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RÉSUMÉ

La géostatistique s’intéresse à la modélisation des phénomènes naturels par des champs aléa-
toires univariables ou multivariables. La plupart des applications utilisent un modèle station-
naire pour représenter le phénomène étudié. Il est maintenant reconnu que ce modèle n’est pas
assez flexible pour représenter adéquatement un phénomène naturel montrant des comporte-
ments qui varient considérablement dans l’espace (un exemple simple de cette hétérogénéité
est le problème de l’estimation de l’épaisseur du mort-terrain en présence d’affleurements).
Pour le cas univariable, quelques modèles non-stationnaires ont été développés récemment.
Toutefois, ces modèles n’ont pas un support compact, ce qui limite leur domaine d’applica-
tion. Il y a un réel besoin d’enrichir la classe des modèles non-stationnaires univariable, le
premier objectif poursuivi par cette thèse.

Dans le cas multivariable, en plus du choix stationnaire, la plupart des applications sont
limitées à l’utilisation du modèle linéaire de corégionalisation (LMC). Cette limitation est
probablement due à 1) la facilité d’évaluer l’admissibilité du LMC, et 2) le manque de mé-
thodes de simulation rapides pour les modèles qui ne sont pas LMC (N-LMC). Des progrès
significatifs ont été faits sur le premier point récemment, mais moins sur le second. Par consé-
quent, le second objectif principal de cette thèse est de fournir une méthode de simulation
rapide pour N-LMC.

Cette thèse se compose principalement de trois articles. Le premier article utilise un modèle
non-stationnaire univariable existant pour étudier le problème de l’estimation de l’épaisseur
du mort-terrain en présence de nombreux affleurements. L’affleurement a une influence locale
sur la distribution de l’épaisseur du mort-terrain car l’épaisseur y est nulle par définition. Le
modèle non-stationnaire est ici utilisé pour limiter la distance d’influence des affleurements.
À l’intérieur de cette distance d’influence, les paramètres de covariance sont supposés être des
fonctions régulières simples de la distance à l’affleurement le plus proche. Au-delà de cette
distance d’influence, la fonction de covariance de l’épaisseur de mort-terrain est supposée
être stationnaire et l’influence des affleurements ne se fait plus sentir. La méthode est testée
avec des données réelles. Les résultats montrent que le modèle non-stationnaire améliore la
précision et le réalisme de l’estimation, en particulier à proximité des affleurements.

Le deuxième article introduit de nouvelles fonctions non-stationnaires avec support compact,
remplissant ainsi le premier but principal de la thèse. Les fonctions développées sont issues
du modèle sphérique. Elles sont dérivées par convolution d’hypersphères dont le rayon varie
spatialement en <n. On applique ensuite une transformation de Radon dont l’ordre contrôle
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la continuité de la fonction de covariance résultante. Les expressions explicites des cova-
riances non-stationnaires isotropes sont dérivées pour les modèles sphériques, cubiques, et
penta-sphériques. Aussi une méthode de simulation des modèles non stationnaires utilisant
la moyenne pondérée d’un bruit blanc gaussien est décrite pour les cas isotrope et anisotrope.

Le troisième article présente une méthode de simulation efficace pour N-LMC basée sur la
transformée de Fourier rapide (FFT) et la moyenne mobile (GFFTMA), réalisant ainsi le
deuxième but principal de la thèse. Cette méthode permet de simuler des variables avec
des structures spatiales différentes. Dans le domaine spectral, les matrices de densités sont
décomposées séparément, en valeurs propres-vecteurs propres, à chaque fréquence discrète.
Le champ corrélé est obtenu par la multiplication, à chaque fréquence, de la racine carrée
de la matrice spectrale par les spectres de bruits blancs gaussiens suivi d’une transformée
inverse de Fourier. Ceci permet d’imposer les structures spatiales directes et croisées désirées
pour chaque variable. Cette méthode possède une complexité Nlog (N) (N, le nombre de
pixels à simuler). La méthode GFFTMA est testée sur des exemples synthétiques à deux
ou trois variables et formés de différentes combinaisons de modèles parmi les sept modèles
de base disponibles. Tout les cas testés montrent des réalisations dont les variogrammes
expérimentaux directs et croisés reproduisent très bien le modèle cible.

Les trois articles utilisent comme étude de cas le problème de l’estimation et la simulation
de l’épaisseur du mort-terrain dans les basses terres de Saint-Laurent et de la l’est de la
Montérégie, Québec, Canada. Les nouveaux outils développés dans cette thèse permettent
de mieux étudier les phénomènes naturels aussi bien pour le cas univariable, où les modèles
non stationnaires à support compact offrent plus de flexibilité, que dans le cas multivariable
stationnaire, où une méthode de simulation non-LMC efficace basée sur la FFT a été déve-
loppée. Ensemble, ces outils devraient permettre d’améliorer la modélisation des phénomènes
naturels.
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ABSTRACT

Geostatistics focus on modeling natural phenomena by univariate or multivariate spatial
random fields. Most applications rely on the choice of a stationary model to represent
the studied phenomenon. It is now acknowledged that this model is not flexible enough
to adequately represent a natural phenomenon showing behaviors that vary substantially
in space (a simple example of such heterogeneity is the problem of estimating overburden
thickness in the presence of outcrops). For the univariate case, a few non-stationary models
were developed recently. However, these models do not have compact support, which limits in
practice their range of application. There is a definite need to enlarge the class of univariate
non-stationary models, a first goal pursued by this thesis.

In the multivariate case, in addition to the stationary choice, most applications are limited
to use of the linear model of coregionalization (LMC). This limitation is probably governed
by 1) the ease of assessing the admissibility of the LMC, and 2) the lack of availability of fast
simulation methods for models that are not LMC (N-LMC). Significant progress were made
on the first point recently, but not much on the second. Hence, the second main goal of this
thesis is to provide a fast simulation method for stationary non-LMC.

This thesis is mainly composed of three articles. The first article uses the existing univariate
non-stationary model to study the problem of estimating the overburden thickness in presence
of many outcrops. The outcrop has local influence on overburden thickness distribution as
the thickness value is zero on the outcrop. The non-stationary model is used to restrict the
distance of influence of outcrops. Within this distance of influence, covariance parameters are
assumed to be simple functions of the distance to the nearest outcrop. Beyond the distance
of influence of outcrops, the thickness covariance is assumed stationary. The method is tested
with real data. The results show that the non-stationary model improves the precision of
estimation and provides realistic map, especially at points close to outcrops.

The second article develops new non-stationary functions with compact support, thus fulfill-
ing the first main goal of the thesis. The developed functions include the non-stationary form
of the spherical family model. It is derived by convolving hyperspheres (with spatially vary-
ing radius) in <n followed by a Radon transform. The order of the Radon transform controls
the differentiability of the covariance functions. Closed-form expressions for the isotropic
non-stationary covariances are derived for the spherical, cubic, and penta-spherical models.
Also a simulation method of the non-stationary models is described by weighted average of
independent standard Gaussian variates in both the isotropic and the anisotropic case.
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The third article presents a very fast simulation method for N-LMC, the general fast Fourier
transform and moving average (GFFTMA), thus realizing the second main goal of the the-
sis. This method makes available to simulate variables following different spatial structures.
In spectral domain, the spectral density matrices are eigen-decomposed separately at each
discrete frequency. Correlated spectrum for each variable is produced by the decomposed ma-
trices multiplied with the spectrum of Gaussian white noise. Then taking the inverse Fourier
transform, the random field of each variable in spatial domain is created. The CPU- time of
this method increases as Nlog(N) (N , the number of pixels to simulate). The GFFTMA is
tested in simulation of synthetic examples with two and three variables for different combi-
nations of the seven available models. All the realizations produced fit the desired covariance
model well.

The three articles use as illustrative case study the problem of estimating and simulating
the overburden thickness in the Saint-Laurence lowlands, Montérégie Est, Québec, Canada.
As a whole, this thesis provides new tools to better study the natural phenomena both in
the univariate case, where compactly supported non-stationary models offer more flexibility,
and in the stationary multivariate case, where an efficient FFT based non-LMC simulation
method is derived. Together, they should help improve modeling of natural phenomena.
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CHAPTER 1 INTRODUCTION

1.1 Basic concepts

Many natural phenomena can be characterized by spatial variables, such as soil properties,
the concentration of pollutants, or the temperature in a region. The studies of spatial va-
riables often involve to determine the value on every point based on imperfect understanding
of the phenomena and limited known information. This brings uncertainty into the study.
Geostatistical methods can describe the spatial structure hidden by the randomness of spatial
variables, such as orientation, smoothness of transition, and so on. To characterize the spatial
structure in a simple way, some hypotheses are commonly assumed including typically : 1)
the stationarity of the covariance model for univariate study, and 2) the linear model of core-
gionalization for multiple variables. These assumptions limit the applicability of the methods
in a complex real world.

Stationarity is a common assumption in geostatistics. It means that the spatial structure of a
variable, typically the mean and the covariance, do not change with locations over the study
domain. In fact, many phenomena exhibit local varying structures. For example, variation of
the annual precipitation is much greater in mountain than in flat plain (Paciorek and Scher-
vish, 2006). Likewise, the distribution of atmospheric pollutants show large spatial variability
depending on the source location, meteorology and the chemical reactions between the source
and receptor (Fuentes, 2001). Another typical example is distribution of overburden thick-
ness over a domain. In a plain area, the overburden usually has a uniform thickness. But the
presence of outcrops interrupts the continuity, which leads to a locally different distribution
of overburden thickness in the vicinity of the outcrops. To better quantify these location
dependent structures, non-stationary models emerged and became an appealing solution in
recent decades. Despite the powerfulness, computational limitations can happen when data is
abundant as the existing non-stationary model do not have compact support. The resulting
covariance matrix then becomes large and non-sparse. One has to resort the local neighbo-
rhoods to alleviate the problem however that may generate undesirable discontinuities. There
is a definite need for non-stationary compactly supported covariance models as an alternative
to local neighborhood approaches.

In many instances, more than one variable are studied simultaneously. For example, the
geophysical data can reflect the intrinsic properties of overburden and could be considered
to better estimate the overburden thickness (Hunter et al., 1984; Caron et al., 2013; Blouin
et al., 2013). The linear model of coregionalization (LMC) is commonly used in modeling of
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correlated multiple variables. It requires each covariance of variables is a linear combination
of the same spatial model. The LMC is practical in limited cases, such as geochemistry
and study of animal abundance (Chilès and Delfiner, 1999). In fact, the non-linear model of
coregionalization (N-LMC) describes more general and common situations, where variables
can follow entirely different structures. For example, in geophysics, the density and magnetic
susceptibility are closely correlated while their indicators, gravity and magnetic field data,
follow different spatial structures. The gravity field has smoother behavior than the magnetic
susceptibility (Maus, 1999). As another example, in geology the spatial field of overburden
thickness usually can be described by a model which has linear behavior at the origin. One
of its correlated variable, geological domain can be modeled by thresholding a continuous
Gaussian variable. To obtain realistic geological domains, it is needed to adopt a variogram
with parabolic behavior for the latent variable, hence necessitating a N-LMC to simulate
jointly the thickness and the latent variable. To be practical, an efficient method is needed
to simulate such fields with N-LMC.

1.2 Research problems

The study of natural phenomena is often limited in the univariate case to methods using
stationary models. In the multivariate case, the stationary LMC is by far the most often used
model. These models lack flexibility and are not deemed sufficient to represent adequately
the complexity of many natural phenomena. There is a definite need to enlarge the class
of univariate non-stationary models and to escape from the LMC straitjacket to adequately
represent the studied natural phenomena.

More specifically, the following research problems arise :

1. In univariate case, how to model the heterogeneity of a random field with a non-
stationary covariance ? How to define non-stationary models with compact support
that allows to obtain sparse covariance matrices ? How to simulate efficiently these
non-stationary fields ?

2. In multivariate case, how to simulate N-LMC field efficiently ?

1.3 Objectives and contributions of the thesis

The objectives of this thesis are :

1. To develop a non-stationary model to incorporate the outcrop information in overbur-
den thickness estimations.
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2. To develop a class of compactly supported non-stationary covariance functions.

3. To develop an approach of simulation based on the non-stationary covariance model.

4. To develop an efficient method of multivariate simulation of N-LMC.

This thesis achieves the following original contributions :

1. A non-stationary model which includes outcrops position in overburden thickness es-
timation. It produces realistic maps and improves the thickness estimation precision.

2. A class of non-stationary covariance functions with compact support, of which a special
case is a non-stationary form of spherical family model. The non-stationary model is
applied in overburden thickness estimation incorporating classification of the geological
domain and enables a reduction of the estimation error and a more realistic transition
between two geological domains.

3. A method for simulating non-stationary models with compact support in both isotro-
pic and anisotropic cases.

4. A general method to simulate multivariate fields with N-LMC based on the fast Fourier
transform - moving average method (FFTMA).

1.4 Structure of the thesis

This thesis consists of nine chapters. The first chapter provides a brief overview of the thesis,
including basic introduction, research problems, objectives, contributions and structure.

Chapter 2 presents a literature review encompassing the origin and development of major
topics of the thesis.

Chapter 3 describes the organization of the thesis and the pertinence of the articles with
regards to the objectives of the thesis.

Chapter 4 introduces theoretical background including the related theoretical knowledge and
techniques in geostatistics.

Chapter 5 presents the article ”A comparison of approaches to include outcrop information in
overburden thickness estimation” by Min Liang, Denis Marcotte and Nicolas Benoit, publi-
shed in ”Stochastic Environmental Research and Risk Assessment” 28.7 (2014) : 1733-1741,
DOI : 10.1007/s00477-013-0835-6. In the article, a non-stationary covariance model is used
to describe spatial structure of overburden thickness incorporating outcrops information.

Chapter 6 contains the article ”A class of non-stationary covariance functions with compact
support” by Min Liang and Denis Marcotte, published in ”Stochastic Environmental Research
and Risk Assessment” (2015) : 1-15, DOI : 10.1007/s00477-015-1100-y. This article presents
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a family of non-stationary covariance functions with compact support. Moreover, a non-
stationary simulation method in both isotropic and anisotropic cases is proposed.

Chapter 7 contains an article submitted to the journal of ”Computers & Geosciences” at June
6, 2015 with the title of ”Simulation of non-linear coregionalization models by FFTMA” by
Min Liang, Denis Marcotte and Pejman Shamsipour. A fast simulation method GFFTMA is
proposed for multivariate fields of N-LMC.

Chapter 8 is a general discussion of the dissertation.

The last chapter summarizes the contributions and highlights of the thesis, addresses the
limitations, and provides suggestions for future researches.
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CHAPTER 2 LITERATURE REVIEW

The literature review covers three main parts. First I briefly review the main existing non-
stationary models. Secondly, the main contributions on compactly supported covariance func-
tions are described. The last part of the review bears on multivariate geostatistics and avai-
lable simulation methods.

2.1 Non-stationary model

2.1.1 Stationary model

For a random function Z(x), x ∈ <n, the spatial variation at arbitrary two points xi and xj
is characterized by its covariance C(xi, xj) expressed by

C(xi, xj) = E[Z(xi)−m(xi)][Z(xj)−m(xj)]. (2.1)

In general, the covariance function C(xi, xj) shows how the correlation between two points
changes with their locations xi and xj. For mathematical convenience, conventional models
assume that the random function Z(x) is second-order stationary, which means for any point
x and x+ h of <n

E[Z(x)] = m, (2.2)

E[Z(x)−m][Z(x+ h)−m] = C(h). (2.3)

Thus, the covariance function C(xi, xj) is independent of specific locations xi and xj and
varies only as a function of vector distance hij = xi − xj.

Another tool to analyze the spatial distribution of a random function Z(x) is the variogram.
It shows how the differences between Z(xi) and Z(xj) evolve with their locations. In the
stationary case, similar with the covariance, the variogram γ depends on the vector separation
h,

γ(h) = 1
2Var[Z(x+ h)− Z(x)]. (2.4)

The commonly used variogram models in geostatistics include spherical family model, ex-
ponential family model, Gaussian model, Cauchy class model, Matérn model, | h |α model,
logarithmic model and hole effect model (Chilès and Delfiner, 1999). Note that the | h |α and
the logarithmic model correspond to the case where only the increments Z(x + h) − Z(x)
are stationary, not Z(x) itself. This means the class of variogram functions is wider than the
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covariance functions. The random function with stationary increments is generalized in the
next section.

2.1.2 Non-stationary covariance functions

The non-stationary model describes a more general situation that allows to have location
dependent spatial structures. A random function Z(x) can be decomposed as sum of a drift
component m(x) and a zero-mean random variable δ(x) :

Z(x) = m(x) + δ(x). (2.5)

The non-stationarity can be introduced in the drift component, the stochastic component or
both.

To describe the non-stationarity of the drift, Matheron (1973) proposed the intrinsic random
functions that characterize the drift as a linear combination of basis functions fl(x) (for
example the monomials, logarithmic or trigonometric functions)

m(x) =
∑
l

alfl(x). (2.6)

An increment of order k is obtained by forming a linear combination Z(λ) =
∑n

i=1 λiZ(xi)
such that :

n∑
i

λifl(xi) = 0, ∀l = 0, 1, · · · , k. (2.7)

Such linear combinations are said "authorized". Then, one has E[Z(λ)] = 0 and V ar(Z(λ)) =∑n
i=1
∑n

j=1 λiλjK(xj −xi), where K(xj −xi) is called "generalized covariance". The variance
of the increment depends only on the separation vectors between points, which means the
drift is filtered out. The variance of the increments does not call for the knowledge of the
coefficients al. Note that −γ(h) is the generalized covariance function for increments of order
0. It filters out the influence of a constant unknown mean.

Details and applications of the generalized covariance function are described in the literature
Matheron (1973) and Kitanidis (1993). More studies on the non-constant mean m(x), for
example universal kriging, differencing or splines, are well documented in Cressie (1993) and
Pintore and Holmes (2004).

This thesis focuses on the non-stationarity of random component δ(x), which is characterized
by a non-stationary covariance model. The drift component is assumed constant in the context
of the thesis. In recent decades, the main approaches reported in construction of a non-
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stationary covariance function are moving window, space deformation and kernel convolution.

Moving window approach

Haas (1990a) proposed a moving window method to model the local feature where stationarity
is assumed locally. A moving window is given centered at every point of interest. Then in one
window, the spatial covariance structure is estimated by only neighbors in this window. As
the window moves through the whole study area, a number of local covariance models with
different parameters are obtained that draw the heterogeneity of the field. Developments
and applications of this method can be found in Haas (1990b, 1995), Horta et al. (2010)
and Soares (2010). The local characteristics of the field can be shown in moving windows,
however the general covariance structure of the whole area cannot be modeled (Pintore and
Holmes, 2004). Moreover, artefact discontinuities between the models and estimations may
be introduced with this approach.

Space deformation approach

Another approach estimating non-stationary model is spatial deformation. Based on multidi-
mensional scaling, Sampson and Guttorp (1992) firstly computed a representation of sampling
stations. The spatial dispersion was approximated by a monotone function of distances bet-
ween two points. Then they computed a smooth mapping for the geographic representation
of the sampling stations into their multidimensional scaling representation. The anisotropy
and nonstationarity of the nature field is included in the composition of the mapping and
the monotone function of multidimensional scaling representation. Further applications and
extensions of this approach are found in Guttorp et al. (1994); Smith (1996); Meiring et al.
(1997); Damian et al. (2001); Schmidt and O’Hagan (2003); Boisvert and Deutsch (2008).
This method however concentrates essentially on the model anisotropy directions and ratios.
It cannot model non-stationarity of scale, of noise or of differentiability.

Kernel based approach

Priestley (1965) states that if a stationary Gaussian process Z(x) has a correlation function
R(d) given by

R(d) =
∫
<2
k(x)k(x− d)dx, (2.8)
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the process Z(x) can be expressed by a convolution of a Gaussian white noise process δ(·)
and a kernel function k(·) like

Z(x) =
∫
<2
k(x− u)δ(u)du. (2.9)

Higdon et al. (1999) extended this characterization in non-stationary cases so that the kernel
evolves over spatial locations. Then the non-stationary correlation function of a Gaussian
process on two points xi, xj would be represented by convolution of two kernels at xi and xj

RNS(xi, xj) =
∫
<2
kxi(u)kxj(u)du, (2.10)

where kx(u) denotes a kernel centered at location x. Then they focused on the Gaussian
kernel that can be represented by an ellipse with local scaling and rotation at a given location.
Moreover, parameters of kernel function kx(u) were discussed that control the smoothness of
the kernel.

Paciorek (2003) extended the kernel convolution method of Higdon et al. (1999) and produ-
ced explicit non-stationary correlation functions with locally varying geometric anisotropies.
Then Paciorek and Schervish (2006) developed a class of non-stationary covariance func-
tions including Matérn covariance model and rational quadratic covariance model. Pintore
and Holmes (2004) described a framework to construct non-stationary covariance functions
of Gaussian processes by evolving the stationary spectrum over space. Two possible spec-
tral decomposition of covariance functions were mentioned, the Fourier and Karhunen-Loève
expansions. The non-stationary form of Gaussian and Matérn covariance functions are pre-
sented in this article. Stein (2005) proposed an explicit non-stationary covariance function
that allows local anisotropy and differentiability varying over space and gave a special form
of Matérn model. Then Mateu et al. (2013) extended Stein (2005)’s result and gave a ge-
neral explicit form of non-stationary covariance function. Although the functions contain a
compactly supported function, the resulting function does not show the behavior of having
a compact support.

Example : Modeling overburden thickness in presence of outcrops with stationary
model : Pros and cons

One typical case of non-stationarity occurs naturally in studying overburden thickness with
presence of outcrops. Overburden is the material on top of bedrock, usually including soil,
sand, sediment, gravel and till (Thrush, 1968). The thickness of overburden is commonly mo-
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deled with stationary covariance, which gives simple computation. However, when outcrops
occurs in the studied area, the stationary model can result in a few problems.

