29,638 research outputs found

    Relationship descriptors for interactive motion adaptation

    Get PDF
    In this thesis we present an interactive motion adaptation scheme for close interactions between skeletal characters and mesh structures, such as navigating restricted environments and manipulating tools. We propose a new spatial-relationship based representation to encode character-object interactions describing the kinematics of the body parts by the weighted sum of vectors relative to descriptor points selectively sampled over the scene. In contrast to previous discrete representations that either only handle static spatial relationships, or require offline, costly optimization processes, our continuous framework smoothly adapts the motion of a character to deformations in the objects and character morphologies in real-time whilst preserving the original context and style of the scene. We demonstrate the strength of working in our relationship-descriptor space in tackling the issue of motion editing under large environment deformations by integrating procedural animation techniques such as repositioning contacts in an interaction whilst preserving the context and style of the original animation. Furthermore we propose a method that can be used to adapt animations from template objects to novel ones by solving for mappings between the two in our relationship-descriptor space effectively transferring an entire motion from one object to a new one of different geometry whilst ensuring continuity across all frames of the animation, as opposed to mapping static poses only as is traditionally achieved. The experimental results show that our method can be used for a wide range of applications, including motion retargeting for dynamically changing scenes, multi-character interactions, and interactive character control and deformation transfer for scenes that involve close interactions. We further demonstrate a key use case in retargeting locomotion to uneven terrains and curving paths convincingly for bipeds and quadrupeds. Our framework is useful for artists who need to design animated scenes interactively, and modern computer games that allow users to design their own virtual characters, objects and environments, such that they can recycle existing motion data for a large variety of different configurations without the need to manually reconfigure motion from scratch or store expensive combinations of animation in memory. Most importantly it’s achieved in real-time

    Multi-Character Motion Retargeting for Large Scale Changes

    Get PDF

    Motor fluency shapes abstract concepts

    Get PDF
    People with different types of bodies tend to think differently in predictable ways, even about abstract ideas that seem far removed from bodily experience. Right- and left-handers implicitly associate positive ideas like goodness and honesty more strongly with their dominant side of space, the side on which they can interact with their environment more fluently, and negative ideas with their non-dominant side. This suggests a role for motor experience in shaping abstract thoughts. Yet, previous evidence is also consistent with an experience-independent account. Here we show that right-handers' tendency to associate 'good' with right and 'bad' with left can be reversed due to both long- and short-term changes in motor fluency. Among stroke patients who were right-handed prior to unilateral cerebrovascular accident (CVA), those with left-hemiparesis (following right CVA) associated good with right, but those with right-hemiparesis (following left CVA) associated good with left, like natural left-handers. A similar pattern was found in healthy right-handers whose right or left hand was temporarily handicapped in a laboratory training task. Motor experience influences judgments of good and bad, overriding any predispositions due to natural handedness. Even highly abstract ideas depend, in part, on how people interact with the physical world

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    Coyote\u27s Tale on the Old Oregon Trail: Challenging Cultural Memory through Narrative at the Tamástslikt Cultural Institute

    Get PDF
    This essay examines the oppositional narratives presented in a Native American museum in order to explore the efficacy of narrative as both a strategy for resistance to hegemonic narratives of the settling of the West and a medium for sharing culture. The positioning of the museum visitor as co-participant in the museum’s narratives is also considered, with a particular focus on the relationships among narrator, story, and audience. Finally, the narrative of tribal life presented in the museum is evaluated for its potential as a vehicle for both cultural change and continuity

    Learning Human-Robot Collaboration Insights through the Integration of Muscle Activity in Interaction Motion Models

    Full text link
    Recent progress in human-robot collaboration makes fast and fluid interactions possible, even when human observations are partial and occluded. Methods like Interaction Probabilistic Movement Primitives (ProMP) model human trajectories through motion capture systems. However, such representation does not properly model tasks where similar motions handle different objects. Under current approaches, a robot would not adapt its pose and dynamics for proper handling. We integrate the use of Electromyography (EMG) into the Interaction ProMP framework and utilize muscular signals to augment the human observation representation. The contribution of our paper is increased task discernment when trajectories are similar but tools are different and require the robot to adjust its pose for proper handling. Interaction ProMPs are used with an augmented vector that integrates muscle activity. Augmented time-normalized trajectories are used in training to learn correlation parameters and robot motions are predicted by finding the best weight combination and temporal scaling for a task. Collaborative single task scenarios with similar motions but different objects were used and compared. For one experiment only joint angles were recorded, for the other EMG signals were additionally integrated. Task recognition was computed for both tasks. Observation state vectors with augmented EMG signals were able to completely identify differences across tasks, while the baseline method failed every time. Integrating EMG signals into collaborative tasks significantly increases the ability of the system to recognize nuances in the tasks that are otherwise imperceptible, up to 74.6% in our studies. Furthermore, the integration of EMG signals for collaboration also opens the door to a wide class of human-robot physical interactions based on haptic communication that has been largely unexploited in the field.Comment: 7 pages, 2 figures, 2 tables. As submitted to Humanoids 201

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus

    Degenerate Variational Integrators for Magnetic Field Line Flow and Guiding Center Trajectories

    Full text link
    Symplectic integrators offer many advantages for the numerical solution of Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two of the central Hamiltonian systems encountered in plasma physics --- the flow of magnetic field lines and the guiding center motion of magnetized charged particles --- resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates, i.e., coordinates lacking the familiar (q,p)(q, p) partitioning. Recent efforts made progress toward non-canonical symplectic integration of these systems by appealing to the variational integration framework; however, those integrators were multistep methods and later found to be numerically unstable due to parasitic mode instabilities. This work eliminates the multistep character and, therefore, the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem ``degenerate variational integration''. Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that their resultant Euler-Lagrange equations are systems of first-order ODEs. We show that retaining the same degree of degeneracy when constructing a discrete Lagrangian yields one-step variational integrators preserving a non-canonical symplectic structure on the original Hamiltonian phase space. The advantages of the new algorithms are demonstrated via numerical examples, demonstrating superior stability compared to existing variational integrators for these systems and superior qualitative behavior compared to non-conservative algorithms
    corecore