lisation hydrogĂ©ologique stochastique rĂ©gionale. Également, la difficultĂ© associĂ©e Ă  la paramĂ©trisation stochastique rĂ©gionale intra unitĂ©s (conductivitĂ© hydraulique ou K ) de ces modĂšles reprĂ©sente aussi un obstacle. Ces difficultĂ©s constituent une problĂ©matique majeure quand vient le besoin de quantifier adĂ©quatement l’incertitude des modĂšles. Les mĂ©thodes de simulation gĂ©ostatistique moderne, telles que la mĂ©thode plurigaussienne et multipoint, permettent de produire des modĂšles Ă©quivalents des hĂ©tĂ©rogĂ©nĂ©itĂ©s inter unitĂ©s, appelĂ©s rĂ©alisations. MalgrĂ© leurs rĂ©cents dĂ©veloppements, ces mĂ©thodes conservent diffĂ©rentes lacunes telles que le manque de rĂ©alisme gĂ©ologique dans certains contextes. Par exemple, la mĂ©thode plurigaussienne ne peut facilement incorporer des transitions asymĂ©triques entre unitĂ©s, de mĂȘme que la mĂ©thode multipoint qui Ă©prouve aussi des difficultĂ©s avec la non- stationnaritĂ© ainsi que les forts contrastes d’épaisseurs. Par contre, la mĂ©thode MCP peut s’affranchir de ces difficultĂ©s notamment grĂące au transiogramme et sa propriĂ©tĂ© de forçage 0/1 des probabilitĂ©s. Les hĂ©tĂ©rogĂ©nĂ©itĂ©s intra unitĂ©s des modĂšles hydrogĂ©ologiques sont dĂ©finies Ă  partir des don- nĂ©es de K scalaire Ă  une Ă©chelle locale. Cette Ă©chelle n’est gĂ©nĂ©ralement pas reprĂ©sentative de la taille des Ă©lĂ©ments d’un modĂšle hydrogĂ©ologique rĂ©gional. La caractĂ©risation stochastique de la K Ă©quivalente (tenseur-K ) Ă  l’échelle de l’élĂ©ment est un dĂ©fi en soi. Elle nĂ©cessite plu- sieurs Ă©tapes incluant des contraintes Ă  respecter dont la prĂ©servation de la structure spatiale et la contrainte d’inĂ©galitĂ© Kverticale ≀ Khorizontale des tenseurs ainsi que les corrĂ©lations inter composantes. À cela s’ajoute, la mise Ă  l’échelle de la K qui tient compte de l’effet des hĂ©tĂ©rogĂ©nĂ©itĂ©s locale rĂ©gionalisĂ©e, la rĂ©gionalisation des composantes corrĂ©lĂ©es des tenseurs-K des diffĂ©rentes unitĂ©s ainsi que leur calage avec les variables d’état (p. ex. charge hydraulique) dans un contexte multivariable contraint. Une mĂ©thodologie complĂšte devrait Ă©galement fournir des rĂ©alisations significativement diffĂ©rentes afin de quantifier adĂ©quatement l’incertitude associĂ©e aux tenseurs-K. L’objectif gĂ©nĂ©ral de la thĂšse consiste Ă  dĂ©velopper une dĂ©marche complĂšte de caractĂ©risation stochastique de l’incertitude des hĂ©tĂ©rogĂ©nĂ©itĂ©s inter et intra unitĂ©s hydrostratigraphiques appliquĂ©es Ă  la modĂ©lisation hydrogĂ©ologique rĂ©gionale. Plus spĂ©cifiquement, la thĂšse vise Ă  dĂ©velopper une mĂ©thodologie de simulation gĂ©ostatistique des unitĂ©s hydrostratigraphiques (UHS) afin de fournir des modĂšles Ă©quivalents d’aspect rĂ©aliste pour un contexte de sĂ©dimentation directionnelle (asymĂ©trie) et Ă  dĂ©velopper une mĂ©thodologie de caractĂ©risation stochastique, de mise Ă  l’échelle et de calage des tenseurs-K Ă©quivalents Ă  partir de la K scalaire tout en prĂ©servant la structure spatiale des tenseurs, la contrainte d’inĂ©galitĂ© ainsi que les corrĂ©lations inter composantes. La mĂ©thodologie globale s’oriente autour de trois Ă©tapes principales : i) la compilation et la prĂ©paration des donnĂ©es, ii) la simulation de modĂšles hydrostratigraphiques directionnels et iii) la caractĂ©risation stochastique des tenseurs-K. La premiĂšre Ă©tape a portĂ© sur la compilation et le traitement des donnĂ©es (hydrostratigraphie et K) pour les dĂ©veloppements mĂ©thodologiques et les diffĂ©rents tests mĂ©thodologiques appliquĂ©s sur le sous-bassin Innisfil Creek (comtĂ© de Simcoe, Ontario). La deuxiĂšme Ă©tape est basĂ©e sur le dĂ©veloppement d’une dĂ©marche de simulation par la mĂ©thode MCP afin de gĂ©nĂ©rer des modĂšles Ă©quivalents dans un contexte hydrostratigraphique 3D complexe dont la sĂ©quence des unitĂ©s est ordonnĂ©e verticalement. La mĂ©thodologie proposĂ©e inclut l’estimation des probabilitĂ©s bivariables par transformĂ©e de Fourier Ă  partir du modĂšle dĂ©terministe et des critĂšres de qualitĂ© de simulation. La mĂ©thode est testĂ©e pour montrer sa capacitĂ© Ă  quantifier la variabilitĂ© locale