One intuitive way to treat outcrops is considering them as zero value in data set. The out-
crops data can be more abundant than thickness data as it is observed preferentially. The
numerous zeros can exaggerate the outcrop sizes thereby leading to a strong bias in the
kriging estimation. There are several ways to alleviate the problem by keeping stationary
covariance but modifying the kriging method. One way is to add inequality constraints to
kriging (Dubrule and Kostov, 1986), and force the overburden thickness being negative on
outcrops and positive elsewhere. The main drawback of this method is it involves quadratic
programming and therefore it is more difficult to apply the kriging as the solution is ob-
tained iteratively. Another way is to use Gibbs samplers (Geman and Geman, 1984) to add
constraints in conditional simulation (Freulon and de Fouquet, 1993). For this method, first a
classical conditional simulation is obtained using only observations. Then all simulated points
are checked to satisfy the constraint (negative simulated value on outcrops and positive el-
sewhere). An iterative approach based on the Gibbs sampler is used. A sufficient number
of realizations are constructed by repeating this process. Finally, the overburden thickness
estimate is taken as the average of these realizations. This approach has precise estimation
close to outcrops. However, it is very CPU intensive and requires a Gaussian hypothesis for
the Gibbs sampler.

In the first article (Chapter 5), a non-stationary model is proposed for estimation of over-
burden thickness incorporating outcrop locations. In the non-stationary model, the range of
influence of outcrops is defined. Within this scope, the covariance function is non-stationary
with parameters (correlation range and nugget) that are functions of distance to the nearest
outcrop. Outside the range of influence, the distribution of overburden is not affected by
outcrops and assumed stationary.

2.2 Stationary compactly supported covariance functions

The compactly supported function for stationary covariance was well studied in last few
decades (Matheron, 1965; Wendland, 1995; Wu, 1995). In the non-stationary case, the com-
pactly supported functions are rarely investigated. In this thesis, I focus on extension of one
type of compactly supported functions, which is based on convolution of dilution functions
such as Wu’s function, into a non-stationary case. First, I introduce approaches of construc-
ting compactly supported functions and the resulting radial functions. Then, some methods
are reviewed on treating the non-compactly supported covariance functions to gain more
computation efficiency.
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2.2.1 Direct construction of compactly supported radial functions

Matheron (1965) proposed two operators to obtain covariogram functions with compact sup-
port, ‘La montée’ and ‘La descente’, and gave examples in the stationary and isotropic case.
‘La montée’ is an integral operator, for a positive definite function f(u), u ≥ 0 in <n,

I(f)(r) =
∫ ∞
r

uf(u)du. (2.11)

The I operator is a special case of Radon transform of the second order. The resulting
functions I(f)(r) is positive definite in <n−2 for n > 3. They have same compact support but
higher smoothness than the original function f(r). Wendland (1995) developed a group of
compactly supported radial basis functions by integral operator starting with Askey’s power
function (Askey, 1973).

‘La descente’ is a differential operator that preserves the same support as original function
but decrease the smoothness. For u ≥ 0,

D(f)(r) = −1
r

d
drf(r) (2.12)

which is positive definite in <n+2. Wu (1995) constructed a class of functions with compact
support by differential operator D(f)(r) based on auto-convolution of a cut-off polynomial
function.

Convolution is another operator to create compactly supported covariance functions. The
property of positive definiteness or compact support of two functions is kept in their convo-
lution. The stationary spherical model is proposed by Matheron (1965) by auto-convolution
of hyperspheres defined in <n.

2.2.2 Development of compactly supported covariance functions in geostatistics

Most of popular covariance functions used in geostatistics (such as exponential, Gaussian or
Matérn family model) do not have compact support. This means when the distance between
two points is much larger than the correlation range, their covariance is still a non-zero value.
The very small positive covariance is insignificant, but intensify the computation tasks. Se-
veral methods were proposed to create compact support for covariance functions (Moreaux,
2008). One approach is to neglect small correlations below a certain threshold and set these
covariances to zero (Rygaard-Hjalsted et al., 1997). However, this approach does not pre-
serve positive definiteness of the covariance function (Furrer et al., 2006). A better approach
which can keep positive definiteness of covariance functions is tapering these functions by a
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compactly supported function.

Furrer et al. (2006) showed how to modify the Matérn model to be compactly supported, by
using compactly supported functions (such as spherical or Wendland covariance functions)
as tapering functions. Also they gave conditions to ensure positive definiteness of the resul-
ting function. The kriging estimates obtained from the tapered function are asymptotically
optimal, but the kriging variances are biased and need rescaling by a factor depending on
the data locations. Conditions on tapering functions for other covariance functions than the
Matérn class could not be derived by Furrer et al. (2006). Besides condition of positive de-
finiteness, we also have to focus on properties of the tapering function, due to the result
covariance inherits some of the main properties of the tapering function. For example, a
Gaussian covariance tapered by a spherical covariance is no more differentiable at the origin.

Gneiting (2002) presented turning bands operator to construct correlation functions of hole
effect model. By transforming a supported function φn defined in <n, the resulting function
φn−2 still has compact support, same behavior at origin and positive definiteness in <n−2.

In multivariate case, Porcu et al. (2013) developed stationary covariance models with compact
support based on scale mixtures of Askey functions (Askey, 1973). Following that, Kleiber
and Porcu (2015) obtained locally-stationary covariance models with compact support based
on functions of Wendland (1995) and Gneiting (2002) .

Mateu et al. (2013) presented a closed-form of a non-stationary covariance function, which is
constructed by a complete monotonic function and a compactly supported function. However
the property of compact support was not present in the resulting covariance function. Till
now, the extension of compactly supported functions to the non-stationary case has not been
published. Chilès and Delfiner (1999) mentioned that the non-stationary form of bounded
covariance function could be obtained by considering local kernel functions. Based on this
idea, in Chapter 6 a class of non-stationary covariance functions with compact support are
developed by convolution of local kernel functions.

2.3 Multivariate modeling and simulation

In geological, mining, petroleum and hydrogeological studies, it is common to observe that
several properties are spatially correlated to the main property of interest. To better un-
derstand and quantify the main property, these secondary information should be taken into
account as they provide useful information. Considering a multivariate field with n statio-
nary random functions Zi(x), i = 1, 2, · · · , n, the full covariance matrix function C(h) can
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be expressed by 
C1,1(h) C1,2(h) · · · C1,n(h)
C2,1(h) C2,2(h) · · · C2,n(h)

... ... . . . ...
Cn,1(h) Cn,2(h) · · · Cn,n(h)

 (2.13)

where Ci,j(h) is cross-covariance function of variable Zi and Zj when i 6= j. Ci,j(h) is defined
by

Ci,j(h) = E[Zi(x)−mi(x)][Zj(x+ h)−mj(x+ h)] (2.14)

in which mi(x) is the mean of Zi(x).

2.3.1 The linear model of coregionalization

The linear model of coregionalization (LMC) describe the coregionalization as the sum of
proportional covariance models (Chilès and Delfiner, 1999; Myers, 1983; Marcotte, 1991;
Journel and Huijbregts, 1978; Wackernagel, 2003),

C(h) =
s∑

k=1

BkCk(h) (2.15)

in which Ck(h) is the basic structure indexed by k, k = 1, 2, · · · , s. It requires that all direct
and cross covariances are linear combinations of Ck(h),

Ci,j(h) =
s∑

k=1

bk(i, j)Ck(h) (2.16)

A sufficient (but not necessary) condition of the LMC to be admissible is the coefficient
matrix Bk is positive semi-definite for each k. The verification of this condition is easily done
by computing the eigenvalues of each coefficient matrix (Journel and Huijbregts, 1978).

In fitting a model for experimental covariances, first the basic structures Ck(h) are determi-
ned from the direct covariance. Then the coefficient matrix Bk is approximated under the
constraint

| bk(i, j) |≤
√
bk(i, i)bk(j, j). (2.17)

for any i and j and each k due to its positive assumption (Chilès and Delfiner, 1999).

One advantage of the LMC is it is easy to ensure admissibility. Goulard (1989) and Goulard
and Voltz (1992) provided an iterative algorithm to fit the coefficients by least squares under
the positivity constraint of Bk. Moreover, because the LMC can be simulated by linear
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combination of independent univariate simulations, it is possible to use a large variety of
simulation algorithms, including the efficient turning bands method (Matheron, 1973; Chilès
and Delfiner, 1999; Emery, 2008b) and FFTMA (Le Ravalec-Dupin et al., 2000). The main
disadvantage of LMC is that it forces all the variables to have the same spatial structures.
In fact, it is common that the secondary variable corresponds to a much larger support than
the main variable, then its covariance usually has a smoother behavior close to the origin
than the main variable. For example, the geophysical variables, density, electrical resistivity
and magnetic susceptibility, are representative of a larger domain and consequently their
variograms have more continuous behavior at the origin than the grade measured on cores.
In cases that correlated variables have different spatial structures, the LMC cannot fully
incorporate this information.

2.3.2 The non-linear model of coregionalization and its simulation

Development of N-LMC and simulation

In the non-linear model of coregionalization, for different variables, their direct and cross
covariance Cij in Equation 2.16 have different covariance structure Ck(h), k = 1, 2, · · · , s.
One way to test the validity of the model is to verify that frequency dependent spectral
matrices are positive definite at every frequency (Chilès and Delfiner, 1999). Yao and Journel
(1998) proposed to generate smooth covariance or cross-covariance tables by transforming the
experimental covariance into spectral density tables using FFT. However this method cannot
be used in case of sampling on irregular grid or when many data occur at distances smaller
than the grid used for the FFT. Oliver (2003) constructed a positive definite cross-covariance
by involving the square roots of auto-covariance functions of two variables. Marcotte (2015b)
derived the spectral density of seven common covariance models (Exponential, spherical,
cubic, penta-spherical, Gaussian, Cauchy and K-Bessel models) in the 3D anisotropic case and
provided a program for verification of admissibility for non-LMC models with symmetrical
cross-covariances.

For the simulation of a N-LMC, a few methods are available. Shinozuka (1971) developed a
continuous spectral method to simulate a multivariate homogeneous process by a series of
cosine functions. He proposed to use Choleski decomposition of the spectral density matrix,
at selected frequencies. Then, the study was extended to non-homogeneous oscillatory pro-
cess characterized by an evolutionary power spectrum (Shinozuka and Jan, 1972). Mejía and
Rodríguez-Iturbe (1974) focused on discussing connection of correlation and spectrum of a
random function and provided a simulation method by sampling from the spectral density
functions. Mantoglou and Wilson (1982) extended the turning bands method into spectral
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domain. Mantoglou (1987) used the spectral turning bands method to simulate multivariate,
anisotropic, two- or three-dimensional stochastic processes. In the anisotropic case, the cova-
riance has to be calculated on each line therefore costs much computer time. In addition, in
the case of covariance with long range, the calculation in the spectral domain requires large
CPU time. Emery et al. (2015) improved the spectral turning bands approach through cou-
pling with importance sampling techniques in multivariate simulation of Gaussian random
functions. It requires that all direct and cross covariance functions are stationary and the
closed-form expressions of their spectral density functions must be known. This approach is
fast and has a low memory storage requirement. Marcotte (2015a) proposed a spatial mul-
tivariate turning bands method that allows to simulate anisotropic non-LMC directly in the
spatial domain. First the line joint covariances to simulate is determined from the expressions
for the line spectral densities. Then it is simulated on each line in the spatial domain. Finally
the simulation on desired points in <3 is generated by combining the simulated values on
lines.

Oliver (2003) proposed an approach of multivariate simulation by extending the matrix de-
composition method. The cross-covariance function was created by square roots of auto-
covariance of two variables. In cases that the square root of covariance function cannot be
obtained directly, the square root of Fourier transform of the covariance model is calcu-
lated first, then inverse Fourier transform is conducted. Another attempt in simulation of
coregionalization is an extension of FFTMA by Le Ravalec-Dupin and Da Veiga (2011) in
cosimulation of two variables. This method was based on the Markov-Bayes approximation on
two variables, so it did not allow full control and generality of the simulated cross-covariances.

Cosimulation of overburden thickness and latent variable of geological domain

In Chapter 7, a general fast Fourier transform and moving average method (GFFTMA) for
multivariate simulation of N-LMC is proposed. In addition, synthetic examples are illustrated
for simulations of N-LMC with two and three variables for different combinations of seven
available models (Gaussian, exponential, spherical, cubic, penta-spherical, Cauchy and K-
Bessel model). Moreover, the GFFTMA is used in a real application of overburden thickness
simulation incorporating a secondary variable, geological domain, over an area of Montérégie
Est, in Québec.

A number of approaches can be used in the simulation of the categorical variable, such
as sequential indicator simulation (Journel and Isaaks, 1984; Deutsch and Journel, 1998;
Emery, 2004a), truncated Gaussian simulation (Matheron et al., 1987) and multiple point
statistics (Guardiano and Srivastava, 1993; Ortiz and Deutsch, 2004). The truncated Gaussian
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simulation is proposed by Matheron et al. (1987) to simulate ordered categories with locally
varying proportions. The truncated Gaussian simulation was generalized to multiple Gaussian
distribution (truncated pluri-Gaussian simulation) by Galli et al. (1994). Programs of pluri-
Gaussian simulation were published by Xu et al. (2006), Emery (2007b), Emery and Silva
(2009) and Chopin (2011). Relevant researches and application of truncated Gaussian or
pluri-Gaussian simulation are referred to Le Loc’h and Galli (1997); Armstrong et al. (2011);
Mariethoz et al. (2009); Deutsch and Deutsch (2014); Mannseth (2014); Rimstad and Omre
(2014).

In simulation of Gaussian fields, one of the commonly used approaches is Gibbs sampler
(Geman and Geman, 1984). It is an iterative method based on Markov chain. The gene-
ral principle of Gibbs sampler is to begin with a simulated field that does not satisfy all
the requirements on spatial variability, and then locally update it step by step until all the
requirements are met. In practice, when the difference between simulated field and desi-
red distribution are acceptable, the iteration is stopped. The difference is reflected by the
transition kernel (Lantuéjoul, 2002), the covariance or the variogram and the histogram in
geostatistical simulation. Emery (2008a) proposed to detect the validation of simulation al-
gorithms by some statistical tests. Strategies to improve rate of convergence of Gibbs sampler
are discussed by Roberts and Sahu (1997) and Galli and Gao (2001). Applications of Gibbs
sampler in simulation of a Gaussian field or Gaussian-based field can be found in Emery
(2007c) and Lantuéjoul and Desassis (2012). In Gibbs sampler, it is easy to incorporate in-
equality constraints in simulation. Freulon and de Fouquet (1993) first proposed to simulate
a random function conditional on the hard and soft data with Gibbs sampler. Most program
of truncated pluri-Gaussian simulation (Emery, 2007b; Emery and Silva, 2009; Chopin, 2011)
are based on this algorithm. Emery et al. (2014) improved algorithm of Gibbs sampler by
simulated annealing or restricting the transition matrix of the iteration so that it can be used
in simulation of large Gaussian random field with inequality constraints.
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CHAPTER 3 THESIS ORGANIZATION

This thesis is based on three articles presented in Chapter 5 to 7. In this chapter, the objec-
tives, approach and main contributions of each article are described. Then the link between
articles and their consistency related to the research objectives of the thesis are presented.

3.1 The first article

Title : A comparison of approaches to include outcrop information in overburden thickness
estimation

Authors : Min Liang, Denis Marcotte and Nicolas Benoit

Published on : Stochastic Environmental Research and Risk Assessment, Volume 28, Issue
7, page 1733-1741

Summary : This article focuses on the problem of overburden thickness estimation in
presence of outcrops. The methods based on stationary covariance model (discussed in Section
2.1.2) failed to sufficiently reflect the local spatial structure of overburden thickness near
outcrops. In this article, a non-stationary model is developed to incorporate the outcrops
information in overburden thickness estimations. Compared to kriging based on a stationary
model (with or without involving the outcrop information), the non-stationary model provides
more precise estimation, especially at points close to an outcrop. The thickness map obtained
with the non-stationary covariance model is more realistic, since the algorithm forced the
estimates smoothly reducing to zero close to outcrops without the bias incurred. Highlights
of this article are :

— Outcrops information can help improve thickness estimation ;
— A model of non-stationary covariance is able to integrate the outcrop information ;
— Non-stationary proves to be more efficient than two forms of stationary kriging ;
— The non-stationary covariance is modeled by a single additional parameter.

3.2 The second article

One weakness of the model presented in the first paper is the use of the exponential model
of covariance. Because the sill is reached only asymptotically, the covariances never vanish.
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As a consequence, the covariance matrix used in the non-stationary kriging could become
prohibitively large for its use in a global setting. This article seeks to palliate this limitation
by developing a family of compactly supported covariance functions in the non-stationary
case.

Title : A class of non-stationary covariance functions with compact support

Authors : Min Liang and Denis Marcotte

Published on : Stochastic Environmental Research and Risk Assessment, Published on-
line, page 1-15

Summary : In geostatistics, the popular spherical family models (spherical, cubic and
penta models) have compact support, but are limited to stationary cases. The non-stationary
form of spherical family model was suggested by Chilès and Delfiner (1999), but never tested
and published. Based on the kernel convolution theory, this article proposed a class of non-
stationary covariance functions with compact support. The differentiability of functions can
be controlled by order of Radon transform. Moreover, a method on simulation of this class of
non-stationary models is described by weighted average of independent standard Gaussian
variates in both the isotropic and the anisotropic cases. In the end, a real application of the
proposed model is provided. Highlights of this article are :

— The closed-form expression of the non-stationary isotropic spherical model in <n, and
cubic, penta model in <3 are derived ;

— Non-stationary anisotropic compactly supported functions can be evaluated numeri-
cally ;

— All non-stationary models defined are admissible ;
— A method for simulation based on moving averages is developed ;
— The non-stationary model in estimation of overburden thickness is more precise at the

contact of two geological zones.

3.3 The third article

While the two previous articles dealt with the non-stationary univariate case, this paper deals
rather with a development of a new efficient simulation method in the multivariate stationary
case for the N-LMC model. Indeed, it is frequent that abundant secondary information is
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available that could help significantly improve the estimation and simulation of the main
variable. As an example for the overburden thickness estimation (or simulation) problem,
the surficial geology is known everywhere. This information can be helpful to better estimate
the overburden thickness as the complete overburden sedimentary sequence in the Saint-
Lawrence is : bedrock - glacial till - clay - sand. Knowing for example that till is observed on
surface should typically correspond to a small overburden thickness. One popular method to
represent the geology is the truncated Gaussian method, especially appropriate here where the
geological facies are naturally ordered. The variogram of the overburden thickness has a linear
behavior at the origin. Using a (LMC) would force to represent the latent Gaussian variable
with the same variogram, but this would produce unrealistic facies simulation and would
not represent adequately the geology indicator variograms and cross-variograms. Hence, a
N-LMC model is required.

Title : Simulation of non-linear coregionalization model by FFTMA

Authors : Min Liang, Denis Marcotte and Pejman Shamsipour

Submitted to : Computers & Geosciences in June, 2015

Summary : In this article, a fast and efficient method, GFFTMA, is described to simulate
multivariate fields of N-LMC by generalizing the FFTMA method. It allows direct and cross
covariance of multiple variables having different structures. Synthetic and real examples illus-
trated that the simulations of N-LMC by GFFTMA fit the target models well. Highlights of
this article are :

— A FFT based method is proposed to simulate the N-LMC ;
— Realizations fit very well the target N-LCM ;
— Computation is very fast and the computing time shows a Nlog(N) relation with

simulated size N ;
— An approach based on Cholesky decomposition is suggested to get simulated values

at sample points.

3.4 Consistency among the papers

The developments presented in the three papers were all initially motivated by the need
to provide better estimation or simulation of overburden thickness in the Saint-Lawrence
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lowlands. However, the methods presented are general and can apply to the study of any
natural phenomena. The first article illustrates the gain that can be achieved with a non-
stationary model compared to a stationary one. The second paper follows from the first one
as it fills an important gap in available non-stationary models by providing a simple method
to construct and simulate non-stationary models with compact support. Finally, the third
paper presents a very efficient simulation method for the multivariate stationary case. In
addition to the common application on overburden thickness, the third paper is linked to
the first two papers by the observation that the secondary variable can often account for
non-stationarity of the mean in the main variable. Admittedly, multivariate non-stationary
models in the covariance however are still to be developed and tested.

The first article enables to meet the Objective 1 presented in Section 1.3. The second article
enables to fulfill the Objectives 2 and 3, whereas the third article satisfies the Objective 4.
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CHAPTER 4 THEORETICAL BACKGROUND

The purpose of this chapter is to provide the theoretical framework used in or related to
this thesis. This chapter is organized into three main sections. The first section introduces
methods of estimation and simulation in geostatistics. The second section presents the non-
stationary covariance functions developed recently. The last section outlines how to construct
a function with compact support and some popular compactly support functions.

4.1 Estimation and simulation techniques

4.1.1 Kriging

In the study of a random function, an important task is to estimate its values on unsampled
points based on limited observations. Kriging is an estimation approach building on statistical
model of the random function (Matheron, 1963). It is trying to find the linear unbiased
estimator minimizing the estimation error. A covariance or variogram model is the most
important parameter for kriging, which is determined by fitting with the observed data.
The input covariance model must be valid, that is positive definite, but not limited to be
stationary (Chilès and Delfiner, 1999). For the variable Z(x), kriging estimates the value at
unknown point x0 by the weighted average of known values Z(xi) at points xi, (i = 1, · · · , N).
According to properties of the mean, the kriging has three main forms (Chilès and Delfiner,
1999), 1) simple kriging, used in case with known mean ; 2) ordinary kriging, used in case with
constant and unknown mean ; and 3) universal kriging, used in case with varying and unknown
mean. In the whole thesis, the mean of studied variable is assumed constant therefore only
simple kriging and ordinary kriging are reviewed here.

Simple kriging In simple kriging, the mean of a random function Z(x) is known E[Z(x)] =
m(x). Therefore one can directly estimate Z∗(x0)−m(x0) by the weighted average of Z(xi)−
m(xi) without any additional constraint on weights λi :

Z∗(x0) =
N∑
i=1

λi(Z(xi)−m(xi)) +m(x0). (4.1)
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The estimation variance of kriging is

Var[Z∗(x0)−Z(x0)] = Var[Z(x0)] +
N∑
i=1

N∑
i=1

λiλiCov[Z(xi), Z(xi)]− 2
N∑
i=1

λiCov[Z(x0), Z(xi)]

(4.2)
By canceling the partial derivatives with respect to λi,the minimum of estimation variance
can be obtained. Then the weights λi will be written as

Kλ = k. (4.3)

where K = Cov[Z(xi), Z(xi)] is a N × N covariance matrix of observations, λ = [λi] is N
vector of weights and k = Cov[Z(x0), Z(xi)] is a N vector of covariance between observations
and points of interest.

Then the estimation variance of simple kriging is

Var(Z∗(x0)− Z0) = Var(Z(x0))− λ′k (4.4)

in which λ′ is the transpose of vector λ.

Ordinary kriging In ordinary kriging, the mean of the variable Z(x), m(x) = c0 in which
c0 is a unknown constant. The estimate Z∗(x0) on an unknown point x0 is the weighted
average of known values Z(xi),

Z∗(x0) =
N∑
i=1

λiZ(xi) (4.5)

To keep the estimation unbiased, a constraint on the weights must be imposed as

N∑
i=1

λi = 1. (4.6)

Subject to this constraint on λi, the method of Lagrange multipliers is used to minimize the
estimation variance (Equation 4.2). The Lagrange function is

L(λi, µl) = Var(Z∗(x0)− Z0) + 2µl(
N∑
i=1

λi − 1) (4.7)

where µl is Lagrange multiplier. By making the partial derivatives of L to zero, the ordinary
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kriging system is expressed by [
K 1
1′ 0

][
λ

µl

]
=
[

k
1

]
(4.8)

in which 1 is the vector of ones.

The estimation variance of ordinary kriging is expressed as

Var(Z∗(x0)− Z0) = Var(Z(x0))− λ′k− µl. (4.9)

4.1.2 CoKriging

Cokriging is the kriging for multivariate cases. Here cokriging is illustrated with only two
variables for simplicity. Denote the main variable by Z(x) with nz observations and second
variable by Y (x) with ny observations. When the means of Z(x) and Y (x) are both known,
the simple cokriging estimator can be written as :

Z∗(x0) = mz +
nz∑
i=1

λi(Zi −mZ) +
ny∑
j=1

αj(Yj −mY ) (4.10)

where mZ and mY are the means of Z(x) and Y (x), λ is weights of Z(x) and α is weights of
Y (x). The weights λi and αj are obtained following[

Kzz Kzy

Kyz Kyy

][
λ

α

]
=
[

kzz
kyz

]
(4.11)

where Kzz, Kyy and Kzy(Kyz) are covariance matrices between observations of the main
variable Z(x), secondary variables Y (x) and cross covariance between Z(x) and Y (x). kzz (or
kyz) are covariance vectors between interested point and observed points of the main variable
Z(x) (or the secondary variable Y (x)). The variance of estimation in simple cokriging is

Var(Z∗(x0)− Z0) = Var(Z0)− λkzz −αkyz (4.12)

When both means are unknown, the cokriging estimator has the following form :

Z∗(x0) =
nz∑
i=1

λiZi +
ny∑
j=1

αjYj (4.13)

For the estimator to be unbiased, it is sufficient to impose that the weight
∑nz

i=1 λi = 1 and
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∑ny
j=1 αj = 0 respectively. The weight can be obtained from

Kzz Kzy 1 0
Kyz Kyy 0 1
1′ 0′ 0 0
0′ 1′ 0 0




λ

α

µz

µy

 =


kzz
kyz
1
0

 (4.14)

The estimation variance of ordinary cokriging is

Var(Z∗(x0)− Z0) = Var(Z0)− λkzz −αkyz − µz (4.15)

4.1.3 Simulations

Stochastic simulation is a representation of a possible spatial distribution of a variable which
meets the particular covariance model. By conditional simulation, a series of realizations
can be generated, conditional upon observations. Methods of conditional simulation include
sequential Gaussian simulation and matrix decomposition. For unconditional simulation, in
addition to these methods, we can use among many other approaches, the turning bands,
moving average algorithm, dilution functions and continuous or discrete spectral method
(Chilès and Delfiner, 1999; Lantuéjoul, 2002). Post conditioning method can calibrate an
unconditional simulation to observed data without losing features of the former structure
(Chilès and Delfiner, 1999). The post conditioning process is derived by the sum of kriging
estimator and simulation of the kriging error. In kriging, the estimator Z∗(x) and the true
value Z(x) have relation as

Z(x) = Z∗(x) + [Z(x)− Z∗(x)] (4.16)

where the Z(x)− Z∗(x) is kriging error. Considering a simulation ZS(x) in kriging,

ZS(x) = Z∗S(x) + [ZS(x)− Z∗S(x)] (4.17)

in which Z∗S(x) is kriging estimator of ZS(x). Replacing the unknown kriging error in Equation
4.16 by its simulation ZS(x)− Z∗S(x), the conditional simulation is given by

ZCS(x) = Z?(x) + [ZS(x)− Z?
S(x)] (4.18)

In multivariate case, the Z?(x) is obtained by cokriging. After conditioning, the simulated
field ZCS(x) preserves the required covariance of simulation. Details on conditional simulation
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are referred to Chilès and Delfiner (1999).

Simulation of continuous variable

The dilution method Chilès and Delfiner (1999) describes a dilution method by a fixed
function to simulate a stationary isotropic field. The dilution function ω(x) must be square
integrable. Corresponding to a random function Z(x), the covariogram g(h) between two
points with distance h is expressed by

g(h) = (ω ∗ ω̆)(h) =
∫
ω(x)ω(x+ h)dx (4.19)

where ω̆(h) = ω(−h). At a point x, the random function Z(x) can be expressed by

Z(x) = µ
∑
i

ω(x−Xi) (4.20)

where µ is the mean and Xi is the point of a Poisson point process. From a practical point,
the dilution method works well in cases where the covariance is proportional to the geometric
covariogram, such as the field of spherical family model. For other models, Chilès and Delfiner
(2012) listed the dilution function for stationary exponential and Gaussian covariance model
in <n. However, for the non-stationary case, the closed-form expressions for the dilution
function have not been provided.

For spherical family models, the indicator function of spheres in <n is used as dilution func-
tion to generate the covariogram. It can be extended to the non-stationary case by using
indicator function of spheres with different sizes depending on locations. Thus, it is easy to
simulate a non-stationary field of spherical family model by the dilution method. In Chapter
6, I adopt a simpler approach to simulate the non-stationary fields of spherical family cova-
riance functions in both isotropic and anisotropic cases. Instead of using dilution functions,
equivalent weighting functions are defined. The weights are normalized so as to provide a
unit variance for the simulated field at all locations. For the anisotropic case (the kernel is a
hyper-ellipsoid in <n), the indicator function is transformed to be a hypersphere by rotating
and scaling the local grid at each point. Then the non-stationary anisotropy in the original
grids can be simulated. Besides, the sequential simulation and matrix decomposition also
can be used in simulation of a non-stationary variable. However, they are not applicable in
simulations with large size.
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Continuous spectral method According to Bochner (1937) theorem, the covariance of
a stationary random function Z(x) can be expressed as

C(h) =
∫ +∞

−∞
S(f)exp(2iπf · h) df (4.21)

in which S(f) is the power spectral density function. The covariance function is the inverse
Fourier transform of power spectral density function, while the spectral density function can
be obtained by Fourier transform on the covariance function,

S(f) =
∫ +∞

−∞
C(h)exp(−2iπf · h) dh. (4.22)

It indicates that the power spectral density function S(f) has the same spatial information as
the covariance function C(h). Shinozuka (1971) proposed to simulate the stationary random
function Z(x) which has the spectral representation by

ZS(x) = σ
√

2 cos(2π〈U, x〉+ Φ) (4.23)

where

σ =

√∫ +∞

−∞
S(f)df (4.24)

is the standard deviation of Z(x) ; U is a random vector of <n with probability distribution
S(f)/σ2 ; 〈U, x〉 = U1x1 + U2x2 + · · · + UNxN ; and Φ is a random variable with uniform
distribution over [0, 2π] independent of U . The realization ZS(x) has the covariance in form
of

C(h) =
∫

cos(2π〈f, h〉)S(f)df. (4.25)

The realizations simulated by Equation 4.23 is not ergodic (Chilès and Delfiner, 1999). To get
ergodic realizations of Z(x) with desired covariance model, one must consider the average of
a large number of simulations ZS(x) being the final realization of Z(x). In practice, the ergo-
dicity of the simulation is slow to reach, especially in the case with widely spread spectrum.
Shinozuka and Jan (1972) developed the algorithm of spectral method by discretizing the
spectral distribution function. Lantuéjoul (2002), Emery and Lantuéjoul (2006) and Emery
et al. (2015) described efficient implementations of the continuous approach.

FFTMA The moving average method was proposed by Journel (1974) for simulation of a
one-dimensional Gaussian random field. Then Oliver (1995) extended it to simulate Gaussian
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fields in two and three dimensions. By moving average, a Gaussian random function Z(x)
with mean m and covariance C can be expressed by

Z(x) = m+ g ∗ δ (4.26)

where g is a convolution root of the covariance C, δ is a Gaussian white noise.

Based on Bochner (1937) theorem (Equation 4.21 and 4.22), Le Ravalec-Dupin et al. (2000)
proposed to simulate the randomness component g∗δ of Equation 4.26 in the spectral domain
by the fast Fourier transform. It is a combination of fast Fourier transform and moving average
method therefore it is called FFTMA. Simulations are done in following steps :

1. Calculate the covariance C(x) on all grids to simulate.

2. Calculate the spectral density function S(f) by fast Fourier transform following Equa-
tion 4.22.

3. Based on the property of convolution on Fourier transform F(g ∗ h) = F(g) · F(h),
obtain the spectral densities G(f) of g by G(f) =

√
S(f).

4. Simulate the randomness component by G(f)F(δ).

5. Apply inverse Fourier transform on G(f)F(δ) to get gδ.

6. Add the mean m to get the final simulation as Equation 4.26.

Note that the size of simulated grids must be larger than or equal to the sum of size of grids
of interest and correlation range. After simulation, the points beyond grids of interest can
be neglected. Applications of the FFTMA can be found in Le Ravalec-Dupin et al. (2001);
Gloaguen et al. (2005b,a); Shamsipour et al. (2011).

Turning bands The turning bands method was developed by Matheron (1973). It trans-
forms an n-dimensional simulation to a series of uni-dimensional simulations by projection.
In the field to simulate, each point can be projected to lines generated from an arbitrary
origin. Denote ui is the unit vector along each line. A random function Z(x) in <n can be
simulated by

ZS(x) = 1
√
nD

nD∑
i=1

Si(x · ui) (4.27)

in which Si is the simulation on each line following a uni-dimensional covariance function
that corresponds to the desired model, nD is the number of lines, and x · ui represents the
inner product of the vectors x and ui.
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In the field given by Equation 4.27, the covariance of two points x1 and x2 is expressed by

CS(x1, x2) = E[ZS(x1)ZS(x2)] = 1
nD

nD∑
i=1

nD∑
j=1

E[Zi(x1 · ui)Zj(x2 · uj)]. (4.28)

Because the simulations along lines are independent, the expectation E[Zi(x1 ·ui)Zj(x2 ·uj)]
is zero unless i = j. Thus the covariance of simulation can be written as

CS(x1, x2) = 1
nD

nD∑
i=1

E[Zi(x1 · ui)Zi(x2 · ui)]. (4.29)

Assuming the uni-dimensional realization is second-order stationary with covariance C1

CS(x1, x2) = CS(h) = 1
nD

nD∑
i=1

C1(h · ui). (4.30)

According to the law of large numbers, this expression can be written as

CS(r) = lim
nD→∞

{
1
nD

nD∑
i=1

C1(h · ui)
}

=
∫
c

C1(h · u)f(u)du (4.31)

where f(u) is the probability function of u ; and c represents the unit circle in 2D and unit
sphere in 3D. Respectively, the covariances of simulation are expressed by

CS(r) = 2
π

∫ r

0

C1(ζ)
(r2 − ζ2)1/2 dζ (4.32)

in the two-dimensional field and

CS(r) = 1
r

∫ r

0
C1(ζ)dζ (4.33)

in the three-dimensional field. The uni-dimensional covariance functions for the usually used
model can be found in listed in Chilès and Delfiner (1999); Gneiting (1998); Marcotte (2015a).

In the two-dimensional simulation, it is complicated to obtain the uni-dimensional covariance
from the Equation 4.32. Mantoglou and Wilson (1982) proposed to use the turning bands
method in the spectral domain and listed the corresponding spectral density functions in
one dimension for common models. Improvements of the spectral turning bands method are
introduced by (Mantoglou, 1987; Emery et al., 2015).
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Gibbs sampler The Gibbs sampler (Geman and Geman, 1984) is an iterative method
based on Markov chain. It can incorporate inequality constraints in simulation. The general
principle is to begin with a simulated field that does not satisfy all the requirements on spatial
variability, and then locally update it step by step until the spatial structure is reproduced.
Consider a random function Z(x), and the point of simulation contains N points : x1, . . . , xN .
The iteration of Gibbs sampler is performed as follows :

1. Assign random Gaussian values at simulation points as initial values that respect the
known constraints.

2. Select a point on simulated grid, xi, either randomly or systematically at all nodes.

3. Choose a value for the node from the conditional distribution of Z(xi) given other
values Z(xk), k = 1, . . . , i−1, i+1, . . . N . Keep this value if it respects the constraints
at this point, otherwise reject it.

4. Repeat steps 2 and 3 until all points are visited.

5. Repeat steps 2-4 finite times until the simulation ZS(x) converges, as explained below.

In simulation of a Gaussian field, the simulated value in step 2 can be simply obtained by
randomly drawing a value from normal distribution of (ZKS(xi), σ2

KS), where the ZKS(xi)
is the kriging estimator at xi, σ2

KS is the variance. With increment of iteration times, the
spatial property of simulation, covariance and histogram, will be close to the expected model.
When the iteration times K is large enough, although the variograms (and the histogram)
calculated from the resulting simulations fluctuate around the target model, their variations
are stabilized. Then the iteration is stopped and the simulation is convergent.

Simulation of categorical variables

A few approaches can be used in the simulation of a categorical variable, such as sequential
indicator simulation(Journel and Isaaks, 1984; Deutsch and Journel, 1998), truncated Gaus-
sian simulation (Matheron et al., 1987; Armstrong et al., 2011) and multiple point statistics
(Guardiano and Srivastava, 1993; Strebelle, 2002; Ortiz and Deutsch, 2004). Truncated Gaus-
sian simulation is proposed by Matheron et al. (1987) to simulate ordered categories with
locally varying proportions. A categorical random field with N facies F1, F2, · · · , FN can be
obtained by simulation of a truncated Gaussian field Y (x).

Fi = {x ∈ <n, ai < Y (x) 6 bi} (4.34)
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The value of an associated standard Gaussian random field in facies Fi is located between
thresholds ai and bi. If we denote the indicator function of the facies by

Ii(x) =
{

1, x ∈ Fi
0, x /∈ Fi

(4.35)

the proportion of each facies will be

pi = E(Ii(x)) = Prob{ai < Y (x) 6 bi} (4.36)

By inverse function of the cumulative Gaussian distribution, the threshold ai and bi can be
obtained. Then we can get the non-centered cross covariance of facies Fi and Fj (or non-
centered direct covariance if i = j) with

Cij(h) = Prob{ai < Y (x) 6 bi, aj < Y (x+ h) 6 bj} (4.37)

The indicator cross-variogram of Fi and Fj is derived by

γij(h) = Cij(0)− Cij(h) + Cji(h)
2 (4.38)

Having the experimental variogram and cross-variogram for indicators, a covariance model for
Y (x) can be fitted. In Chapter 7, we fit variogram models for the indicator of two geological
domains by minimizing the mean squared error weighted by distance and data pairs. Based
on the variogram model, a latent Gaussian field can be simulated by Gibbs sampler under
inequality conditions (Freulon and de Fouquet, 1993).

4.2 The Non-stationary covariance functions based on kernel convolution

Based on kernel convolution theory, several researchers developed non-stationary covariance
functions in different forms. Only the functions used in this thesis are presented here.

Higdon et al. (1999) firstly introduced a non-stationary covariance function by convolving
kernel functions

CNS(xi, xj) =
∫
<n

kxi(u)kxj(u)du (4.39)

where xi, xj are locations in <n, and kx(·) is a kernel function centered at x which has
spatially varying covariance matrix Σ(x). In order to get a smoothly varying function kx(·),
Higdon et al. (1999) parameterized Σ(x) in which parameters evolve with location. This non-
stationary function is proved to be positive definite in <n by Paciorek and Schervish (2006)
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as
m∑
i=1

m∑
j=1

cicjC
NS(xi, xj) =

m∑
i=1

m∑
j=1

cicj

∫
<n

kxi(u)kxj(u)du

=
∫
<n

m∑
i=1

cikxi(u)
m∑
j=1

cjkxj(u) du

=
∫
<n

(
m∑
i=1

cikxi(u)
)2

du

(4.40)

which is always non-negative.

Paciorek (2003) and Paciorek and Schervish (2006) generalized the kernel convolution form
of non-stationary correlation functions. If the isotropic correlation function RS is positive
definite on <n, n = 1, 2, · · · , a non-stationary form can be defined by

RNS(xi, xj) =| Σi |
1
4 | Σj |

1
4 | Σi + Σj

2 |−
1
2 RS(

√
Qij) (4.41)

where Qij = (xi − xj)>(Σi+Σj

2 )−1(xi − xj) (Σi is kernel matrix at xi), and is also positive
definite on <n, n = 1, 2, · · · . By multiplying by a variance parameter σ2 and replacing RS

by its corresponding form, the non-stationary version of the Matérn covariance function is
obtained as

CNS(xi, xj) = σ2 1
Γ(υ)2υ−1 | Σi |

1
4 | Σj |

1
4 | Σi + Σj

2 |−
1
2 (2

√
υQij)υKυ(2

√
υQij) (4.42)

where Γ is the gamma function, Kυ is the modified Bessel function of the second kind, and
υ is a parameter of the covariance. It includes a non-stationary version of the exponential
model when υ = 0.5.

4.3 Compactly supported functions

Typical covariance functions with compact support include the spherical family functions
(Matheron, 1965), Wu’s function (Wu, 1995) and Wendland’s function (Wendland, 1995).
The construction of these functions share one common path : they are derived by performing
certain operators, integral, differential, or/and convolution, on one positive definite radial
functions with compact support.
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4.3.1 Spherical family model and Euclid’s hat

The stationary covariance functions of spherical family model are constructed by auto-
convolution of indicator function wn(ξ) of a sphere in <n (Matheron, 1965),

wn(ξ) =
{

1, ξ ≤ a
2

0, ξ > a
2

(4.43)

where ξ =| x | and a is diameter of hypersphere. A general form of covariogram function of
r =| h | in <n is (Chilès and Delfiner, 1999)

gn(r) =
{
anvn−1

∫ 1
r/a

(1− u2)(n−1)/2 du, if r ≤ a,

0, if r > a,
(4.44)

where vn stands for the volume of the unit-diameter ball in <n that can be expressed by

vn = πn/2

2n−1nΓ(n/2) (4.45)

where Γ(·) is the gamma function. Equation 4.44 is also called "Euclid’s hat" (Schaback,
1995) because in Euclid space the function looks like a hat in two dimensions. Particularly
when n = 1, 2, 3, the covariance function of triangular model valid in < is expressed as

C1(r) =
{

1− r
a
, if r ≤ a,

0, if r > a,
(4.46)

circular model valid in <2

C2(r) =

 π
2

[
arccos

(
r
a

)
− r

a

√
1− r2

a2

]
, if r ≤ a,

0, if r > a,
(4.47)

and spherical model valid in <3

C3(r) =
{

1− 3r
2a + r3

2a3 , if r ≤ a,

0, if r > a,
(4.48)

Radon transform is an integral transform which is also called Montée (Matheron, 1965) in
geostatistics. If f(x1, x2, . . . , xn) is a continuous function with a compact support in <n, the
Radon transformed function Rf is also a compactly supported function defined in <n−1 after
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integrating out xn.
Rf =

∫
R

f(x1, x2, . . . , xn) dxn (4.49)

By repeating the integration on xn, xn−1, . . . , xn−m+1, one obtains the Radon transform of
order m that is defined on space <n−m.

Let gn be the covariogram of the indicator function wn in <n. In isotropic case, Radon
transformed covariograms of orders 1 and 2 gn,1(r) and gn,2(r) of gn(r) are calculated in
Chilès and Delfiner (1999, p. 73)

gn,1(r) = 2
∫ ∞

0
gn(
√
r2 + ρ2) dρ, (4.50)

gn,2(r) = 2π
∫ ∞
r

ugn(u) du. (4.51)

The covariogram gn,m(r) of the m order Radon transform is obtained by repeating Equation
4.50 m times or repeating Equation 4.51 m/2 times when m is even. The Radon transform
of an isotropic covariogram is isotropic. Moreover, the covariogram function gn,2q is 2q-times
continuously differentiable and the corresponding field is q-times mean-square differentiable
(Chilès and Delfiner, 1999).

Matheron (1965) presented two special cases, the covariance function of cubic model and
penta-spherical model valid in <3 when q = 1, n = 5 and q = 2, n = 7 respectively.

C5,2(r) =
{

1− 7 r2

a2 + 35
4
r3

a3 − 7
2
r5

a5 + 3
4
r7

a7 , if r ≤ a,

0, if r > a,
(4.52)

C7,4(r) =
{

1− 22
3
r2

a2 + 33 r4

a4 − 77
2
r5

a5 + 33
2
r7

a7 − 11
2
r9

a9 + 5
6
r11

a11 , if r ≤ a,

0, if r > a,
(4.53)

4.3.2 Wu’s function

Starting with a cut-off polynomial function fl(r)

fl(r) = (1− r2)l+, l ≥ 0, (4.54)

Wu (1995) constructed a class of functions with compact support by differential operator
D(f)(r) (Equation 2.12) on univariate convolution of the basic function fl(r) continuous in
<l−1.

ϕWu
l,k (r) = cl,kD

k(fl ∗ fl)(r), 0 ≤ k ≤ l, (4.55)
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in which cl,k is a constant ensuring ϕWu
l,k (0) = 1. Wu’s function can also be written by a

polynomial q2l−k of degree 2l − k like

ϕWu
l,k (r) = (1− r)2l−k+1

+ q2l−k(r). (4.56)

Wu’s function ϕWu
l,k (r) is positive definite in <2k+1 and possesses 2l − 2k derivatives.