de la solution et son incertitude. La troisiĂšme Ă©tape fournit une mĂ©thodologie complĂšte de caractĂ©risation stochastique des hĂ©tĂ©rogĂ©nĂ©itĂ©s intra UHS qui inclut : la mise Ă  l’échelle d’hĂ©tĂ©rogĂ©nĂ©itĂ©s locales (K) en tenseur-K Ă©quivalent, l’utilisation du modĂšle linĂ©aire de corĂ©gionalisation pour la simulation des composantes des tenseurs-K Ă©quiprobables, la prĂ©servation des corrĂ©lations entre les composantes des tenseurs-K par nouvelle transformation gaussienne bivariĂ©e et l’utilisation de la mĂ©thode de dĂ©formation graduelle (GDM) pour caler les tenseurs-K en fonction des observations de charge hydraulique. Les rĂ©sultats montrent la capacitĂ© de la mĂ©thode MCP Ă  simuler efficacement un contexte hydrostratigraphique rĂ©gional 3D complexe avec de multiples unitĂ©s. De plus, les rĂ©sultats montrent la capacitĂ© de la mĂ©thode Ă  reproduire l’ordination verticale des unitĂ©s et tout ça malgrĂ© la forte hypothĂšse d’indĂ©pendance conditionnelle. Les rĂ©sultats des simulations conditionnelles et non conditionnelles pour le cas synthĂ©tique montrent clairement l’absence de tout biais substantiel. Dans l’exemple plus complexe du contexte rĂ©el, le biais est moins important pour le cas non conditionnel et pour l’échantillonnage alĂ©atoire des donnĂ©es que pour le biais observĂ© dans les donnĂ©es dĂ» Ă  l’échantillonnage prĂ©fĂ©rentiel. La surreprĂ©sentation de donnĂ©es conditionnantes n’a pas d’impact significatif sur les proportions moyennes simulĂ©es mais l’ajout de donnĂ©es supplĂ©mentaires rĂ©duit la variabilitĂ©. Soulignons que la mĂ©thode MCP fournit de bons rĂ©sultats malgrĂ© une image d’entraĂźnement fortement non stationnaire. Avec une autre mĂ©thode (PGS ou MPS), rien n’aurait garanti un tel succĂšs dans le contexte Ă©tudiĂ©. Les rĂ©sultats de la mĂ©thodologie de caractĂ©risation de la K montrent que la nouvelle mĂ©thode proposĂ©e fournit des modĂšles Ă©quivalents calĂ©s des tenseurs-K. La mĂ©thode de mise Ă  l’échelle de la K scalaire en tenseur-K Ă©quivalent tient compte de la structure des hĂ©tĂ©rogĂ©nĂ©itĂ©s locales et des propriĂ©tĂ©s statistiques de chacune des UHS. La rĂ©gionalisation des composantes des tenseurs-K effectuĂ©e par simulation gĂ©ostatistique Ă  partir de modĂšles linĂ©aires de corĂ©gionalisation (LCM) rend le temps de calcul raisonnable. La simulation reproduit aussi, pour chacune des unitĂ©s, les caractĂ©ristiques statistiques des diffĂ©rentes composantes de K. Pour rĂ©tablir les corrĂ©lations non linĂ©aires des tenseurs-K non-gaussiens ainsi que les histogrammes des composantes souhaitĂ©s, une nouvelle transformation bivariĂ©e est appliquĂ©e sur les rĂ©alisations. Les rĂ©sultats du calage des tenseurs-K montrent que la mĂ©thode des dĂ©formations graduelles permet le calage multivariable contraint tout en prĂ©servant la covariance spatiale et croisĂ©e de UHS. Il a Ă©tĂ© dĂ©montrĂ© que la mĂ©thode conserve les relations non linĂ©aires entre les composantes du tenseur-K grĂące Ă  l’intĂ©gration de la transformation bivariĂ©e. L’approche proposĂ©e a ainsi permis de prĂ©server les propriĂ©tĂ©s spatiales des tenseurs ainsi que les relations entre les composantes. Les rĂ©sultats dĂ©montrent que la GDM s’applique Ă  un contexte multivariable contraint et pas seulement au contexte univariable. Soulignons que les inversions convergent rapidement en termes du nombre d’itĂ©rations grĂące Ă  l’optimisation du paramĂštre de dĂ©formation de la GDM. Il a aussi Ă©tĂ© montrĂ© que la mĂ©thode permet de caler la recharge sĂ©parĂ©ment ou simultanĂ©ment avec les tenseurs-K. Les exemples de calage montrent qu’il est avantageux d’inclure la recharge stochastique dans l’inversion. Par ailleurs, il a Ă©tĂ© observĂ© qu’un nombre Ă©levĂ© d’observations de charge n’amĂ©liore pas significativement les rĂ©sultats. Une comparaison, portant sur la dĂ©finition de zones de captage autour de deux puits de pompage, entre la mĂ©thode GDM proposĂ©e et la mĂ©thode d’inversion PEST montrent des tenseurs-K gĂ©ologiquement plus rĂ©alistes avec GDM que ceux obtenus avec PEST. L’ensemble des rĂ©sultats permet de conclure que la