Moreover, Wu’s construction can be connected to Euclid’s hat (denoted by X2n+1) defined
in odd space dimension <2n+1 by integral operator I(f)(r).

ϕWu
l,k

.= I l−kX(2l+1). (4.57)

in which .= means equality up to a constant. Proof of this connection can be found in Wend-
land (1995). The integral operator I(f)(r) (Equation 2.11) is a special case of Radon trans-
form with the second order (Equation 4.51). Therefore, as noted by Gneiting (2002), Wu’s
function corresponds to the spherical family model of Matheron (1965).

4.3.3 Wendland’s function

Wendland (1995) developed a group of compactly supported radial basis functions by starting
with the truncated power function which is also called Askey’s power function (Askey, 1973),

ϕl(r) = (1− r)l+ (4.58)

defined in <d if l ≥ bd2c + 1. Here bxc denotes the largest integer less than or equal to x.
Then applying the integral operator I(f)(r) (Equation 2.11) repetitively k times on this
basic function defines a class of compactly supported functions

ϕWe
l,k (r) = cl,kIkϕl(r), r ≥ 0, k = 0, 1, · · · , (4.59)

where cl,k is a constant keeping ϕWe
l,k (0) = 1 and

Ikϕ = I(Ik−1ϕ), k ≥ 1. (4.60)

It can also be written by a real polynomial pl,k of degree k like

ϕWe
l,k (r) = (1− r)l+k+ pl,k(r). (4.61)

The Wendland’s function ϕWe
l,k (r) is strictly positive definite on <d when l = bd2c + k + 1.
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It possesses 2k derivatives around zero and k + l − 1 derivatives around 1. More details on
Wendland’s function can be found in Wendland (1995, 1998). Although this family possesses
some interesting properties, like a smooth spectral density without zeros (Marcotte, 2015b),
it will not be used in the thesis.
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5.1 Abstract

The estimation of overburden sediment thickness is important in hydrogeology, geotechnics
and geophysics. Usually, thickness is known precisely at a few sparse borehole data. To im-
prove precision of estimation, one useful complementary information is the known position of
outcrops. One intuitive approach is to code the outcrops as zero thickness data. A problem
with this approach is that the outcrops are preferentially observed compared to other thick-
ness information. This introduces a strong bias in the thickness estimation that kriging is not
able to remove. We consider a new approach to incorporate point or surface outcrop infor-
mation based on the use of a non-stationary covariance model in kriging. The non-stationary
model is defined so as to restrict the distance of influence of the outcrops. Within this distance
of influence, covariance parameters are assumed simple regular functions of the distance to
the nearest outcrop. Outside the distance of influence of the outcrops, the thickness cova-
riance is assumed stationary. The distance of influence is obtained through a cross-validation.
Compared to kriging based on a stationary model with or without zero thickness at outcrop
locations, the non-stationary model provides more precise estimation, especially at points
close to an outcrop. Moreover, the thickness map obtained with the non-stationary cova-
riance model is more realistic since it forces the estimates to zero close to outcrops without
the bias incurred when outcrops are simply treated as zero thickness in a stationary model.
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5.2 Introduction

Many geotechnical, hydrogeological and geophysical applications require a precise estimation
of overburden thickness. As an example, in geophysics, overburden thickness must be esti-
mated to guide the interpretation for potential field or electrical methods. In hydrogeology,
thickness of the aquifer is an essential part in the development of conceptual models for
aquifer recharge estimation and flow and transport models. The thickness measurements are
typically obtained from existing databases, report maps and field works. The first step is to
carefully validate each data. Then, because the data is sparse, it is important to use efficient
interpolation methods and all available information to minimize estimation errors. Kriging
is designed to provide the estimation with the lowest estimation error variance (Chilès and
Delfiner, 1999). It is based on variogram (or covariance) modeling, under a stationarity hy-
pothesis for the studied variable. Practically, this implies that the spatial correlation between
random variables corresponding to two different points only depends on the separation vector
of the points.

One readily available information that could be useful to complement the borehole and well
data is the known location of outcrops. After all, the overburden thickness at outcrops is
obviously zero. One intuitive approach would be to treat outcrops as simply additional zero
thickness data. However, such an approach could possibly lead to serious bias, in both the
variogram modeling and the kriging, due to the preferential observation of the zero thickness
value. It could be useful to simply discard the outcrops for the modeling phase (variogram
computation and modeling) and introduce the zeros only for the kriging step. But this does
not solve the potential bias problem for the kriging phase.

Dubrule and Kostov (1986) presented kriging under inequality constraints. One idea could
be to use the outcrop information as an inequality, i.e. thickness is negative at outcrops
and positive elsewhere. However, this approach does not really use explicitly the outcrop
information. Moreover, it involves quadratic programming and therefore it is more difficult
to apply than kriging as the solution is obtained iteratively.

Another approach is to use constrained simulation using a Gibbs sampler (Freulon and de Fou-
quet, 1993). In this approach, all points on the map convey the information that it is or not an
outcrop. The Gibbs sampler seeks to simulate a Gaussian field of thickness, conditional to the
borehole data and the outcrop information, that respects the information at all points. The
drawbacks of this approach is CPU time consumption and the necessary Gaussian hypothesis
for the Gibbs sampler.

A possibly better approach could be to use a form of non-stationary kriging. Matheron (1973)
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developed the IRF-k theory to incorporate a polynomial trend in the mean. Another approach
is to link the drift to a secondary variable. The resulting kriging with external drift was applied
in hydrogeology by Brochu and Marcotte (2003), and Rivest et al. (2008) among others. All
these methods would not however avoid the bias introduced by the over-representation of
outcrop data.

Studies attempting to adapt kriging specifically to the case of non-stationary covariance
model include Haas (1990a) who developed a heterogeneous model by moving window where
stationary variogram is allowed locally. He applied this approach to pollutant estimation
(Haas, 1990b, 1995). Similar approaches for environmental applications are found in Horta
et al. (2010) and Soares (2010). Problems with these approaches lies in the estimation of
the variogram within each window and the discontinuities it might introduce. Moreover, it
is conceptually not satisfying that the covariance between two given points changes as a
function of the estimation point.

Sampson and Guttorp (1992) proposed to model non-stationary processes by transforming
the geographical space by multidimensional scaling technique to a deformed space then as-
sumed stationary. Environmental applications of this approach are found in (Guttorp and
Sampson, 1994; Guttorp et al., 1994). Some authors developed case-specific distance mea-
sures that implicitly allow non-stationary covariances (Bailly et al., 2006; Ver Hoef et al.,
2006; de Fouquet and Bernard-Michel, 2006; Vera et al., 2008, 2009; Rivest and Marcotte,
2012). Although interesting, it is not clear how to define a distance that would account for the
numerous outcrops. Moreoever, a stationary covariance in the deformed space with nugget
effect would not remove the bias problem related to the preferential sampling of zeros.

One of the most flexible approaches to model non-stationary fields is the convolution me-
thod proposed by Higdon et al. (1999). They defined non-stationary covariance structures by
convolving spatially varying kernel functions. Some studies focused on extensions and appli-
cations of convolution-based models (Fuentes and Smith, 2001; Paciorek, 2003; Paciorek and
Schervish, 2004, 2006; Jun and Stein, 2008; Rivest and Marcotte, 2012; Mateu et al., 2013;
Shamsipour et al., 2013).

In this paper, a non-stationary model that accounts for the peculiar nature of the outcrop data
is proposed. Since the influence of outcrops is expected to be local, the thickness covariance
is assumed stationary for the points located outside the distance of influence of outcrops.
Within the distance of influence, the nugget is assumed to decrease to zero when reaching
the outcrop so as to force the estimation to zero. A jointly coherent and admissible model of
covariance for borehole and outcrop points is obtained by the convolution method of Higdon
et al. (1999).
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After a short recall of the main points of the convolution approach, the covariance model
parametrization adopted here and the estimation of the meta-parameters are presented. Then,
a case study is examined where three different methods are compared : Stationary kriging
that ignores the outcrop information (K-S), stationary kriging with outcrop data taken as
zero thickness (K-SO) and the non-stationary kriging (K-NS).

5.3 Methodology

5.3.1 Non-Stationary Covariance Model

Non-stationary covariance model CNS can reflect heterogeneity of a variable’s spatial struc-
ture. The covariance CNS(xi, xj) depends separately on the specific locations xi and xj, not
only on their separation vector xi−xj as in the stationary case. Higdon et al. (1999) proposed
to calculate the non-stationary covariance structures by convolving spatially varying kernel
function :

CNS(xi, xj) =
∫
<2
kxi

(u)kxj
(u)du (5.1)

where xi, xj and u are locations in <2, and kx(u) is kernel functions centered at x. Note that
here the kernel function must be positive definite. An example of a kernel function is the
Gaussian kernel,

kx(u) = (2π)−p/2 |Σ|−1/2 (x− u)TΣ−1(x− u) (5.2)

Paciorek and Schervish (2006) proposed the following class of non-stationary correlation
functions :

RNS(xi, xj) = |Σi|1/4 |Σj|1/4
∣∣∣∣Σi + Σj

2

∣∣∣∣−1/2

RS
(√

Qij

)
(5.3)

with quadratic form,

Qij = (xi − xj)T
(

Σi + Σj

2

)−1

(xi − xj) (5.4)

where RS is a stationary correlation function admissible in all dimensions <p for p = 1, 2, . . .,
Σi is the covariance matrix of the Gaussian kernel centered at xi. Examples of admissible
correlation models are the Gaussian, the exponential, and the Matérn family. Note that the
quadratic form Qij defines a squared distance between points xi and xj equivalent to an
Euclidean distance after rotation and scaling, analogously to the Mahalanobis distance. A
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non-stationary covariance model is obtained by multiplying each entry in RNS by standard
deviations σiσj. Appendix A gives a detailed example of covariance computations for the
non-stationary model used in the case study.

For the overburden thickness modeling, the outcrops can be considered to introduce a non-
stationarity factor in the model. Indeed, at the outcrops, thickness is identically zero eve-
rywhere and the nugget effect is zero as the thickness is perfectly known. It is expected that
close to a known outcrop, thickness should be rather small, and the same for the nugget. On
the other hand, as soon as one gets far enough from an outcrop, one expects that the outcrop
has no more influence on the thickness at that point. These remarks suggest that there could
exist an average distance of influence of the outcrops on the thickness, identified as aout. At
distances larger than aout, the thickness is assumed to behave like a stationary field with
correlation range a where a > aout. Within aout, the covariance model is assumed to be of
the same type (e.g. exponential), have the same sill C but has a correlation range between
a and aout and a nugget effect to sill ratio (C0/C) that decreases as the point gets closer to
the outcrop. Although many parametrizations exist satisfying these criteria, we adopted the
following simple parametrization :

aNS = (1− f(d))aS + f(d)aout (5.5)

C0NS = (1− f(d))C0S (5.6)

f(d) = 0.5 + 0.5cos
(

d

aout
π

)
∀d < aout (5.7)

f(d) = 0 ∀d ≥ aout (5.8)

where aS and C0S are the corresponding parameters of the stationary covariance model, and
d is the distance from the closest outcrop to the point considered. Note that when d > aout,
f(d) = 0, hence, the stationary model applies. On the contrary, when d = 0, f(d) = 1, the NS
correlation range equals aout and the nugget effect becomes 0. Therefore, when estimating a
point located close to an outcrop, the outcrop will receive a strong kriging weight. Conversely,
when kriging a point at a larger distance than aout from an outcrop, the outcrop will usually
receive a smaller kriging weight than with the stationary covariance model. Figure 5.1 shows
the shape of the function f(d) used in Equations 5.5 and 5.6. Figure 5.2 illustrates the
borehole stationary and non-stationary ordinary kriging weights obtained for the simple case
of one borehole data (at x=0) and one outcrop (at x=1000). Weights are shown as a function
of the position of the estimation point. Clearly, the stationary model will fail to recover zero
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thickness close to outcrops, contrary to the non-stationary model.

The stationary covariance function for the overburden thickness with parameters aS, C0S
and C is obtained by optimizing model parameters in a cross-validation study (see section
5.4.2), after visual determination of the model type and possible anisotropies on the experi-
mental variogram obtained without the outcrop data. Once the stationary model is obtained,
the aout parameter is also determined by a cross-validation study that includes the outcrop
information.

Impact of the outcrop influence distance parameter aout

To illustrate the impact of parameter aout, consider a 1D profile with two thickness data (at
x=100 m and x=1100 m) and two outcrop points (at x=400 m and x=700 m). The estimation
by K-S, K-SO and K-NS is computed for different aout values, see Figure 5.3. As already
mentioned, the non-stationary covariance model forces the estimation towards zero when the
estimated point gets close to an outcrop point. The distance of influence of outcrops (aout)
controls the extent of the area directly affected by the outcrop information.

5.3.2 Thickness Estimation

Ordinary kriging (OK) is used to estimate the thickness. With known values Z(xi) at points
xi, (i = 1, · · · , N), OK estimates the value at unknown point x0 by (Chilès and Delfiner,
1999) :

Z(x0)∗ =
∑N

i=1 λZ(xi)
Subject to

∑N
i=1 λ = 1

(5.9)

where λ denotes the weights, which are obtained from the OK system :

C(x1, x1) C(x1, x2) · · · C(x1, xN) 1
C(x2, x1) C(x2, x2) · · · C(x2, xN) 1

... ... . . . ... ...
C(xN , x1) C(xN , x2) · · · C(xN , xN) 1

1 1 · · · 1 0





λ1

λ2
...
λN

µ


=



C(x1, x0)
C(x2, x0)

...
C(xN , x0)

1


(5.10)

where C(., .) is the covariance function, λ’s are weights for observations and µ is the Lagrange
multiplier. C can be either stationary or nonstationary, in the latter case obtained from
Equation 5.3.

The overburden thickness is interpolated by ordinary kriging based on both stationary and
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non-stationary (K-NS) covariance models. In the stationary case, two strategies are compared,
one ignoring completely the outcrop information (K-S), the other treating outcrops simply
as additional data points with zero thickness (K-SO).

5.3.3 Performances Evaluation

To compare performances of K-S, K-SO and K-NS, cross-validation is used (Marcotte, 1995).
For this purpose, the whole data set is split in two subsets, a training set and a testing set.
Using the training data set and all the outcrops, overburden thickness is estimated at points
of the testing set. The estimations are compared with values observed at these points. Two
statistics, the mean error (ME) and the mean absolute error (MAE), are used to evaluate
the estimation accuracy of the three approaches. The ME and MAE are calculated using the
following formulas :

ME = 1
n

n∑
i=1

(Z∗i − Zi) (5.11)

MAE = 1
n

n∑
i=1

|Z∗i − Zi| (5.12)

where Z∗i is the estimated value ; Zi is the real data ; n is the total number of data in the
testing set. These statistics are computed over the whole testing set or only with the points
within distance aout of an outcrop. Recall that the testing set is not involved at all in the
initial determination of the covariance parameters and the aout parameter, therefore the above
statistics represent a fair assessment of the model performances.

5.4 Case Study

5.4.1 Study area

The overburden thickness data, includes 1051 boreholes located in Montérégie Est, in the
south of Québec (Carrier et al., 2013). The study area covers approximately 1500 km2. A set
of 526 boreholes is selected to form the training set. The remaining 525 boreholes form the
testing set. In addition, there are 2065 quasi-point outcrops collected from geological maps.
The data and outcrops locations are shown in Figure 5.4.
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5.4.2 Model Parameters and results

Using only the data in the training set, the experimental variogram on overburden thickness is
computed. An exponential isotropic function provides the optimal MAE for cross-validation
on the training set. This stationary covariance model has parameters nugget C0S = 9.5 m2,
sill C = 78 m2 and correlation range aS = 6686 m. These parameters are used in all the
rounds of cross-validation.

Estimation of aout

For points close to outcrop data, the type of covariance model is assumed remain an expo-
nential isotropic model. The model parameter aout is varied over a series of values between
20 m and 6000 m. The training set MAE cross-validation results are shown in Figure 5.5.
Clearly the MAE reaches a minimum around aout = 120 m.

Comparison between the estimations with non-stationary and stationary cova-
riances

With the optimized covariance parameters, performance of K-NS, K-S and K-SO are compa-
red. To increase statistics robustness, we considered 100 random drawings to form as many
different training sets of size 526 used to estimate the 525 points of the testing set. Note
however that the covariance models is not re-estimated for each training set and the same
exponential isotropic model with nugget C0S = 9.5 m2, sill C = 78 m2 and correlation range
aS = 6686 m is used. Table 5.1 lists the mean statistics for the 100 rounds cross-validation
obtained for the three methods.

The method of stationary kriging with outcrops data treated as zero values (K-SO) shows
the largest MAE. Moreover, the estimates appear biased towards underestimation (ME < 0)
due to the preferential sampling of zero values corresponding to outcrops. This indicates
that, when not used correctly, more information (the 2065 quasi-point outcrops) does not
necessarily brings higher precision. The non-stationary method (K-NS) shows the lowest
MAE among the three methods. The method appears also unbiased (ME≈ 0). The relative
improvements in MAE are respectively 0.2% and 16% compared to K-S and K-SO. When
computing statistics over the testing points within distance aout from the nearest outcrop,
the MAE improves by 13.8% and 35.5% compared to K-S and K-SO. Note that in average
16 boreholes per run (min 8, max 24) were found within the distance aout from an outcrop
leading to a total of 1631 points over the 100 runs used to compute the statistics ME120m and
MAE120m. As expected, the improvement brought by K-NS compared to K-S is larger close to
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Figure 5.5 Training set cross-validation MAE for the non-stationary covariance model as a
function of aout.

the outcrops. Moreover, the ME of K-NS for these points remains close to zero whereas K-S
overestimates the thickness (ME=2.8 m) due to not incorporating the outcrop information.
Hence, the K-NS is as precise as K-S away from the outcrops and more precise close to the
outcrops. K-NS is more precise than K-SO in all circumstances, the latter being seriously
biased.

Figure 5.6 shows the maps of overburden thickness produced by the three methods. The map
of K-SO exhibits a strong influence of outcrops. The effects of zeros is spreading at a large
distance of the outcrops due to the large range of the stationary model. On the contrary, the
maps of K-NS and K-S appear visually quite similar, except for estimation points close to
outcrops where the outcrop effect is only visible on K-NS. Figure 5.7 shows the correlations
between the 3 maps as a function of the distance to the nearest outcrop. Only the points
within that distance are kept when computing correlation. Clearly, differences between K-NS
and K-S are apparent only for points close to outcrops.

Table 5.1 Statistics of estimates by stationary (K-S and K-SO) and non-stationary kriging
(K-NS)

K-S K-SO K-NS
ME -0.0031 -3.0073 -0.0636
MAE 4.2376 5.0349 4.2289
ME120m 2.8212 -7.7798 0.2255
MAE120m 5.8271 7.7915 5.0235
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Figure 5.6 Estimation maps by (a) K-S, (b) K-SO and (c) K-NS. White dots represent
outcrops. Top row, the entire study area. Bottom row, zoom in the outlined rectangle.
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Figure 5.7 Correlations between K-S, K-SO and K-NS as a function of the distance to the
nearest outcrop. Only the points within that distance are kept when computing the correla-
tions.

5.5 Discussion

The non-stationary kriging approach proposed succeeds to account for the information about
presence of outcrops without introducing a bias toward underestimation of the overburden
thickness. This bias is obvious when the outcrops are intuitively treated as zero overburden
thickness and used in ordinary kriging. Note that the bias would remain with alternative
interpolation approaches such as simple kriging with a spatially varying mean or universal
kriging. In the NS model, the smaller correlation range associated with the outcrop points
limits their distance of influence, but keeps the outcrop signature when the estimation point
gets close to it. The estimation map appears very similar to the map that ignores completely
the outcrop information (K-S). However, as the estimation point gets close to the outcrop, the
outcrop influence increases gradually so as to retrieve exactly a zero overburden thickness
when reaching the outcrop. This approach proved more precise than the two contenders
considered. It is definitively more precise than K-SO but only slightly more precise than K-S
(see Table 5.1). Compared to K-S, the main merit of the approach is to provide more realistic
estimates close to the outcrops.

A simple method based on a training set MAE cross-validation was used to estimate the over-
burden stationary covariance and the non-stationary covariance associated with the outcrops.
Parameters for the stationary model were obtained by cross-validation and visual assessment
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of the experimental variograms computed with borehole data only. For the non-stationary
model, the covariance parameters are parametrized as functions of the distance to the closest
outcrop. The parameter aout controls the distance of influence of the outcrops. This parameter
is determined by the cross-validation performance of the corresponding non-stationary kriging
for the thickness estimation in a training set. The optimal value found is small (aout = 120
m), indicating a small distance of influence of the outcrops. Moreover, because the number
of boreholes found within 120 m from an outcrop is limited, it precludes parameterizing the
NS covariance more finely.

Only non-stationarity of the covariance was considered. It could be argued that non-stationarity
of the mean could be present in the vicinity of outcrops. Attempts made with kriging with
external drift where the drift is assumed to vary linearly with the distance to an outcrop fai-
led to improve the estimation. Moreover, this approach was less efficient than the proposed
NS model to force naturally the estimation to zero at outcrops.

5.6 Conclusion

The non-stationary model presented is helpful to include the outcrop information without
introducing the kind of bias that is observed when outcrops are simply treated as additional
zero data. It involves a single additional parameter aout that can easily be estimated by
cross-validation. It helps produce more realistic maps and improve the thickness estimation
precision, especially within the distance of influence of the outcrops.
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5.8 Appendix A

The computation of the non-stationary covariance is illustrated along a profile in 2D. Three
borehole data, one outcrop point and one estimation point are respectively located at x1(100,0),
x2(600,0), x3(1000,0), xout(500,0) and x0(450,0). The points x2, xout and x0 are within the
distance of influence of the outcrop here selected as aout=120 m. Following Equations 5.5
to 5.8, the covariance parameters on these points can be determined. Table 5.2 gives the
resulting covariance parameters associated to each point.

The same stationary and isotropic covariance model as for the case study is used (exponential
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Table 5.2 Non-Stationary covariance model parameters for each point

Point d (m) f(d) a(d) (m) C(d) (m2) C0(d) (m2)
x1 400 0 6686 78 9.5
x2 100 0.067 6246.2 78 8.864
x3 500 0 6686 78 9.5
xout 0 1 120 78 0
x0 50 0.629 2553.3 78 3.521 (not used)

model with C0S = 9.5 m2, C = 78 m2 and aS = 6686 m). Then data-to-data and data-to-
estimation point covariance are calculated following Equation 5.3 and 5.4. In the equation,
xi and xj represent the 2 × 1 vector of coordinates at points i and j. In the model, the NS
covariance at point xi is considered isotropic. Hence, the kernel matrix Σi is a diagonal matrix
with a2

i repeated along the diagonal, and similarly for Σj (with ai obtained from Table 5.2).
As an example, for the pair of points x2 − xout, one computes :

Q2,out = [100, 0]


[

6246.22 0
0 6246.22

]
+
[

1202 0
0 1202

]
2


−1 [

100
0

]
(5.13)

= 5.1243× 10−4

Hence, one gets using Equation 5.3 :

RNS
2,out = 6246.2× 120× (5.1243× 10−8)× exp(−

√
5.1243× 10−4) (5.14)

= 0.0375

Finally, as the point variance was assumed stationary at 78 m2

CNS
2,out = 0.0375 ∗

√
(78)(78) = 2.9289 m2

The resulting data-to-data and data-to-estimation point covariances are listed in Table 5.3
for K-NS and in Table 5.4 for K-SO. For that particular example, the outcrop kriging weight
for K-NS is less than with K-SO. However, as the estimation point gets closer to the outcrop,
the weight assigned to the outcrop point increases (see Figure 5.8).

The model is more general than the above example suggests as the kernel matrix Σi can be
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Table 5.3 Non-Stationary covariances for K-NS and kriging weights

C(xi, xj) C(xi, x0)
x1 x2 x3 xout x0 λ

x1 87.5 72.0322 68.1764 2.5719 48.5711 0.2130
x2 72.0322 86.8636 73.1542 2.9289 52.9483 0.4861
x3 68.1764 73.1542 87.5 2.5181 46.6377 0.0880
xout 2.5719 2.9289 2.5181 78 7.1159 0.2129

Table 5.4 Stationary covariances for K-SO and kriging weights

C(xi, xj) C(xi, x0)
x1 x2 x3 xout x0 λ

x1 87.5 72.3797 68.1764 73.4704 74.0219 0.2420
x2 72.3797 87.5 73.4704 76.8421 76.2696 0.2633
x3 68.1764 73.4704 87.5 72.3797 71.8404 0.1346
xout 73.4704 76.8421 72.3797 87.5 77.4189 0.3601
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any symmetric positive-definite matrix instead of a diagonal matrix. This would enable to
model spatially varying orientation and anisotropy ratio of the ellipses of ranges (i.e. spatially
varying geometric anisotropy). As an example, at point xi with correlation ranges of 1000 m
and 200 m along azimuths 30o and 120o respectively, the associated kernel matrix is :

Σi = UΛUT (5.15)

=
[

cos(30) sin(30)
− sin(30) cos(30)

][
2002 0

0 10002

][
cos(30) − sin(30)
sin(30) cos(30)

]

=
[

280000 415692
415692 760000

]

where U is a rotation matrix.

Similarly, the variance can be modeled as a spatially varying function like here for the range
and the nugget effect. Rivest and Marcotte (2012) shows an example where the variance
of a contaminant is described by a decreasing function of the distance to the source of the
contaminant.
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6.1 Abstract

This article describes the use of non-stationary covariance functions with compact support
to estimate and simulate a random function. Based on the kernel convolution theory, the
functions are derived by convolving hyperspheres in <n followed by a Radon transform.
The order of the Radon transform controls the differentiability of the covariance functions.
By varying spatially the hyperspheres radius one defines non-stationary isotropic versions
of the spherical, the cubic and the penta-spherical models. Closed-form expressions for the
non-stationary covariances are derived for the isotropic spherical, cubic, and penta-spherical
models. Simulation of the different non-stationary models is easily obtained by weighted
average of independent standard Gaussian variates in both the isotropic and the anisotropic
cases. The non-stationary spherical covariance model is applied to estimate the overburden
thickness over an area composed of two different geological domains. The results are compared
to the estimation with a single stationary model and the estimation with two stationary
models, one for each geological domain. It is shown that the non-stationary model enables a
reduction of the mean square error and a more realistic transition between the two geological
domains.

6.2 Introduction

The spatial structure of a Gaussian random field Z(x) : x ∈ <n is fully characterized by its
covariance function. In most popular geostatistical methods, such as kriging approach, the
covariance function C(·, ·) is assumed to be stationary which means the covariance C(xi, xj)
is a function of the vector distance hij = xj − xi or of its norm in the isotropic case. Most of
the time, the Euclidean norm is used although Christakos and Papanicolaou (2000) indicate
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other norms can be used. The hypothesis of stationarity is practical but often too stringent
to fully account for the heterogeneous characteristics of a field.

Haas (1990a) developed a heterogeneous model by moving a window where stationarity is
assumed locally. Developments and applications of this method can be found in Haas (1990b,
1995), Horta et al. (2010) and Soares (2010). Another important method to include non-
stationarity is the spatial transformation technique based on multidimensional scaling (Samp-
son and Guttorp, 1992). Further applications and extensions of this approach are found in
Guttorp et al. (1994); Smith (1996); Meiring et al. (1997); Damian et al. (2001); Schmidt and
O’Hagan (2003); Boisvert and Deutsch (2008).

Higdon et al. (1999) proposed a non-stationary Gaussian covariance model by convolving
spatially-varying kernels. Paciorek (2003) extended this kernel convolution method and pro-
duced explicit non-stationary correlation functions with locally varying geometric anisotro-
pies. By evolving the stationary spectrum over space, Pintore and Holmes (2004) constructed
closed form non-stationary covariance functions that allowed the degree of differentiability to
vary in space. Stein (2005) proposed a very flexible non-stationary spatial covariance functions
for Matérn model that enables the differentiability and the local anisotropy to vary spatially.
Paciorek and Schervish (2006) built a class of non-stationary covariance functions including
a non-stationary version of Matérn covariance model and rational quadratic covariance mo-
del. Following the general non-stationary covariance function of Stein (2005), Mateu et al.
(2013) constructed a class of non-stationary covariance functions by combining completely
monotonic functions and compactly supported covariance functions. However, the resulting
non-stationary covariance functions appear to be not compactly supported. Applications
of non-stationary models using the above models can be found in Paciorek and Schervish
(2006); Jun and Stein (2008); Rivest and Marcotte (2012); Shamsipour et al. (2013); Liang
et al. (2014).

A covariance function with compact support means that the covariance between two points
becomes zero when their distance exceeds a certain threshold. This important property en-
ables to obtain a sparse covariance matrix which can reduce significantly the memory require-
ments when dealing with large datasets. Several methods were proposed to create stationary
covariance functions with compact support (Moreaux, 2008). One trivial approach is to set
to zero the covariances below a certain threshold (Rygaard-Hjalsted et al., 1997). However,
this naive approach does not preserve positive definiteness of the covariance function (Furrer
et al., 2006). Better approaches use tapering of covariance functions that ensures positive de-
finiteness and compactness. Furrer et al. (2006) used tapering functions such as the spherical
and Wendland covariance functions, to obtain stationary compact versions of the Matérn fa-
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mily covariance functions. They gave conditions on the tapering functions to ensure positive
definiteness of the resulting compact covariance. The estimates obtained are asymptotically
optimal, but the kriging variances from the tapered model are biased and need rescaling by a
factor depending on the data locations. Conditions on tapering functions for other covariance
functions than the Matérn class could not be derived by Furrer et al. (2006).

Direct construction of stationary compactly supported covariance functions are described
by Matheron (1965), Sansò and Schuh (1987), Wu (1995), Wendland (1995), and Gneiting
(2002) among others. Matheron (1965) proposed to create compactly supported covariance
functions by ‘La montée’ (an integral operator) and ‘La descente’ (a differential operator)
and gave many examples in isotropic and stationary case. Wu (1995) constructed a compactly
supported function by differential operator D(f)(r) = −1

r
d
drf(r) on univariate convolution

of a cut-off polynomial function fl(r) continuous in <l−1,

fl(r) = (1− r2)l+, l ≥ 0, (6.1)

ϕWu
l,k (r) = cl,kD

k(fl ∗ fl)(r), 0 ≤ k ≤ l, (6.2)

in which cl,k is a constant ensuring ϕWu
l,k (0) = 1. Wu’s function ϕWu

l,k (r) is positive definite in
<2k+1 and possesses 2l − 2k derivatives. Moreover, Wu’s construction can be connected to
Euclid’s hat X(2l+1) by integral operator I(f)(r) =

∫∞
r
uf(u)du,

ϕWu
l,k = I l−kX(2l+1). (6.3)

Euclid’s hat X(2n+1) is generated by d-variate auto-convolution of the characteristic func-
tion of the unit ball. The I operator is a special case of Radon transform with even order.
Therefore, as noted by Gneiting (2002), Wu’s function corresponds to the spherical family of
Matheron (1965). This family is reviewed in Section 6.3.

Wendland (1995) constructed a group of functions with compact supports by starting with
the truncated power function which is also called Askey’s power function (Askey, 1973) ,

ϕl(r) = (1− r)l+, l > 0. (6.4)

Then applying the integral operator I(f)(r) repeatedly on this basic function defines a class
of compactly supported functions

ϕWe
l,k (r) = Ikϕl(r). (6.5)
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Wendland function ϕl,kW e are strictly positive definite on <d if and only if l ≥ d+1
2 + k and

possesses 2k derivatives around zero and k + l − 1 derivatives around 1.

Gneiting (2002) presented turning bands operator to model correlation functions with some
negative values (also called hole effect model). Starting with a compactly supported func-
tion ϕs defined in <s, the transformed function still has compact support and is positive
definite in <s−2. Bellier and Monestiez (2010) proposed to model this hole effect by auto-
convolution of two concentric spheres. Their covariance model has a single wave effect and a
compact support. More classes of Radial basis functions with compact support can be found
in Buhmann (2003). Porcu et al. (2013) proposed multivariate stationary covariance mo-
dels with compact support based on scale mixtures of Askey functions (Askey, 1973). Based
on functions of Wendland (1995) and Gneiting (2002), Kleiber and Porcu (2015) developed
locally-stationary admissible multivariate covariance models with compact support.

Chilès and Delfiner (1999, p. 491) describe how to simulate non-stationary compact models
of the spherical family by dilution with fixed functions defined over hyperspheres of radius
varying in space. However, they did not provide closed-form expressions for the resulting non-
stationary covariances. Moreover, as the dilution function varies in space, the mean as well as
the covariance vary in space with this approach. In this article we adopt a slightly different
and simpler approach. Instead of using dilution functions, equivalent weighting functions are
defined. The weights are normalized so as to provide a unit variance for the simulated field at
all locations, hence defining a non-stationary correlation function. In addition, a closed-form
for non-stationary compactly supported covariance model is obtained for the spherical model
in <n by convolving local indicator functions. For the Radon transformed models (cubic and
penta-spherical models) closed-form expressions are derived in <3. Moreover, the numerical
approximation by discrete convolution of the dilution functions is straightforward, as well as
the extension to the anisotropic case.

After a short review of stationary covariance functions of the spherical family, the theory of
the non-stationary form and its computation are presented. The closed-form expressions for
the non-stationary isotropic spherical, cubic and penta-spherical models are derived. Simple
examples of non-stationary covariances are presented. A method for non-stationary simulation
based on moving average with normalized non-stationary dilution function is described. A
case study for the estimation of overburden thickness in an area composed of two distinct
geological domains is presented.
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6.3 Stationary covariance functions of the spherical family

The compactly supported covariance functions of the spherical family were first proposed by
Matheron (1965). These functions are piecewise polynomial functions. Radon transform is
used to define covariance functions with higher differentiability.

6.3.1 The spherical family

Let w(x) be a function in <n. The n-dimensional auto-convolution of the function w(x) can
be denoted as :

g(h) =
∫
w(x)w(x+ h)dx. (6.6)

The function g(h) is known as the covariogram in geostatistics. This function is positive
definite by construction, therefore it defines a valid stationary covariance function. As an
example, w(x) can be an indicator function on a bounded domain D,

w(x) =
{

1, x ∈ D
0, x /∈ D

(6.7)

Then, the covariogram g(h) is the Lebesgue measure of D ∩ D−h. For example when D is
defined as a line segment in 1D, g(h) represents the length of the intersection between two
identical segments, one being translated by h. When D is a circle in 2D, g(h) is the surface
of intersection of two identical circles with one circle translated by h. Similarly, when D is a
sphere in 3D, g(h) is the intersected volume of two balls with offset h. These cases generate
respectively the well known triangular model, circular model, and spherical model. In <n, the
corresponding covariogram g(h) is the volume of intersection of the two hyperspheres with
offset h.

The widely used spherical family model was proposed by Matheron(1965). A general form of
covariogram function of r = |h| in <n is (Chilès and Delfiner, 1999, p. 81)

gn(r) =
{
anvn−1

∫ 1
r/a

(1− u2)(n−1)/2 du, if r ≤ a,

0, if r > a,
(6.8)

where vn stands for the volume of the unit-diameter ball in <n that can be expressed by

vn = πn/2

2n−1nΓ(n/2) . (6.9)

where Γ(·) is the gamma function. The family of spherical covariance functions have compact
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support, the ball of radius a in <n.

6.3.2 Covariance functions obtained by Radon transform

Radon transform is an integral transform which is also called Montée in geostatistics (Ma-
theron, 1965). If f(x1, x2, . . . , xn) is a continuous function with a compact support in <n, the
Radon transformed function Rf is also a compactly supported function defined in <n−1 after
integrating out xn.

Rf =
∫
R

f(x1, x2, . . . , xn) dxn (6.10)

By repeating the integration on xn, xn−1, . . . , xn−m+1, one obtains the Radon transform of
order m that is defined on space <n−m.

Let gn be the covariogram of the indicator function wn in <n. In isotropic case, Radon
transformed covariograms of orders 1 and 2 gn,1(r) and gn,2(r) of gn(r) are calculated by
Chilès and Delfiner (1999, p. 73)

gn,1(r) = 2
∫ ∞

0
gn(
√
r2 + ρ2) dρ, (6.11)

gn,2(r) = 2π
∫ ∞
r

ugn(u) du. (6.12)

The covariogram gn,m(r) of the m order Radon transform is obtained by repeating Equation
6.11 m times or repeating Equation 6.12 m/2 times when m is even. The Radon transform
of an isotropic covariogram is isotropic. Moreover, the covariogram function gn,2q is 2q-times
continuously differentiable and the corresponding field is q-times mean-square differentiable
(Chilès and Delfiner, 1999). The Radon transform of the geometric covariogram is equal to
the geometric covariogram of the Radon transformed variable. Therefore, applying the Radon
transform of order m = 2q to the indicator function gives a dilution function w̃n,2q(x) defined
in <n−2q. Closed-form expression for the dilution function is given by Chilès and Delfiner
(1999, p. 82).

w̃n,2q(x) =
{
v2q(a2 − 4|x|2)q, if |x| ≤ a

2 ,

0, if |x| > a
2 ,

(6.13)

where v2qis the volume of the unit-diameter ball of <2q.

In section 6.4.1, the dilution functions are used as weighting functions in the moving average
method of simulation. Hence, a more convenient normalizing constant is defined so as to
ensure unit variance at each point. This is obtained by ensuring the sum of squares of the
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weights equals one.

wn,2q(x) =
{
cn,q(a2 − 4|x|2)q, if |x| ≤ a

2 ,

0, if |x| > a
2 ,

(6.14)

Table 6.1 gives the normalizing constant cn,q for the spherical, cubic and penta-spherical
models with correlation range a corresponding to the diameter of the corresponding hyper-
sphere.

6.4 Non-stationary compactly supported covariance functions

In the stationary case, the isotropic spherical covariance model is proportional to the volume
of intersection of two hyperspheres of equal diameter a translated by h. Anisotropy is in-
troduced by replacing the hyperspheres by hyper-ellipsoids as the support for the indicator
function. As suggested by Chilès and Delfiner (1999), an immediate generalization in the
non-stationary case is to allow the hyperspheres or hyper-ellipsoids to have different sizes
and orientations (for the hyper-ellipsoids) defined as a function of the location x.

6.4.1 Non-stationary isotropic covariance model by convolution

The non-stationary random variable Z(x) can be obtained by weighted average as Z(xi) =∫
wi(xi − u)Y (xi − u)du, i = 1, · · · , n where Y (xi − u), i = 1, · · · , n are zero mean and unit

variance independent Gaussian variables. Considering two specific points xi and xj, one has :

CNS(xi, xj) =
∫
<n−2q

wi(xi − u)wj(xj − u)du. (6.15)

Table 6.1 Normalizing constants in Eq. 6.14

Case cn,q

Spherical (n=3, q=0)
( 6
πa3

)0.5

Cubic (n=5, q=1)
( 105

4πa7

)0.5

Penta-spherical (n=7, q=2)
( 3465

64πa11

)0.5
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Following Paciorek and Schervish (2006), for a set of m points, one has :

m∑
i=1

m∑
j=1

cicjC
NS(xi, xj) =

m∑
i=1

m∑
j=1

cicj

∫
wi(xi − u)wj(xj − u)du

=
∫ m∑

i=1

ciwi(xi − u)
m∑
j=1

cjwj(xj − u) du

=
∫ ( m∑

i=1

ciwi(xi − u)
)2

du

(6.16)

which is always non-negative. Hence the non-stationary covariance function is admissible.
Globally the covariance function has a compact support less or equal to the maximum range
found over the field.

6.4.2 Closed-form expression in the non-stationary isotropic case for the sphe-
rical model

Specifically the covariance function of spherical model is the n-dimensional convolution of
indicator functions of two spheres defined in <n. It corresponds to the volume of intersection
of the spheres. The volume of intersection of the two hyperspheres can be calculated by the
sum of the volumes of two hyper caps of hyperspheres (Figure 6.1). A simple form of the
hyper cap volume was proposed by Li (2011). In the following, one assumes ri ≤ rj without
loss of generality. Let P be an intersection point of the two hyperspheres in (b) and (c) of
Figure 6.1. The co-altitude angle ∠Pxixj is denoted as φ. For the smaller cap (0 < φ ≤ π/2,
marked by s-capi in (c) of Figure 6.1) trimmed from sphere i, the volume can be calculated
by :

V s−capi
n (ri, rj, h) = 1

2
πn/2

Γ(n2 + 1)r
n
i Isin2φ(n+ 1

2 ,
1
2) (6.17)

where h is the separation vector between the centers of the two spheres and sin2φ can
be expressed by 1 − (h

2+r2
i−r2

j

2hri
)2. Γ is the gamma function, and Isin2φ(n+1

2 , 1
2) denotes the

incomplete beta function for sin2φ in bound(n+1
2 , 1

2). The two functions can be easily and
rapidly computed.

The volume of the larger cap (denoted by l-capi in (b) of Figure 6.1) from sphere i is simply
the volume of the small hypersphere i minus the volume of the small cap :

V l−capi
n (ri, rj, h) = V sphi

n (ri)− V s−capi
n (ri, rj, h)

= πn/2

Γ( n
2 +1)r

n
i − 1

2
πn/2

Γ( n
2 +1)r

n
i Isin2φ(n+1

2 , 1
2)

= πn/2

Γ( n
2 +1)r

n
i

(
1− 1

2Isin2φ(n+1
2 , 1

2)
) (6.18)
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Figure 6.1 General view of circle-circle intersection
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Therefore, considering that the volumes of both caps are calculated with different formulas,
the intersection of the two hyperspheres show four different domains of definition (as illustra-
ted with the circle-circle intersection in Figure 6.1 ) : (a) the larger sphere encloses entirely
the smaller sphere ; (b) the larger sphere encloses the larger cap of the smaller sphere ; (c)
the larger sphere encloses the smaller cap of the smaller sphere ; and (d) no intersection. The
volume of intersection of spheres Vn(ri, rj, h), is described by a piecewise function.

Vn(ri, rj, h) =



πn/2

Γ( n
2 +1)r

n
i , 0 ≤ h < rj − ri

1
2

πn/2

Γ( n
2 +1)r

n
j Isin2φ′(n+1

2 , 1
2)+

πn/2

Γ( n
2 +1)r

n
i

(
1− 1

2Isin2φ(n+1
2 , 1

2)
)
, rj − ri ≤ h <

√
r2
j − r2

i

1
2

πn/2

Γ( n
2 +1)r

n
j Isin2φ′(n+1

2 , 1
2)+

1
2

πn/2

Γ( n
2 +1)r

n
i Isin2φ(n+1

2 , 1
2),

√
r2
j − r2

i ≤ h < rj + ri

0, h ≥ rj + ri

(6.19)

where ri and rj are respectively the radius of the smaller and larger hyperspheres, sin2φ and
sin2φ′can be replaced by 1− (h

2+r2
i−r2

j

2hri
)2 and 1− (h

2+r2
j−r2

i

2hrj
)2 respectively. In 3D case, the

volume of intersection of two spheres simplifies to :

V3(ri, rj, h) =


4π
3 r

3
i , 0 ≤ h < rj − ri

π
12h(ri + rj − h)2

(h2 + 2hri − 3r2
i + 2hrj + 6rirj − 3r2

j ), rj − ri ≤ h < rj + ri

0, h ≥ rj + ri

(6.20)

The correlation function of xi and xj in <n is obtained by normalizing the covariance function
by the standard deviation functions at xi and xj. The standard deviation function σ(xi)
actually is the square root of the volume of the sphere centered at xi. Thus after normalizing
by π

n
2

Γ( n
2 +1)(rirj)

n
2 , a non-stationary correlation function is obtained :

RNS(xi, xj) =



( ri

rj
)n

2 , 0 ≤ h < rj − ri
1
2( rj

ri
)n

2 Isin2φ(n+1
2 , 1

2)+
( ri

rj
)n

2
(
1− 1

2Isin2φ(n+1
2 , 1

2)
)
, rj − ri ≤ h <

√
r2
j − r2

i

1
2( rj

ri
)n

2 Isin2φ(n+1
2 , 1

2)+
1
2( ri

rj
)n

2 Isin2φ(n+1
2 , 1

2),
√
r2
j − r2

i ≤ h < rj + ri

0, h ≥ rj + ri

(6.21)

Note that the above function is not equal to one when h = 0. This is because the smaller
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sphere represents only a part of the larger sphere, hence is different and the correlation is not
1. This could correspond for example to two points spatially close but on either sides of a
fault. On the contrary, when the transition between the ranges is gradual the non-stationary
correlation function goes to 1 as h goes to 0.