mĂ©thode MCP simule efficacement un contexte rĂ©gional complexe d’une succession stratigraphique directionnelle d’un bassin sĂ©dimentaire glaciaire. La mĂ©thode prend efficacement en charge la forte non-stationnaritĂ© spatiale des unitĂ©s ainsi que d’imposantes contraintes comme la dĂ©position verticale ordonnĂ©e en tenant compte de l’asymĂ©trie stratigraphique Ă  partir des probabilitĂ©s de transition entre les unitĂ©s. La mĂ©thode MCP s’est rĂ©vĂ©lĂ©e sans biais dans le cas non conditionnel. La mĂ©thodologie proposĂ©e de caractĂ©risation des tenseurs-K permet le calage individuel ou simultanĂ© des tenseurs-K de diffĂ©rentes UHS et/ou de recharge. La mĂ©thodologie inclut une mise Ă  l’échelle des conductivitĂ©s hydrauliques quasi ponctuelles vers un tenseur Ă©quivalent en tenant compte de la structure spatiale Ă  l’échelle locale. Bien que la mise Ă  l’échelle soit intensive en temps de calcul, il a Ă©tĂ© dĂ©montrĂ© qu’il est possible de limiter au minimum le nombre d’élĂ©ments Ă  mettre Ă  l’échelle grĂące Ă  la rĂ©gionalisation des tenseurs-K par simulation gĂ©ostatistique. La thĂšse a apportĂ© quelques contributions originales. D’abord, il s’agit d’une premiĂšre appli- cation de la mĂ©thode MCP pour la simulation 3D. À ma connaissance, aucune autre mĂ©thode de simulation stochastique ne semble ĂȘtre en mesure de solutionner avec autant de satisfaction un contexte hydrostratigraphique complexe 3D comme celui du comtĂ© de Simcoe. La mĂ©thode des dĂ©formations graduelles permet le calage efficace des composantes des tenseurs- K avec prĂ©servation des corrĂ©lations non linĂ©aires des composantes et de leurs fonctions de covariance. À ma connaissance, il s’agit de la premiĂšre approche utilisant la GDM pour un contexte multivariable avec contraintes. Enfin, cette thĂšse contribue Ă  l’avancement des connaissances et des techniques de la caractĂ©risation stochastique des hĂ©tĂ©rogĂ©nĂ©itĂ©s inter et intra hydrostratigraphiques. Dans une plus grande perspective, la thĂšse contribue Ă  fournir des outils adaptĂ©s pour mieux quantifier l’incertitude associĂ©e aux hĂ©tĂ©rogĂ©nĂ©itĂ©s prĂ©sente dans les modĂšles hydrogĂ©ologiques rĂ©gionaux. ---------- Abstract One of the main sources of uncertainty in hydrogeological models relates to hydrostrati- graphic heterogeneities. They play a major role in quantification of groundwater dynamics and mass transport. Yet hydrogeological characterization rarely includes the assessment of the effect of uncertainty and spatial variability of hydrostratigraphic units and hydrogeologic parameters. This is partly explained by the difficulty of reproducing these physical charac- teristics satisfactorily in equivalent models. There is at present little or no comprehensive and efficient methodology that allows regional hydrogeological modelling to be carried out in a stochastic framework while quantifying the uncertainty of inter- and intra-unit hetero- geneities. The difficulty to effectively simulate inter-unit heterogeneities under such condi- tions is a hindrance to stochastic regional hydrogeological modelling. As well, the difficulty associated with the regional stochastic intra-unit parameterization (hydraulic conductivity or K ) of these models further aggravates the problem. These difficulties constitute a major issue when it comes to the need to adequately quantify model uncertainty. Modern geostatistical simulation methods, such as plurigaussian and multipoint simulations, make it possible to produce equivalent models of inter-unit heterogeneities, referred to as realizations. Despite their recent developments, these methods retain various shortcomings such as the lack of geological rigour in certain settings. For example, the plurigaussian method cannot easily incorporate asymmetrical transitions between units, whereas the multipoint method has dif- ficulties with non-stationarity and strong thickness contrasts. On the other hand, the MCP (Markov-type categorical prediction) method has the capacity to overcome these difficulties thanks to the transiogram and its 0/1 probability forcing property. The intra-unit