The variance can also vary in space. This defines the following non-stationary covariance
model with compact support :

CNS(xi, xj) = σ(xi)σ(xj)RNS(xi, xj) (6.22)

6.4.3 Other non-stationary isotropic models of the spherical family model

In a similar way as for the isotropic spherical model, the non-stationary covariance function
CNS can be computed by evaluating CNS(xi, xj) =

∫
wi(xi−u)wj(xj−u)du where the weight

functions are given by Eq. 6.14. These functions were evaluated by applying the convolution
theorem that states that the convolution of two functions in the spatial domain is a simple
product in the spectral domain. Hence, the Fourier transform of each weight function were
multiplied and the inverse Fourier transform was obtained. The resulting rather lengthy, but
simple, expressions are presented in the appendix.

6.4.4 Computation of non-stationary anisotropic spherical family covariance
models

In the anisotropic case, the dilution (or weight) function is defined over an hyper-ellipsoid.
As this ellipsoid change orientations in space, there is no simple formulas to compute the
volume of intersection, even for the spherical model (indicator dilution function). However,
it can be computed numerically. First, a fine 3D grid is selected in the original coordinate
system. Then, for each point xi in turn, the local grid including the ellipsoid found at xi is
rotated according to the direction of anisotropy and scaled so that the ellipsoid becomes a unit
sphere. The weight function w(·) is then obtained from the isotropic closed-form expression
given in Eq. 6.14 evaluated at the points of the local transformed grid but reported at the
points of the original grid, giving w(xi − x). Finally, the covariance is obtained numerically
as C̃NS(xi, xj) =

∑
x∈gridwi(xi− x)wj(xj − x)∆v where ∆v is the volume of one discretizing

grid cell.
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6.5 Examples

6.5.1 Correlation

The correlation is a function of the distance between the points and their correlation ranges.
The correlation between two points RNS(xi, xj) with ranges ai = 1 and aj ≤ 1 is shown for
the spherical case in Figure 6.2. When ai 6= aj, the non-stationary correlation function has
compact support (ai + aj)/2. As the distance between two points decreases, the correlation
increases. When the distance hij < (ai−aj)/2, the volume of intersection of the two spheres is
the volume of the small sphere. This volume of intersection is proportional to the covariance
between the two variables associated with points xi and xj. As the variance of each variable
is proportional to the volume of each sphere, the covariance can be normalized at

√
a3
j/a

3
i to

obtain a NS correlation function.

Figure 6.3 gives the correlation between xi and xj where the correlation range at xj is
obtained by linear interpolation between range 1 at xi and range 0.5 for hij = 1. Spherical,
cubic and penta-spherical models are represented. The correlation curve changes smoothly
as a function of the location considered. For comparison, the stationary correlation functions
with intermediate range 0.75 are also illustrated.

6.5.2 Unconditional simulation

As indicated in section 6.4.1, the non-stationary random function Z(x) can be obtained by
weighted average as Z(xi) =

∫
wi(xi − u)Y (xi − u)du where Y (xi − u), i = 1, · · · , n are

independent standard Gaussian variables. The weight functions are given in Eq. 6.14 after
suitable rotation and scaling as described in section 6.4.4.

Figure 6.4 shows 2D realizations from non-stationary isotropic models of the spherical family
by this approach. The simulated fields of cubic model and penta-spherical model are smoother
than spherical model since they have 1 time and 2 times mean-square differentiability. Figure
6.5 compares the theoretical variogram to the experimental ones for 100 realizations on grids
1000*200 from a spherical model where range changes from 30 on top to 5 on bottom. The
average variogram fits well the theoretical curve.

Non-stationary anisotropic realizations of the spherical, cubic and penta-spherical models are
shown in Figure 6.6. In this figure, the range is increasing from 5 to 50 going from the circle
center to the border and the direction of anisotropy is radial.

Simulation times obtained for the non-stationary simulation are reported in Table 6.2. The
computation times increase linearly with the number of points to simulate and are propor-
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Figure 6.2 Spherical NS correlation between points xi (with range ai) and point xj (with range
aj) as a function of distance between the points (||xi − xj||). For ||xi − xj|| < (ai − aj)/2
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Figure 6.3 NS correlation ((solid lines) and stationary correlation (dashed lines) between
points xi (where range ai = 1) and point xj (where range aj = 1 − 0.5|hij|) as a function
of distance between the points (hij = ||xi − xj||) for the spherical, the cubic and the penta-
spherical models. For comparison, the stationary correlation functions with an intermediate
range of 0.75 are also illustrated.
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Figure 6.4 Non-stationary isotropic realizations by (a) spherical model, (b) cubic model and
(c) penta-spherical model. In all simulations, range of model is changing from 30 on top to 5
on bottom.
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Figure 6.6 Non-stationary anisotropic realizations by (a) spherical model, (b) cubic model
and (c) penta-spherical model. In all simulations, the azimuth and range of a point are
functions of location. The direction of the main continuity follows the azimuth and the range
increases linearly from 5 pixels at the center to 50 pixels at the circumference. The range in
the tangential direction is set to 1/3 the range in the radial direction. (d) shows the local
structure by illustrating the local support of the weight function.
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tional to (a/dx)3 where a is the range and dx is the discretization mesh used. Therefore,
the proposed method of simulation would not be efficient for fields with large range and fine
mesh. In that case, an alternative could be to envisage a non-stationary sequential Gaussian
(NS-SGS) method using covariances evaluated numerically. However, the numerical evalua-
tion of all NS-covariances could be computationally as challenging as the approach described
here unless closed-form expressions are available. Therefore, it is advantageous, in presence
of large ranges, to resort to combination of isotropic NS spherical, cubic, and penta-spherical
together with isotropic or anisotropic Matérn or Gaussian NS covariance models for which
closed-form expressions exist. Note finally that the moving average simulation method leads
to easy parallelization as the weight functions and the moving average can be computed
simultaneously and independently at each point of the simulation.

6.5.3 Conditioning the realizations

The conditioning of the realizations to the observed data is done by NS-kriging in a similar
way as for the stationary case (Chilès and Delfiner, 1999). The only modification to bring is
to replace the stationary covariance by the NS-covariance in the kriging system. Figure 6.7
shows an example of three conditional realizations obtained in 1D for a cubic model with
range abruptly changing at x = 50.

6.5.4 Sparse covariance matrix

Compactly supported covariance function creates sparse covariance matrix. The sparsity de-
pends of the ratio of the average range to the field size. Taking an example of 10 thousands
points on a mesh 100 ∗ 100, the covariance matrix has size 104 ∗ 104. Table 6.3 gives the cova-
riance matrix sparsity, and memory consumption ratio for three stationary ranges. Clearly,
substantial gains in memory can be achieved when sparsity is important, i.e. when range is
small compared to the field size.

Table 6.2 Computation time (seconds) of isotropic simulations by spherical model

Range
Size of simulation 100 by 100 200 by 200 400 by 400 800 by 800

NS
isotropic
simulation

a changes from 5 to 20 6 23 89 350
a changes from 5 to 40 19 72 287 1126
a changes from 5 to 80 160 646 2535 10240
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Figure 6.7 Three 1D conditional realizations for cubic model with range 10 for x < 50 and
range 2 for x > 50.

Table 6.3 Sparsity and memory consumption for a simulated field of size 100 × 100

Range Sparsity (%) Memory consumption ratio full/sparse
10 97.2 17.8
20 89.6 4.8
30 78.6 2.3
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6.6 Case study

The data on overburden thickness in Montérégie Est in the south of Québec is used as a simple
application of non-stationary spherical covariance functions. There are 831 observations in
the study area which possesses two distinct geological domains, as illustrated in Fig. 6.8. The
spatial distributions of overburden in these two domains differ, a larger range being observed
in the western domain. The results of kriging overburden thickness with the stationary and
the non-stationary models are compared.

In the stationary case, the global covariance model is obtained from all the thickness data
in the studied area by leave-one-out cross validation (Marcotte, 1995). An isotropic spherical
function provides the optimal mean square error with parameters nugget 10m2, total sill
33m2 and correlation range 6km. Then, the procedure is repeated to estimate separately the
spatial structure in both geological domains. In the western domain, the isotropic spherical
covariance function has parameter nugget 3.5m2, total sill 34.5m2 and isotropic correlation
range 20km. In the eastern domain, the covariance function is still isotropic spherical and
has nugget 3m2, total sill 54m2 but correlation range of only 1km.

To allow for a gradual transition between the two domains, a transition area is defined around
their contact. The three parameters sill, range and ratio nugget/total sill are assumed to vary
smoothly and continuously within the transition zone, from the values on the western zone
to the values in the eastern zone. The variation is parametrized with the following function
for a parameter p :

p(x) = pw, ∀x ∈Western part
p(x) = pe, ∀x ∈ Eastern part
p(x) = 1/2

(
pw + pe + cos( deπ

width
)(pe − pw)

) (6.23)

where pw and pe are parameter in the western and eastern domain, de is the distance from
the eastern edge of the transition zone to the point and width is the width of the transition
zone. Fig. 6.9 shows an example of range evolution. The width of transition zone centered
at boundary is considered as a parameter of the non-stationary model. Taking an example
where the transition zone has width 3km, Figure 6.10 shows the covariance contours at a few
selected points.

Cross-validation results are compared for different widths of the transition zone. The results
obtained are also compared to a global stationary kriging ignoring the geological domains
and one separate stationary kriging for each domain. Cross-validation statistics are computed
for the whole area and within a subarea around the geological contact, see Table 6.4.

The non-stationary kriging does not show significant improvement for the mean absolute
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Figure 6.8 Map of study area and sample data. Size of symbols is proportional to thickness
value. Black and gray symbols represent sample data in different geological domain.
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Figure 6.10 Covariance contours on 10 points in the study area. The black dashed line repre-
sents the boundary of the two geological domains.

error (MAE) over the whole area. The best reduction in MAE over the whole area of the
non-stationary kriging with respect to global stationary kriging and local stationary-kriging
are about 1.3% and 0.4% respectively for a width of approximately 2 km. However, on the
subarea centered at the geological contact, the stationary global model shows the largest
MAE. The non-stationary kriging has worse estimation than stationary kriging with local
models when the transition area is taken wider than 4km but is better when a narrower
transition area is assumed. The best reduction in MAE reaches 13 % and 5.9 % for the subarea
around the contact compared to global and local stationary krigings. Similar observations
can be made for the root mean square error (RMSE).

When the width of transition area reduces to 0, statistics of non-stationary kriging are close
to the stationary case with local models. They are not identical however as in one case (local
stationary models) only the data in the same domain as the estimation point are taken,
whereas in the non-stationary case, data from both domains are used.

Figure 6.11 shows the maps obtained using a global stationary model (a), local stationary
models (b) and a non-stationary model with transition zones of total width 3 km (c). Parts
surround by white rectangles are enlarged in Figure 6.12. The map of the global stationary
model is smooth, but differences of spatial structures between the two geological domains
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Table 6.4 Statistics of estimates by stationary and non-stationary kriging

On whole region On an area cen-
tered at boundary
with width 3km in-
cluding 70 data

MAE RMSE MAE RMSE
Stationary kriging with global model 4.71 6.58 6.39 7.96
Stationary kriging with local models 4.67 6.64 5.93 7.97

Non-stationary
kriging with
transition area
width d

d = 10km 4.71 6.67 6.22 7.98
d = 8km 4.72 6.66 6.14 7.87
d = 6km 4.70 6.64 6.06 7.73
d = 4km 4.67 6.61 5.85 7.48
d = 3km 4.65 6.58 5.69 7.26
d = 2km 4.66 6.57 5.70 7.17
d = 1km 4.65 6.58 5.58 7.32
d = 0km 4.68 6.64 5.87 7.89

are not visible. The map from stationary kriging with a local model per geological domain
shows local feature in each domain. However, the boundary shows a sharp change that is not
expected for a variable like the overburden thickness. The map from the non-stationary model
keeps the geological domain characteristics and improves the smoothness at the boundary,
as seen in Figure 6.12. Figure 6.13 shows the kriging standard deviation of global, local
stationary and non-stationary models. The estimated variance in the eastern part is higher
than in the western part due to the shorter range and high sill of the local model in this part.
The standard deviation in (c) shows a transitional zone at the boundary of the two geological
domains.

6.7 Conclusion and discussion

In this article, the family of non-stationary covariance functions with compact support sugges-
ted by Chilès and Delfiner (1999) was studied. Closed-form expressions for the non-stationary
isotropic spherical, cubic and penta-spherical models were derived. For the anisotropic case,
numerical approximation based on the known weighting functions are used. The models so de-
fined (and their numerical approximation) were shown to be admissible. The non-stationary
compact support models constitute a valuable addition to the set of existing unbounded
non-stationary models (e.g. exponential, Gaussian and Matérn class) for which closed-form
expressions are available for both the isotropic and anisotropic cases. The new NS covariance
functions with compact support provide a wide class of functions that can be used to taper
the unbounded NS covariance models for which anisotropic closed-form expressions exist.
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Figure 6.11 Estimation maps at the whole area by (a) stationary kriging with global model,
(b) stationary kriging with local model in each domain and (c) non-stationary kriging with
a total 3 km wide transition area (between dashed lines), centered at the contact between
the geological domains, where the model parameters change continuously. The white points
represent data locations. The black line indicates the contact of two geological domains.
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model, (b) stationary kriging with local model in each domain and (c) non-stationary kriging
with a transition area in which the model parameters change continuously.
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This would allow to generate anisotropic NS tapered covariance.

The spherical family of covariance functions is formed of polynomial functions. The differen-
tiability of the function is controlled by the dimension n of hyperspheres and the order of
the Radon transform. Allowing the diameter of the hyperspheres to vary in space enables
to define a non-stationary covariance function in Rn. After applying the Radon transform of
order 2q, the non-stationary covariance function is admissible in <n−2q and is 2q times dif-
ferentiable. One advantage of the models with compact support is the reduction in memory
requirement due to the sparsity of the resulting covariance matrix.

It was not possible to obtain the closed-form expressions of the non-stationary covariances in
the anisotropic case. However, all the covariances of the spherical family (including cubic and
penta-spherical models) can be evaluated numerically easily as the associated weighting func-
tions are known. The same functions also allow easy simulation of the non-stationary fields by
moving average over an independent zero-mean, unit-variance Gaussian field. Alternatively,
the numerical values of the covariance can be computed and used within SGS or Cholesky
simulation methods by simply replacing the stationary covariances by non-stationary ones.

Admittedly, the choice of parametrization of the spatial variation of the NS covariance para-
meters (the supra-model) and the estimation of its parameters remain key elements control-
ling the quality and success of any NS modeling approach. This remains an open area of
research. In the application example, the choice of imposing a transition zone was dictated
by geological considerations. The form of the supra-model was chosen so as to ensure conti-
nuity with the geological domains at the fringe of the transition zone and the parameters were
chosen by cross-validation. These choices led to improvements in RMSE over the transition
zone of 8.8% compared to either a single zone stationary kriging or to separate stationary
kriging within each geological domain.
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6.9 Appendix - Closed-form expressions for the cubic and the penta-spherical
models

The closed-form expressions for the 3D non-stationary isotropic cubic covariance functions
with supports a1 and a2 and with a1 > a2 are given, after normalization to a unit sill, by :

C(a1, a2, r) =



28r2+3a2
2−7a2

1
3a2

2−7a2
1

0 ≤ r ≤ (a1−a2)
2

− (a1+a2−2r)4

256a5
2(−7a2

1+3a2
2)r [35a4

1 − 4a3
1(35a2 + 26r)

+2a2
1 (105a2

2 + 68a2r + 4r2)
+(a2 − 2r)2 (35a2

2 + 36a2r + 12r2)
+4a1 (−35a3

2 + 34a2
2r + 60a2r

2 + 24r3)] (a1−a2)
2 ≤ r ≤ (a1+a2)

2

0 (a1+a2)
2 ≤ r

(6.24)

Similarly, the closed-form expressions for the penta-spherical model are :

C(a1, a2, r) =



99a4
1+15a4

2+440a2
2r

2+1584r4−66a2
1(a2

2+12r2)
99a4

1−66a2
1a

2
2+15a4

2
0 ≤ r ≤ (a1−a2)

2
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1536a7
2(33a4

1−22a2
1a

2
2+5a4

2)r [231(a1 − a2)6 − 12(a1 + a2)

(89a4
1 − 392a3

1a2 + 622a2
1a

2
2 − 392a1a

3
2 + 89a4

2)r
+36 (29a4

1 + 28a3
1a2 − 178a2

1a
2
2 + 28a1a

3
2 + 29a4

2) r2

+32(a1 + a2) (29a2
1 − 140a1a2 + 29a2

2) r3

−48 (13a2
1 + 70a1a2 + 13a2

2) r4

−960(a1 + a2)r5 − 320r6] (a1−a2)
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2

0 (a1+a2)
2 ≤ r

(6.25)
Figure 6.14 illustrates the resulting covariance functions for the case a1=1 and a2 = 0.5, 0.7
and 0.9 for the cubic and the penta-spherical model.



84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance |r
ij
|

C
o
v
a
ri
a
n
c
e
 C

(r
)

 

 

a
i
=1,a

j
=0.5, cubic

a
i
=1,a

j
=0.7, cubic

a
i
=1,a

j
=0.9, cubic

a
i
=1,a

j
=0.5, penta−spherical

a
i
=1,a

j
=0.7, penta−spherical

a
i
=1,a

j
=0.9, penta−spherical

Figure 6.14 NS isotropic covariance for the cubic and the penta-spherical model for various
supports.



85

References

ASKEY, R. (1973). Radial characteristic functions. Technical report, University of Wis-
consin.

BELLIER, E. and MONESTIEZ, P. (2010). A spatial covariance model with a single wave
effect and a finite range. Statistics and Probability Letters, 80, 1343–1347.

BOISVERT, J. and DEUTSCH, C. V. (2008). Shortest anisotropic path to reproduce com-
plex geological features. 8th International Geostatistics Congress, Santiago, Chile. vol. 27,
1041–1046.

BUHMANN, M. D. (2003). Radial basis functions : theory and implementations, vol. 12.
Cambridge university press.

CHILÈS, J. P. and DELFINER, P. (1999). Geostatistics : Modeling Spatial Uncertainty.
John Wiley & Sons.

CHRISTAKOS, G. and PAPANICOLAOU, V. (2000). Norm-dependent covariance permis-
sibility of weakly homogeneous spatial random fields. Stoch Environ Res Risk Assess, 14,
1–8.

DAMIAN, D., SAMPSON, P. D. and GUTTORP, P. (2001). Bayesian estimation of semi-
parametric non-stationary spatial covariance structures. Environmetrics, 12, 161–178.

FURRER, R., GENTON, M. G. and NYCHKA, D. (2006). Covariance tapering for inter-
polation of large spatial datasets. Journal of Computational and Graphical Statistics, 15,
502–523.

GNEITING, T. (2002). Compactly supported correlation functions. Journal of Multivariate
Analysis, 83, 493–508.

GUTTORP, P., MEIRING, W. and SAMPSON, P. D. (1994). A space-time analysis of
ground-level ozone data. Environmetrics, 5, 241–254.

HAAS, T. C. (1990a). Kriging and automated variogram modeling within a moving window.
Atmospheric Environment. Part A. General Topics, 24, 1759–1769.

HAAS, T. C. (1990b). Lognormal and moving window methods of estimating acid deposi-
tion. Journal of the American Statistical Association, 85, 950–963.

HAAS, T. C. (1995). Local prediction of a spatio-temporal process with an application to
wet sulfate deposition. Journal of the American Statistical Association, 90, 1189–1199.

HIGDON, D., SWALL, J. and KERN, J. (1999). Non-stationary spatial modeling. Bayesian
statistics, 6, 761–768.



86

HORTA, A., CAEIRO, M. H., NUNES, R. and SOARES, A. (2010). Simulation of conti-
nuous variables at meander structures : Application to contaminated sediments of a lagoon.
P. M. Atkinson and C. D. Lloyd, editors, geoENV VII - Geostatistics for Environmental Ap-
plications, Springer Netherlands, no. 16 Quantitative Geology and Geostatistics. 161–172.

JUN, M. and STEIN, M. L. (2008). Nonstationary covariance models for global data. The
Annals of Applied Statistics, 2, 1271–1289.

KLEIBER, W. and PORCU, E. (2015). Nonstationary matrix covariances : compact sup-
port, long range dependence and quasi-arithmetic constructions. Stochastic Environmental
Research and Risk Assessment, 29, 193–204.

LI, S. (2011). Concise formulas for the area and volume of a hyperspherical cap. Asian
Journal of Mathematics and Probability Letters Statistics, 4, 66–70.

LIANG, M., MARCOTTE, D. and BENOIT, N. (2014). A comparison of approaches to
include outcrop information in overburden thickness estimation. Stochastic Environmental
Research and Risk Assessment, 28, 1733–1741.

MARCOTTE, D. (1995). Generalized cross-validation for covariance model selection. Ma-
thematical geology, 27, 659–672.

MATEU, J., FERNÁNDEZ-AVILÉS, G. and MONTERO, J. M. (2013). On a class of non-
stationary, compactly supported spatial covariance functions. Stochastic Environmental
Research and Risk Assessment, 27, 297–309.

MATHERON, G. (1965). Les variables régionalisées et leur estimation. PhD Dissertation,
Faculté des Sciences, Université de Paris.

MEIRING, W., MONESTIEZ, P., SAMPSON, P. D. and GUTTORP, P. (1997). Deve-
lopments in the modelling of non stationary spatial covariance structure from space-time
monitoring data. Ernest Y. Baafi and Neil A. Schofield, editors, Geostatistics Wollongong
96, Springer. 162–173.

MOREAUX, G. (2008). Compactly supported radial covariance functions. Journal of Geo-
desy, 82, 431–443.

PACIOREK, C. J. (2003). Nonstationary Gaussian processes for regression and spatial
modelling. PhD Dissertation, Department of Statistics, Carnegie Mellon University.

PACIOREK, C. J. and SCHERVISH, M. J. (2006). Spatial modelling using a new class of
nonstationary covariance functions. Environmetrics, 17, 483–506.

PINTORE, A. and HOLMES, C. (2004). Non-stationary covariance functions via spatially
adaptive spectra. Technical report, Department of Statistics, University of Oxford.



87

PORCU, E., DALEY, D. J., BUHMANN, M. and BEVILACQUA, M. (2013). Radial basis
functions with compact support for multivariate geostatistics. Stochastic Environmental
Research and Risk Assessment, 27, 909–922.

RIVEST, M. and MARCOTTE, D. (2012). Kriging groundwater solute concentrations using
flow coordinates and nonstationary covariance functions. Journal of Hydrology, 472–473,
238–253.

RYGAARD-HJALSTED, C., CONSTABLE, C. G. and PARKER, R. L. (1997). The in-
fluence of correlated crustal signals in modelling the main geomagnetic field. Geophysical
Journal International, 130, 717–726.

SAMPSON, P. D. and GUTTORP, P. (1992). Nonparametric estimation of nonstationary
spatial covariance structure. Journal of the American Statistical Association, 87, 108–119.

SANSÒ, F. and SCHUH, W.-D. (1987). Finite covariance functions. Bulletin Géodésique,
61, 331–347.

SCHMIDT, A. M. and O’HAGAN, A. (2003). Bayesian inference for non-stationary spatial
covariance structure via spatial deformations. Journal of the Royal Statistical Society :
Series B (Statistical Methodology), 65, 743–758.

SHAMSIPOUR, P., MARCOTTE, D., CHOUTEAU, M., RIVEST, M. and BOUCHEDDA,
A. (2013). 3D stochastic gravity inversion using nonstationary covariances. Geophysics, 78,
G15–G24.

SMITH, R. (1996). Estimating nonstationary spatial correlations. Preprint, University of
North Carolina, 76.

SOARES, A. (2010). Geostatistical methods for polluted sites characterization. P. M. Atkin-
son and C. D. Lloyd, editors, geoENV VII - Geostatistics for Environmental Applications,
Springer Netherlands, no. 16 Quantitative Geology and Geostatistics. 187–198.

STEIN, M. L. (2005). Nonstationary spatial covariance functions. Technical report, Uni-
versity of Chicago, Center for IntegratingStatistical and Environmental Science.

WENDLAND, H. (1995). Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree. Advances in computational Mathematics, 4, 389–396.

WU, Z. (1995). Compactly supported positive definite radial functions. Advances in Com-
putational Mathematics, 4, 283–292.



88

CHAPTER 7 ARTICLE 3 : SIMULATION OF NON-LINEAR
COREGIONALIZATION MODELS BY FFTMA
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7.1 Abstract

A fast and efficient method to simulate multivariate fields with non-linear models of core-
gionalization (N-LMC) is described. The method generalizes FFTMA to the multivariate
simulation of the N-LMC with symmetric cross-covariances, hence the name GFFTMA. It
allows for example to use an exponential model as the direct covariance for the main variable,
a Cauchy model for the secondary variable and a K-Bessel model for the cross-covariance.
Each covariance and cross-covariance are Fast Fourier Transformed (FFT) to get the discrete
spectral densities. Then the spectral matrix is eigen-decomposed at each frequency separa-
tely to provide the square root matrix and to enforce positive-definiteness in cases where
small negative eigenvalues are found. Finally the simulated spectrum is obtained as mul-
tiplication of the root matrix and the white noise coefficients. The method is particularly
fast for covariances having derivatives at the origin and/or for covariances with long range.
Hence, two-variable 2D fields of 100 million pixels with all-Gaussian or all-cubic covariances
and cross-covariance are both simulated in less than 200 s. The CPU-time increases only as
Nlog(N) (N , the number of points to simulate). Additional realizations are obtained at a
low marginal cost as the eigen-decomposition step needs to be done only once for the first
realization. The main limitation of the approach is its rather stringent memory requirement.
Synthetic examples illustrate the simulations of N-LMC with two and three variables for
different combinations of seven available models. It shows that the theoretical models are
all well reproduced. An illustrative case-study on overburden thickness simulation is provi-
ded where the secondary information consists of a latent Gaussian variable identifying the
geological domain.
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7.2 Introduction

In geology, mining, petroleum, hydrogeology and other applications, it is common to observe
several secondary variables that are spatially correlated to the main variable of interest.
Often, the secondary variables are more exhaustively sampled than the main variable. To
improve precision, it is important to include this information in the simulation of the main
variable. Up to now, essentially two cases of figure are encountered in applications. The first
one is when a physical relationship exists between the main variable and the secondary ones.
This situation is common in geophysics (Asli et al., 2000; Shamsipour et al., 2010, 2011) and
in hydrogeology (Ahmed and de Marsily, 1989; Dong, 1990). The second case of figure is
the modeling of the statistical link by the linear model of coregionalization (LMC) (Myers,
1983; Marcotte, 1991; Journel and Huijbregts, 1978; Wackernagel, 2003) where it is assumed
that all variables being studied share the same spatial structures. Advantages of LMC are
important : unequalled ease of verification of admissibility (Goulard and Voltz, 1992) and
possibility to use a large variety of simulation algorithms, including the efficient turning
bands method (Matheron, 1973; Chilès and Delfiner, 2012) and FFTMA (Le Ravalec-Dupin
et al., 2000) as all what is required is to combine linearly independent univariate simulations.
The main disadvantage of LMC is the rather severe restriction it imposes that the variables
share common spatial structures. It is indeed frequent that one observes a smoother behavior
on the secondary variables than on the main variable. Using the LMC in this case incurs an
important loss of information.

Recently Marcotte (2015) proposed a new tool facilitating the verification of admissibility
for non-LMC models (N-LMC) with symmetrical cross-covariances. A direct follow-up is to
find an efficient method of simulation of the N-LMC. Shinozuka (1971) developed a conti-
nuous spectral method to simulate a multivariate homogeneous process by a series of cosine
functions. He proposed to use Cholesky decomposition of the spectral density matrix, at se-
lected frequencies. Then, the study was extended to non-homogeneous oscillatory processes
characterized by an evolutionary power spectrum (Shinozuka and Jan, 1972). Mejía and
Rodríguez-Iturbe (1974) focused on discussing connection of correlation and spectrum of a
random field and provided a simulation method by sampling from the spectral density func-
tions. Zagayevskiy (2015) use the spectral method with turning bands to simulate LMC.
Mantoglou (1987) and Emery et al. (2015) implement variants of the continuous spectral
method (Shinozuka and Jan, 1972) with turning bands that can both simulate N-LMC.

Alternatively, Pardo-Igúzquiza and Chica-Olmo (1993) developed a Fourier integral method
for unconditional simulation of random fields. The FFT was used in both numerical calcula-
tions of density spectral function and generation of realizations. Chilès (1995) used discrete
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spectral method based on the FFT for simulation of intrinsic random functions. Chilès and
Delfiner (1997) propose various tools to simulate by FFT while minimizing aliasing effects
due to the asymptotic ranges of many covariance functions. Le Ravalec-Dupin et al. (2000)
proposed to integrate FFT and the moving average method in a fast and flexible method they
named FFTMA. Applications of FFTMA can be found in Le Ravalec-Dupin et al. (2001),
Gloaguen et al. (2005) and Shamsipour et al. (2011). Le Ravalec-Dupin and Da Veiga (2011)
extended FFTMA for cosimulation of two variables that are linearly correlated. In addition to
being limited to two variables, their method was based on the Markov-Bayes approximation,
so it did not allow full control and generality of the simulated cross-covariances.

In this contribution, based on the discrete spectral method, the FFTMA is adapted to the
unconditional simulation of multivariate fields with the N-LMC. One requirement on the
coregionalization is the cross-covariances must be symmetric. The square root of the spectral
matrix is obtained at each frequency sampled by the FFT. Then spectrum of white noise
fields for n variables are computed by FFT and combined with the square root matrices
(one per frequency) so as to generate the desired direct and cross-structures. To increase
the applicability of the FFTMA, we also present a simple idea to extend the simulation to
points that do not fall on a regular grid. This allows the post-conditioning by cokriging to
be performed to obtain conditional realizations at any desired point.

After reviewing the FFTMA algorithm, we describe the necessary modifications to simulate
N-LMC. We then discuss implementation details related to the type of simulated covariance,
the admissibility issue, the computing time and the solution proposed for the case of samples
not on a regular grid. We show that the program, named GFFTMA, reproduces the desired N-
LMC. CPU time and memory requirements are examined. Finally, a case study is presented.

7.3 Methodology

The moving average method (MA) was presented for simulation of one dimensional Gaussian
random fields in Journel (1974). Then, it was extended by Oliver (1995) to two and three
dimensions. A zero mean Gaussian random field z(x) with covariance C(h) (h is a distance
vector between xi and xj) is generated by

z(x) = g(h) ∗ y(x). (7.1)

where ∗ is the convolution operator, y(x) is a Gaussian white noise and g(h) is a convolu-
tion root of the covariance, i.e. C(h) = g(h) ∗ ĝ(h) in which ĝ(h) = g(−h). For symmetric
covariances and cross-covariances, it is possible to choose g(h) = g(−h), hence a symme-
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tric convolution root g exists (although non-symmetric roots also exist). Oliver (1995) listed
covariance functions and their auto-convolution root in two and three dimensions. Le Ravalec-
Dupin et al. (2000) recognized the spatial convolution of Equ. 7.1 is most efficiently computed
in the spectral domain by using FFT, hence the method FFTMA was developed. Oliver (2003)
described the use of Cholesky decomposition to simulate 2D N-LMC models combining dif-
ferent model types for the direct covariances or different ranges.

The convolution theorem, either in its continuous or discrete versions, states that the Fourier
transform of the convolution of two functions is the product of the Fourier transform of the
two functions (Cooley et al., 1969; Priestley, 1982; Le Ravalec-Dupin et al., 2000; Rao et al.,
2011) :

F(g1 ∗ g2) = F(g1) · F(g2). (7.2)

In the univariate case with symmetrical covariance C = g∗g where g is the symmetric square
root. As the spectral density function S = F(C) = F(g ∗ g) = [F(g)]2, one has F(g) =

√
S.

Thus to obtain the root spectrum, it suffices, in the univariate case, to take the square root
of the spectral density function of the covariance. Having the root spectrum, one simply
has to multiply it with the spectrum of a Gaussian white noise and then take the inverse
Fourier transform to get back in the spatial domain. The final result is the convolution
of the covariance root with a Gaussian white noise (a moving average), ensuring correct
reproduction of the desired covariances.

7.3.1 The FFTMA in the multivariate case

Le Ravalec-Dupin and Da Veiga (2011) present an approximate method to simulate sequen-
tially two variables with different structures and a given correlation. Their approach is to
simulate a first variable and then to simulate the second one conditional to the first one
using a Markov-Bayes hypothesis for the cross-covariance. It is only an approximate me-
thod due to the Markov-Bayes hypothesis that does not allow full control on the simulated
cross-covariances. For example, when the first variable has a spherical covariance, the se-
cond variable could not be simulated exactly with a Gaussian covariance. Here, we seek to
generalize the simulation to any number of variables and to allow any covariance and cross-
covariance, with the only restriction that the coregionalization must be an admissible model.
For this, FFTMA is used to simulate directly the joint distribution of the n variables with
imposed covariances and cross-covariances. The idea is based on the fact that knowledge of
direct and cross-covariances is equivalent to knowledge of the direct and cross-spectral densi-
ties. Hence, the goal is to simulate n variables having completely specified spectral matrices
at all frequencies.
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The covariance matrix function C(h) is :
C1,1(h) C1,2(h) · · · C1,n(h)
C2,1(h) C2,2(h) · · · C2,n(h)

... ... . . . ...
Cn,1(h) Cn,2(h) · · · Cn,n(h)

 (7.3)

Assuming symmetry of cross-covariances, the corresponding spectral matrix S(f) (f is fre-
quency) is obtained by separate Fourier transform of each of the n × (n + 1)/2 covariance
functions : 

S1,1(f) S1,2(f) · · · S1,n(f)
S2,1(f) S2,2(f) · · · S2,n(f)

... ... . . . ...
Sn,1(f) Sn,2(f) · · · Sn,n(f)

 (7.4)

where Sij(f) = Sji(f) as the Fourier transform of a real even function is also real and even.

At any given frequency f , by Bochner’s theorem, the spectral matrix must be positive
semi-definite. Then one can use the square root matrix decomposition of S(f) as : S(f) =
U(f)U(f)T where T denotes the transpose operator, U = V D1/2V T and D and V are respec-
tively the diagonal eigenvalue matrix and the orthonormal eigenvector matrix, i.e. one has
S = V DV T and V V T = V TV = I. Now, consider a zero-mean unit-variance Gaussian white
noise y(x) in the spatial domain. It is well known that its Fourier transform ỹ(f) is also a
zero-mean unit-variance Gaussian white noise. Hence, one has :

E[U(f)ỹ(f)ỹ(f)TU(f)T ] = U(f)U(f)T = S(f) (7.5)

where ỹ(f) is a column vector of size n containing the Fourier transform coefficients at
frequency f for the corresponding n independent Gaussian white noises. This equation leads
to the following algorithm in the discrete case :

— Compute the FFT of each of the n × (n + 1)/2 periodized covariances and cross-
covariances evaluated on the regular grid (N points) ; this provides S(f).

— Generate n independent white noise vectors on N grids and compute their FFT ỹ(f).
— For all frequencies, respectively compute the eigenvalue-eigenvector decomposition

of the spectral matrix S(f) and get the U(f) = V (f)D(f)1/2V (f)T . The eigen-
decomposition is done on the small matrix of size n × n at each frequency. For all
frequencies, U(f) consists of n× n matrices.

— Calculate the spectrum of simulation at all frequencies f as z̃(f) = U(f)ỹ(f).
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— Take the separate inverse FFT on each component of vectors z̃(f) to obtain the simu-
lation z(x) in spatial domain that have the right covariances and cross-covariances.

The reader will note that the above procedure is the direct analog of what is done by FFTMA
in the univariate case where S(f) is a scalar, and one computes

√
S(f)ỹ(f) and then takes

the inverse Fourier transform. In the multivariate case S(f) is a matrix, and the square
root is replaced by the square root matrix decomposition. The Cholesky decomposition of
S(f) could also have been used, and in fact it was used in the initial versions of GFFTMA.
However, it appeared that the Cholesky decomposition was numerically unstable in some
models at high frequencies where all the spectral values are close to zero.

7.3.2 Post-conditioning by cokriging

The classical method of post-conditioning by cokriging (Chilès and Delfiner, 2012) is used,
either by simple cokriging or by ordinary kriging or kriging with a trend (Emery, 2007).
Therefore,

ZCS(x) = Z∗(x) + (ZS(x)− Z∗S(x)) (7.6)

where Z∗(x) is the cokriging estimate at simulated point x using the data, Z∗S(x) is the
cokriging estimate at simulated point x using the simulated values at sample points and
ZS(x) are unconditional simulated values obtained with GFFTMA.

An important limitation of the FFTMA is to simulate only on a regular grid. This is a
problem for the post-conditioning step as one also needs simulated values at sampled points.
Moreover, they must have the right structure and be compatible with all the points already
simulated on the regular grid. Relying on the screening effect approximation, one idea is to
locally propagate the unconditional simulated vectors of the regular grid to sample points.
By Cholesky or SGS method, values on the sample points can be simulated conditioned
by the neighboring regular grid vectors. This is repeated for each sample point in turn.
Sample points that are simulated by SGS or Cholesky are added to the already simulated
vectors for the next sample points. At the end of the procedure, correlated random vectors
with approximately the right covariance structure and compatible with the regular grid are
available at each sample point. One can then proceed with the post-conditioning as usual.
Note that this step is relatively fast compared to a standard SGS as only the sample points
need to be simulated, not the grid points that are already simulated by GFFTMA.
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7.3.3 Models with asymptotic range

Following Le Ravalec-Dupin et al. (2000) and Chilès and Delfiner (2012), the size of the
field to simulate internally must be at least L = b + a where b is the size of the desired
simulation in a given direction and a is the correlation range in this direction. For covariances
that possess only an asymptotic range, the practical range is used (i.e. the distance where
the covariance represents only 5 % of the sill). One exception is for the Gaussian covariance
model where it was found that the practical range was not sufficient to ensure good covariance
reproduction at small distances. For this model, the practical range was extended from

√
3a

to 3a. Note that for all models with asymptotic ranges, the periodicity of the FFT introduces
a discontinuity of the slope of the periodized covariances at mid-distance of the simulated
field (see Fig. 7.1). This discontinuity causes the simulated models to become numerically
not admissible as some small negative spectral values appear in the spectrum. The solution
adopted here is to replace the direct spectral negative values by very small positive values
and the corresponding cross-spectral values by zeros. In addition, all negative eigenvalues
found during the eigen-decomposition are simply replaced by zeros. This ensures numerical
admissibility of each simulated N-LMC. Examples in the next section show these simple
corrections to ensure positive-definiteness at all frequencies of the FFT do not introduce a
measurable bias on the covariance. All the simulated covariances and cross-covariances do
not depart significantly from the intended theoretical N-LMC.

To account for possible geometric anisotropies in different directions and of covariances for-
med of multiple nested components, the maximum range or practical range among all di-
rections and all components of the N-LMC was retained as the unique parameter a used to
define the extension of the simulated grid.

7.3.4 Test of GFFTMA

The examples presented in Figs 7.2 to 7.5 seek to illustrate the versatility of GFFTMA and
the quality of reproduction of the multivariate models. The models are described in details
in Table 7.1. In each case, 200 realizations of a square field of size 500 x 500 are obtained
for isotropic cases with two variables (Figs 7.2 and 7.3) and three variables (Fig. 7.4) and
for an anisotropic case with two variables (Fig. 7.5). The direct and cross-variograms of the
first 25 realizations are illustrated together with the mean variogram computed over the
200 realizations. Models used include mixtures of spherical, exponential, Gaussian, cubic,
penta, generalized Cauchy and K-Bessel. The coregionalizations are all N-LMC as different
structures appear on the direct and cross-variograms. The models are checked to be admissible
with program TASC3D (Marcotte, 2015). This program uses the theoretical 3D spectral
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Figure 7.1 Example of slope discontinuity at practical range ap after periodization of the
exponential model.

densities of the same models available in GFFTMA to verify the positive-definiteness of the
spectral matrices at any set of user specified frequencies. It allows any number of components
in the direct and cross-covariance models of the N-LMC, each component being isotropic or
anisotropic.

7.3.5 Computing time

Because of the use of FFT, GFFTMA is probably unequaled for the computing time required
to get the unconditional simulations. The post-conditioning is generally the slower step,
although this step can be also quite fast when dual kriging is used in a global neighborhood
(Royer and Vierra, 1984; Davis and Grivet, 1984). Fig. 7.6-a shows the well known Nlog(N)
CPU time relationship of the FFT transform (N the number of simulated pixels) as the
correlation between CPU time and Nlog(N) reaches 0.999. Note that one realization for two
variables on 100 million pixels is obtained in approximately 200 seconds for the cubic and
Gaussian models with range 100, 500 seconds for the spherical model with range 200 and
2800 seconds for the spherical model with range 100 pixels. All computations are done on
an Intel Xeon (2.13 GHz). The most consuming computation is the eigen-decomposition. We
stress that this computation step is done only once to get the square root matrices. When the
model has a linear behavior at the origin and a small range, the eigen-decomposition must be
computed at almost all frequencies (which is the total number of pixels in the simulation). On
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Figure 7.2 One realizations of v1 and v2 (top row) and the direct and-cross variograms. Case
1 of Table 7.1 mixing exponential, Generalized Cauchy with ν = 2 and K-Bessel with ν = 1.
Mean variogram is computed by combining E-W and N-S directions over 200 realizations.
Only the first 25 individual realization variograms (light gray) are shown.
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Figure 7.3 One realization of v1 and v2 (top row) and the direct and cross-variograms. Case
2 of Table 7.1. Mean variogram is computed by combining E-W and N-S directions over 200
realizations. Only the first 25 individual realization variograms (light gray) are shown.
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Figure 7.4 One realization of v1, v2 and v3 (top row) and the direct and cross-variograms.
Case 3 of Table 7.1. Mean variogram is computed by combining E-W and N-S directions over
200 realizations. Only the first 25 individual realization variograms (light gray) are shown.
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Figure 7.5 One realization of v1 and v2 (top row) and the direct and cross-variograms. Case
4 (with geometric anisotropy) in Table 7.1. Horizontal direction (left column) and vertical
direction (right column). Mean variogram is computed over 200 realizations. Light gray :
variograms for the first 25 realizations
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Table 7.1 Models used in Figs 7.2-7.5 and Fig. 7.9

Case Figure Model description

1 Fig. 7.2
v1-v1 : Exponential (ap = 250, C = 1)
v1-v2 : Cauchy (ap = 155, C = 0.6, ν = 2)
v2-v2 : K-Bessel (ap = 158, C = 1; ν = 1)

2 Fig. 7.3
v1-v1 : Spherical (a = 250, C = 1)
v1-v2 : Cubic (a = 310, C = 0.85)
v2-v2 : Penta (a = 350, C = 1)

3 Fig. 7.4

v1-v1 : Spherical (a = 250, C = 1)
v1-v2 : Cubic (a = 310, C = 0.5)
v1-v3 : Gaussian (ap = 250, C = 0.5)
v2-v2 : Penta (a = 350, C = 1)
v2-v3 : Penta (a = 310, C = 0.8
v3-v3 : Gaussian (a = 208, C = 1)

4 Fig. 7.5
v1-v1 : Exponential (ap,hor = 240, ap,vert = 120, C = 1)
v1-v2 : K-Bessel (ap,hor = 158, ap,vert = 118.5, C = 0.6, ν = 1)
v2-v2 : K-Bessel (ap,iso = 158, C = 1; ν = 1)

5 Fig. 7.9
v1-v1 : Nugget (C = 0.15)+Exponential (ap = 27km,C = 0.45)
v1-v2 : Nugget(C=0.001) + Gaussian (ap = 32.6km,C = 0.3)
v2-v2 : Nugget(C=0.001)+ Gaussian (ap = 24.6km,C = 1)

the contrary, with differentiable variograms at the origin and/or for large range covariances,
most frequencies have a quite small contribution that can be disregarded without discernable
effects. In all cases, every additional realization is obtained in a comparatively negligible time
that is independent of the covariance model used, as each realization calls for only two FFTs
and the product of the square root matrices with the Gaussian white noise FFT coefficients.
As expected, the simulation time increases linearly with the number of realizations (Fig.
7.6-b).