heterogeneities of the hydrogeological models are defined from scalar K data at a local scale. This scale is generally not representative of the size of the elements used in regional hydrogeological models. Stochastic characterization of the equivalent K (K -tensor) at the element scale is a challenge in itself. It requires several steps including constraints to be respected such as the preservation of the spatial structure, the natural constraint Kvertical ≀ Khorizontal, and the inter-component correlations. In addition, the upscaling of K takes into account the effect of local heterogeneities, the regionalization of the correlated components of the K -tensors of the different units and their calibration with state variables (e.g., hydraulic head) in a constrained multivariate context. A comprehensive methodology should also provide significantly different realizations in order to adequately quantify the uncertainty associated with the K -tensors. The general objective of this thesis is to develop a comprehensive approach to stochastic characterization of the uncertainty of inter- and intra-hydrostratigraphic unit heterogeneities applied to regional hydrogeological modelling. More specifically, the thesis aims to develop a methodology for geostatistical simulation of hydrostratigraphic units (HSU) in order to provide equivalent models of realistic appearance for a directional sedimentation context (asymmetry) and to develop a methodology for stochastic characterization, upscaling and calibration of equivalent K -tensors from the scalar K while preserving the spatial structure of the tensors, the inequality constraint as well as the inter-component correlations. The overall approach revolves around three main steps: (i) data compilation and preparation, (ii) simulation of directional hydrostratigraphic models, and (iii) stochastic characterization of K -tensors. The first step focuses on data compilation and processing (hydrostratigraphy and K ) for methodological developments and various methodological tests applied to the Innisfil Creek sub-watershed (Simcoe County, Ontario). The second stage is based on the development of a simulation approach using the MCP method to generate equivalent models in a complex 3D hydrostratigraphic context with a vertically ordered sequence of units. The proposed methodology includes the estimation of bivariate probabilities by Fourier transform from the deterministic model and the simulation quality criteria. The method is tested to show its ability to quantify the local variability of the solution and its uncertainty. The third step provides a complete methodology for stochastic characterization of intra-HSU heterogeneities which includes: upscaling of local heterogeneities (K ) into equivalent K - tensors, use of the linear co-regionalization model for simulation of equiprobable K -tensor components, preservation of correlations between K -tensor components by new bivariate Gaussian transformation and use of the Gradual Deformation Method (GDM) to calibrate the K -tensors according to hydraulic head observations. The results show the ability of the MCP method to effectively simulate a complex 3D regional hydrostratigraphic with multiple units. Furthermore, the results show the ability of the method to reproduce the vertical ordering of the units, despite the strong assumption of conditional independence. The results of the conditional and unconditional simulations for the synthetic case clearly show the absence of any substantial bias. In the more complex example of field hydrogeological settings, the bias is less important in the unconditional case and in the random sampling case than the bias observed in the data due to preferential sampling. Over-representation of conditioned data does not have a significant impact on the mean simulated proportions, but the addition of supplementary data reduces variability. The MCP method provides good results despite a highly non-stationary training image. With another method (PGS or MPS), nothing would have guaranteed such success in the studied context. The results of the K