7.3.6 Memory usage

No doubt, the main limitation of the approach is the memory usage, especially when simu-
lating large grids for models with long practical range. The maximum memory mobilized by
the current implementation of GFFTMA is approximately 32p2(ns + na)dnsim where p is the
number of variables, ns is the number of pixels simulated, na is the number of pixels required
to reach the maximal practical range, d is the dimension of the studied field and nsim is the
number of realizations to simulate. Table 7.2 gives the approximate maximum size that can be
simulated using only the available RAM memory in 2D and 3D as a function of the memory
available above the memory required to run the operating system and Matlab’s overhead.
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Figure 7.6 Evolution of computing time as a function of a) the number of simulated pixels
and b) the number of realizations (for a field of 200 x 200 pixels). Simulation of two variables
for four different models in a) and a spherical model with range 100 in b).

For larger fields, the program has to use a swap file, which slows considerably the execution
time. Clearly, results of Table 7.2 indicate GFFTMA is more suitable for simulation in 2D
than in 3D, although mid-size problems in 3D can still be treated.

Table 7.2 Maximum size of simulated field as a function of available RAM above overhead
memory required by operating system and Matlab (for nsim = 1, na = 100, p = 2)

Available RAM 2D 3D
4G 5400 × 5400 210 × 210 × 210
16G 11000 × 11000 400 × 400 × 400
48G 19000 × 19000 620 × 620 × 620

7.4 Case Study - Overburden thickness simulation

The case study bears on the cosimulation of overburden thickness and surface lithological in-
formation represented by a Gaussian latent variable. The overburden thickness data includes
4730 boreholes in Montérégie Est, in the south of Québec. The study area covers approxi-
mately 14000km2 split into two main geological domains. The geological domain located at
northwest (domain A) has generally higher overburden thickness than the rest (domain B).
The sample locations are shown in Fig. 7.7.
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Figure 7.7 Map of sample data. Gray dots : boreholes in geological domain A, black dots :
boreholes in geological domain B. The area covered by simulation in Fig. 7.10 is outlined
(dashed line)

A bivariate field is to be simulated by the GFFTMA. The logarithm of overburden thickness
is treated as the first variable. Another known information is the indicator of geological
domain of the studied area. A number of approaches can be used in the simulation of the
geological types or facies, such as sequential indicator simulation (Journel and Isaaks, 1984;
Deutsch and Journel, 1998), multiple point statistics (Guardiano and Srivastava, 1993; Ortiz
and Deutsch, 2004), truncated Gaussian simulation (Matheron et al., 1987), and truncated
pluriGaussian simulation (Galli et al., 1994). In this article, we used the truncated Gaussian
simulation, i.e. the geological domain indicator is obtained by thresholding a continuous latent
Gaussian variable at the sampling points. First, the fixed threshold of the Gaussian field has
been determined using declusterized proportions of each geological domain. Then the latent
variable variogram is chosen so as to match the indicator variogram and log(thickness)-
indicator cross-variogram. Having the variogram model of the latent variable, the Gibbs
sampler provides latent Gaussian at sampling points in agreement with the geological domain
indicator. For each conditional realization, a different Gibbs sampler realization of the latent
Gaussian variable at sample points is used.

Figure 7.8 shows the direct and cross variograms of the log(thickness) and the latent Gaussian
variable. The experimental variogram of overburden log(thickness) is well adjusted by an
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exponential model. The latent variable was chosen to have a Gaussian covariance model
because it provided better fit to the geological domain indicator variogram and log(thickness)-
indicator cross-variogram. The fit obtained after the Gibbs sampling reproduces the assumed
model as expected. Finally, the cross-variogram is also well fitted by a Gaussian model.
Because the two variables have different direct variogram structures, they define a N-LMC
model with zero-lag correlation of R = 0.38.

Two series of unconditional realizations of logarithm of overburden thickness were obtained
on a regular grid : an univariate simulation by FFTMA and the bivariate N-LMC simulation
involving geological domain by GFFTMA. Then, the unconditional simulated values were
extended to the sample point locations by local LU simulation.

Figure 7.9 shows direct and cross variograms of the two variables for 30 unconditional rea-
lizations obtained in cosimulation of N-LMC. The average variograms of the 30 realizations
coincide almost perfectly with the models. Each realization is then post-conditioned by co-
kriging using the same N-LMC model.

7.4.1 Comparison of statistics of conditional realizations by N-LMC model and
univariate simulation

To assess the gain obtained by considering the geological information, the full dataset is
split into two parts : a small part (10%) is used as conditioning data and the rest (90%)
is used as test data. Conditional realizations are obtained at the test data locations for
two different cases : one using the univariate simulation of log(thickness) and the second
using N-LMC simulation of log(thickness) with the Gaussian latent variable as secondary
information at both conditioning points and test data locations. Then the final simulations
of log(thickness) for overburden are transformed to the thickness. Table 7.3 shows mean
statistics of 30 realizations obtained with the two instances. The mean absolute error (MAE)
of simulation with N-LMC shows an improvement of 3.9% to 4.3% compared to the univariate
simulation, indicating that despite the small zeros-lag correlation (R = 0.38), the geological
information remains useful.

Table 7.3 Mean MAE (in m) for 30 realizations

On 981 testing points within On all 4257 testing points5km distance from boundary
Case 1 (Univariate simulation) 6.49 6.95
Case 2 (N-LMC simulation) 6.21 6.68
% improvement with N-LMC 4.3 % 3.9 %
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Figure 7.8 Model fitting for direct and cross variograms of log(thickness) and one latent field
representing the geological domain information.
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variable between 30 realizations and the theoretical model.
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Figure 7.10 shows 3 realizations of the univariate simulation (left) and the N-LMC (right),
still using 10% of the thickness data and all the latent data. Clearly, the realizations of the N-
LMC show larger thickness toward the North than do the univariate realizations. Hence, one
concludes that the geological information conveyed by the latent variable has a noticeable
impact on the simulations despite the low correlation between the log(thickness) and the
latent variable.

7.5 Discussion

Examples were provided illustrating simulation of the models available in GFFTMA. The
average experimental direct and cross-variograms reproduced almost perfectly the theoretical
model in all cases presented, (see Figs 7.2 to 7.5) even for N-LMC known to be not strictly
admissible like the N-LMC models having a compactly supported direct covariance function
(e.g. models in Figs 7.3-7.4). These models are known to be non admissible (Marcotte, 2015),
because at high frequencies the spectral densities of the compactly supported covariance func-
tion possess multiple zeros, hence the spectral density matrix cannot be positive semidefinite
at these frequencies. However, this fact has little consequence in practice as seen by the qua-
lity of the reproduction of all direct and cross-covariances. Moreover, the adopted correction
for the small negative eigenvalues renders these models admissible at the sampled scale. In
the post-conditioning by cokriging, there were no instance where the cokriging matrix was
found not positive definite.

The eigen-decomposition is done at each frequency where the amplitude exceeds the thre-
shold Amax,i/106 where Amax,i is the maximum amplitude found in the direct spectrum of
variable i. As soon as one threshold is exceeded, the spectral matrix is eigen-decomposed.
As a consequence, the CPU times of GFFTMA are largely related to the behavior at the
origin of the models present in the N-LMC. Linear behavior variograms have larger high
frequencies, hence eigen-decomposition must be computed at more frequencies. For a same
behavior at the origin, the smaller the range with respect to simulated field size, the larger
the CPU time. Nevertheless, the CPU times remain tractable and always keep the Nlog(N)
dependency where N is the number of pixels to simulate. Moreover, the eigen-decomposition
is done only once, irrespective of the number of realizations. Previous trials with Cholesky
decomposition, instead of eigen-decomposition, to compute the square root matrices were
significantly faster but proved numerically unstable in many circumstances. For this reason,
it is preferable to stick to the slower eigen-decomposition.

The memory requirements are rather important as the field size to simulate internally in
GFFTMA to reduce aliasing is equal to the size of the field to simulate plus the maximal
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Figure 7.10 Realizations of univariate simulation (left) and N-LMC simulation (right). White
dots represent data locations.
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practical range found among all model components. As an example, with a maximal practical
range of 100, 48G of RAM enables simulation of a field comprising approximately 238 million
pixels in 3D, corresponding to 620 pixels along each dimension. One avenue to limit the size of
the simulation may be to try to approximate models displaying asymptotic sills (exponential,
Gaussian, Cauchy and K-Bessel) by combination of models with compact support (spherical,
cubic and penta). This could reduce significantly the size of the field to simulate internally,
although it is not clear if the number of frequencies to eigen-decompose does also diminish.

7.6 Conclusion

The GFFTMA program can generate unconditional simulations in both isotropic and ani-
sotropic situations for any number of variables and any number of covariance components
for each direct and cross-covariances. It enables to simulate N-LMC with symmetric cross-
covariances. Basic covariance models included in GFFTMA are nugget, exponential, Gaus-
sian, spherical, cubic, penta, generalized Cauchy and K-Bessel (Matérn). If needed, other mo-
dels can be added easily with a single line of code. Simulated examples show that GFFTMA
succeed to produce realizations having on average the desired N-LMC.
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7.8 Appendix - usage of GFFTMA

The program GFFTMA is a Matlab function used to produce unconditional simulations
of N-LMC models. For conditional simulation, it must be completed with other functions
performing 1- extension of the unconditional grid to sample points not lying on the grid
and 2-the post-conditioning by cokriging with the same N-LMC model. The check of the
admissibility of the N-LMC model can be done with program TASC3D (Marcotte, 2015).

GFFTMA is called with :

datasim=gfftma(model,seed,nsim,vsiz,grid,thres)

The input model is a cell variable of size n × n, n being the number of variables. Each
model {i, j} possesses pij elementary components. As GFFTMA assumes symmetric cross-
covariances, model {i, j} must be the same as model {j, i}. Each component is specified
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with 4 parameters (when all components of all models are isotropic) or 6 parameters in
the 2D anisotropic case and 9 parameters in the 3D anisotropic case. In the isotropic case,
the four parameters are : 1-model type, 2-range, 3-shape, 4-sill. In the 2D anisotropic case,
the 6 parameters are 1-model type, 2- first range, 3- second range, 4-anticlockwise rotation,
5- shape parameter and 6-sill. In the 3D anisotropic case, the 9 parameters are : 1-model
type, 2-first range, 3-second range, 4-third range, 5-rotation around x, 6-rotation around y,
7 rotation around z, 8-shape, and 9-sill. The shape parameter is used only for model types 7
(Cauchy) or 8 (K-Bessel). The rotations follow the same convention and order as described
in Marcotte (1991), i.e. all anticlockwise rotations, z first, then y, then x. The model types
are 1-nugget, 2-exponential, 3-Gaussian, 4-spherical, 5-cubic, 6-penta, 7-Cauchy 8-K-Bessel.
As soon as one model component is anisotropic, all models (even isotropic ones) must be
specified with the anisotropic convention.

The input seed is the seed of the random number generator.

The input nsim is the number of realizations required.

The input 1×d vector vsiz allows the user to specify the number of pixels to use internally for
the simulation. This enables to fix the random numbers to the same values for two different
calls to GFFTMA by specifying the same seed and the same vsiz . The internal number of
pixels must be chosen so as to prevent aliasing, i.e. it must be larger than practical range
(in pixels) plus the desired size (in pixels) to simulate. Normal usage is to leave this vector
empty. The program then computes the required number of pixels.

The input grid is a vector. In 1D it contains [nx,dx], in 2D it contains [nx,dx,ny,dy] and in
3D [nx,dx,ny,dy,nz,dz], where nx is the number of pixels desired in the x direction and dx is
the distance between consecutive pixels along x, and similarly for directions y and z.

The input thres is the multiplying factor applied to the maximal spectral density value. The
spectral matrices where Si(f) > thres ∗max︸︷︷︸

f

Si(f) for at least one i are eigen-decomposed.

When thres is left empty, the default value thres = 10−6 is used. Using larger values reduces
the number of required eigen-decompositions and thus speeds up the simulation but it may
affect the correct reproduction of the linear behavior at short distances of the exponential
and spherical models.

The output datasim is a cell array of size nsim× nvar with the results of the simulation.
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CHAPTER 8 GENERAL DISCUSSION

This dissertation provides non-stationary covariance functions and a simulation approach for
N-LMC in modeling natural phenomena. In the univariate case, a class of non-stationary co-
variance functions with compact support is proposed. In the multivariate case, the GFFTMA
is developed for simulation of multivariate fields that do not require the assumption of linear
model of coregionalization.

In applications of the non-stationary model in this thesis, parameters of the covariance model
were estimated by cross-validation. In the first application of overburden thickness estima-
tion incorporating outcrops information (Section 5.3.1), the influence radius of an outcrop
is defined and estimated by cross-validation. Beyond the influence circle, the overburden
thickness distribution is assumed stationary. In the influence circle, the covariance model is
non-stationary. The correlation range and nugget of the non-stationary model are treated as
functions of distance to the nearest outcrop. That is enough to obtain a smooth estimation
around outcrops and zero thickness at outcrops. In the second application of non-stationary
covariance model (Section 6.6), the overburden thickness is estimated over an area composed
of two geological domains. Between these two domains, a transition zone was dictated by
geological considerations. The width of the transition zone is estimated by cross-validation.
The parameters of covariance model, the correlation range, ratio of nugget to sill and sill,
are functions of the distance to the edge of the transition zone. This model ensures a smooth
transition between the two geological domains. The estimation of parameters of the non-
stationary covariance model is important as it controls the quality and success of any non-
stationary modeling approach. Higdon et al. (1999) characterized the non-stationary model
by 8 parameters and estimated them in a hierarchical model. Paciorek and Schervish (2006)
integrated the non-stationarity of the model by 7 parameters and estimated them with a
Bayesian approach. In the applications presented in this dissertation, the parameters were
estimated by cross-validation. In transition zones, based on the geological knowledge the
parameters are considered as functions of distance to a critical point or line, the points of
outcrops in the first case and the boundary of two geological domains in the second case.
Maximum likelihood can also be used in a Gaussian context. More research is needed about
the best method to estimate the non-stationary covariance models parameters. However pro-
bably more important is the expert knowledge and the statistical tools that lead to the choice
of the supra-model governing the spatial variations of the covariance parameters.

The closed-form of non-stationary covariance functions with compact support presented is
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only for the isotropic case. In the anisotropic case, the kernel function is the hyper-ellipsoid
defined in <n. Till now there is not explicit form of intersection of two hyper-ellipsoids. One
way to calculate the non-stationary covariance of spherical family model in anisotropic case
is the numerical approach provided in Section 6.4.4. Another way is tapering the isotropic
spherical family functions by non-stationary covariance models for which anisotropic closed-
form expressions exist, such as exponential, Gaussian or Matérn class. Then the combined
model can describe the anisotropic spatial structure. In addition, the tapered functions still
have the compact support and the non-negative definiteness. However, it is not clear whether
or not all the properties of the anisotropic spherical family model can be recovered with the
tapering approach.

For simulation of a continuous variable in univariate case, the dilution approach provides a
general method to simulate the non-stationary model (Chilès and Delfiner, 1999). It is used in
the moving average model that focuses on the non-stationarity of the parent random function
associated with the variable of interest. In the simulation, the non-stationarity is considered
in the dilution functions. For usual covariance models, the Matérn, Gaussian and spherical
family model, the dilution functions are already derived and listed in Chilès and Delfiner
(1999). For unusual model, Ehm et al. (2004) discussed what kind of covariance function can
be written as auto-convolution of kernel functions therefore has a dilution function. Besides
simulation of non-stationarity, another advantage of the dilution method is that it is adapted
in the anisotropic case. The ratio and direction of the anisotropy are treated in the dilution
function by scaling and rotation (seen in Section 6.4.4). Based on the dilution method, in
Chapter 6 a weighted average method was used in simulation of non-stationary spherical
family model in both isotropic and anisotropic cases. The computation time relates to the
range of model to simulate and the discrete grids. Therefore, for a covariance function with
small correlation range, this method is recommended for its efficiency and adaptation of
non-stationarity and anisotropy of the model.

The GFFTMA method proposed in Chapter 7 is efficient in simulation of fields with N-LMC.
The computation time of the GFFTMA depends on the models of coregionalization and the
number of points to simulate. With the same number of grids to simulate, the GFFTMA
is faster for simulating the model having derivatives at the origin than the model with li-
near behavior. When the models of N-LMC are determined, the computation time has the
relation Nlog(N) with the number of points to simulate N . Replacing eigen-decomposition
by Cholesky decomposition in computation of the square root matrices would significantly
save the CPU time, but it is proved numerically unstable in many circumstances. The main
limitation of the GFFTMA is the rather stringent memory requirement. As seen in Section
7.3.6, the GFFTMA requires large memory for simulation of models with long practical range
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in 3D. In these cases, the turning band methods (Emery et al., 2015; Marcotte, 2015a) are
recommended.

The GFFTMA method cannot be extended to a non-stationary case. As mentioned by Oliver
(1995), in the moving average method the covariance function C is considered to be decom-
posed instead of the covariance matrix. The GFFTMA is developed based on moving average
method. The first step of GFFTMA is to calculate the discrete covariance on the grid to simu-
late. In the non-stationary case, the covariance C varies with distance vector and locations.
Thus it is not possible to determine the covariances on the target grids without considering
locations. Available methods for simulation of non-stationary N-LMC will be discussed in the
next part.

For the multivariate model, the main problems are testing the admissibility of the model
and simulation. With the stationary assumption of the model, Marcotte (2015b) proposed
an algorithm to test the positive definiteness of N-LMC in <3. With respect to the simula-
tion of N-LMC, the GFFTMA proposed in this thesis is a fast and efficient method. Based
on the turning bands method, Emery et al. (2015) and Marcotte (2015a) recently develo-
ped approaches for simulation of N-LMC. In the non-stationary circumstance, first an open
question is how to ensure the admissibility of the model. On simulation of a non-stationary
N-LMC, the Cholesky decomposition can be used, as it focuses on decomposition of the cova-
riance matrix which can include the non-stationarity. Yet the covariance matrix for Cholesky
decomposition has order of N × N (N is the number of points to simulate). Therefore it
cannot accommodate a field with more than 104 points. Another method can be used in non-
stationary simulation of N-LMC is the sequential Gaussian simulation (SGS). However it is
sensitive to the number and location of neighbors used in kriging. Also it cannot reproduce
the exact structure for some models (Chilès and Delfiner, 2012; Emery, 2004b, 2010).

In conclusion, the methods proposed in this thesis help the study of natural phenomena.
The main contributions of this thesis, the main limitations and the future work requires are
described in the next chapter.
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CHAPTER 9 CONCLUSION AND FUTURE WORK

9.1 Conclusion

This thesis has provided new geostatistical methods for the study of natural phenomena.
In the univariate case, first a non-stationary model is developed by incorporating outcrops
information in estimation of overburden thickness. Also, I proposed a class of non-stationary
covariance functions with compact support and a simulation method based on moving ave-
rages with the dilution function. In the multivariate case, a fast and efficient simulation
method of the N-LMC is developed. The method generalized the FFTMA to the multiva-
riate case. All the specific objectives described in Chapter 1 were fulfilled. I highlight the
following contributions :

In the first paper, I provided a new method to incorporate outcrop information in the es-
timation of overburden thickness. The new method avoids the bias introduced by common
practice which either ignores the outcrops or treats the outcrops as zero thickness data.

In the second article, I presented and tested a new class of non-stationary covariance functions
with compact support. Moreover, the closed-form expressions were derived in the isotropic
case and a practical method of simulation was developped in the anisotropic case as well.

In the third article, the general FFT-MA (GFFTMA), an efficient simulation method for
multiple variables was proposed. This method can simulate with non-linear model of coregio-
nalization (N-LMC), which allows different types of covariance models for different variables.

9.2 Limitations and future work

The proposed methods have several drawbacks which may be considered as topics of future
work.

1. The main limitation of the GFFTMA (seen in Section 7.3.6) is its rather stringent
memory requirement. The memory requirement is related to the size of the field in
practical simulation, the sum of size of the target field and the maximal practical range
found among all model components. To reduce the memory requirement, one possible
extension of GFFTMA in future is to limit the size of the simulation by replacing
models displaying asymptotic sills (exponential, Gaussian, Cauchy and K-Bessel) with
combination of models with compact support (spherical, cubic and penta-spherical).
However the CPU time may not reduce, as it is not clear if the number of frequencies
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to eigen-decompose does also diminish.

2. In N-LMC, the coregionalization model cannot strictly be admissible if the direct co-
variance models are pure spherical, cubic or penta model except the LMC. In spectral
domain, the spectral densities of the spherical family models possess multiple zeros
at high frequencies (Marcotte, 2015b). At these frequencies, the spectral density ma-
trix may be negative. Taking an example of two variables, S11 · S22 − S2

12 < 0 at
the frequency of S11 = 0 meanwhile S12 6= 0. The GFFTMA treats this problem by
adopting correction for the small negative eigenvalues in the eigen-decomposition of
spectral matrices. Then these models are forced admissible at the sampled scale. Al-
though this problem does not have large influence on simulation by GFFTMA and
post-conditioning by cokriging, to obtain a positive semi-definite N-LMC, other com-
pactly supported function is suggested to study in future, for example the Wendland
functions, which do not show zeros in the spectral densities (Marcotte, 2015b).

3. The GFFTMA method is used in simulation of N-LMC with stationary covariances.
In simulation of a non-stationary multivariate field with N-LMC, the Cholesky decom-
position and the sequential Gaussian simulation (SGS) can be used. However, since
the limitation of the Cholesky decomposition in small simulated field (less than 104

points) (Chilès and Delfiner, 2012) and the sensitivity of SGS on the number and
location of neighbors used in kriging (Chilès and Delfiner, 2012; Emery, 2004b, 2010),
a new efficient simulation method is required to be investigated.

4. On estimation of overburden thickness, two secondary variables were incorporated,
one is outcrop information and the other is geological domain. Besides these variables,
some other information may also help to understand the overburden distribution.
Geophysical data can be such useful information. For example, a case study of over-
burden thickness estimation is done by Chouteau et al. (2013) incorporating airborne
time-domain electrical-magmetic data in North-West Abitibi of Québec in Canada.
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