characterization methodology show that the presented original method provides equivalent calibrated models of the K -tensors. The scalar K upscaling method to equivalent K -tensor takes into account the structure of local heterogeneities and the sta- tistical properties of each of the HSU. The regionalization of the K -tensor components by geostatistical simulation using Linear Co-Regionalization Models (LCMs) keeps the compu- tation time reasonable. The simulation also reproduces, for each of the units, the statistical characteristics of the different K components. To restore the non-linear correlations of the non-Gaussian K -tensors as well as the histograms of the desired components, a new bivariate transformation is applied to the realizations. The results of the calibration of the K -tensors show that the method of gradual deformations allows the multivariate constrained calibration while preserving the spatial and cross-covariance of HSU. The method has been shown to preserve the non-linear relationships between the K -tensor components through the integra- tion of the bivariate transformation. The proposed approach has thus preserved the spatial properties of the tensors and the relationships between the components. The results show that the GDM applies to a constrained multivariate context and not only to the univariate context. It should be noted that the inversions converge rapidly in terms of the number of iterations thanks to the optimization of the deformation parameter of the GDM. It has also been shown that the method allows to set the recharge separately or simultaneously with the K -tensors. The calibration examples show that it is advantageous to include stochastic recharge in the inversion. It has also been observed that a high number of head observations does not significantly improve the results. A comparison of the definition of capture zones around two pumping wells between the proposed GDM method and the PEST inversion method shows geologically more realistic K -tensors with GDM than those obtained with PEST. The overall results suggest that the LCM method effectively simulates a complex regional context of a directional stratigraphic succession in a glacial sedimentary basin. The method effectively supports the strong spatial non-stationarity of the units as well as imposing con- straints such as ordered vertical deposition by taking into account stratigraphic asymmetry from the transition probabilities between the units. The MCP method proved to be unbiased in the unconditional case. The proposed K -tensor characterization methodology allows in- dividual or simultaneous calibration of K -tensors from different HSU and/or recharge units. The methodology includes an upscaling of quasi-point hydraulic conductivities to an equiva- lent tensor taking into account the spatial structure at the local scale. Although the upscaling is computationally intensive, it has been shown that it is possible to minimize the number of elements to be scaled by regionalizing the K -tensors by geostatistical simulation. The thesis provided substantial original contributions. This is a first application of the MCP method for 3D simulations. To the author’s knowledge, no other stochastic simulation method seems to be able to solve as satisfactorily a 3D hydrostratigraphic context as complex as that of Simcoe County. The gradual deformation method allows for efficient calibration of the K - tensor components while preserving the non-linear correlations of the components and their covariance functions. To the author’s knowledge, this is also the first time where GDM has been used in a multivariate context with constraints. Finally, this thesis contributes to the advancement of knowledge and techniques for stochastic characterization of inter- and intra- hydrostratigraphic heterogeneities. In a broader perspective, the thesis contributes original methods and tools adapted to better quantify the uncertainty associated with heterogeneities present in regional hydrogeological models

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences
    corecore