5,396 research outputs found

    Quaternionic Channel-based Modulation For Dual-polarized Antennas

    Get PDF
    Space time block codes (STBCs) have been studied to exploit the spatial and temporal diversities in wireless systems. Orthogonal space time polarization block codes (OSTPBCs) designed using the quaternion algebra promise gains in terms of higher data rates, diversity and spectral efficiency. In this context, quaternion modulation has been proposed using the dual-polarized antennas to generate efficient selection of the polarization and optimal decoding at the receiver end. In this paper, the quaternion modulation technique has been evaluated considering the quaternionic channel using the dual-polarized antennas. The results show promising diversity gains with benefits in terms of spectral efficiency and data rates. An extension of this scheme for higher number of symbols and higher dual-polarized antenna dimensions has also been presented. The proposal includes linear decoupled decoding of the quaternion orthogonal codes (QODs) at the receiver end where the complexity stays independent of the number of transmitted symbols. The design of the quaternion modulation using the quaternionic channel fully exploits the polarization diversity in addition to unfolding its applicability for future massive multiple-input multiple-output (MIMO) wireless systems

    Four-element ultrawideband textile cross array for dual-spatial and dual-polarization diversity

    Get PDF
    The emergence of miniaturized flexible electronics enables on-duty first responders to collect biometrical and environmental data through multiple on-body sensors, integrated into their clothing. However, gathering these life-saving data would be useless if they cannot set up reliable, preferable high-data-rate, wireless communication links between the sensors and a remote base station. Therefore, we have developed a four-element ultrawideband textile cross array that combines dual-spatial and dual-polarization diversity and is easily deployable in a first responder's garment. The impedance bandwidth of the array equals 1.43 GHz, while mutual coupling between its elements remains below -25 dB. For a maximal bit error rate of 1e-4, the array realizes a diversity gain of 24.81 dB. When applying adaptive subcarrier modulation, the mean throughput per orthogonal frequency division multiplexing (OFDM) subcarrier increases by an extra bit/symbol when comparing fourth- to second-order diversity

    Novel antenna configurations for wireless broadband vehicular communications

    Get PDF

    Realistic performance measurement for body-centric spatial modulation links

    Get PDF
    Spatial Modulation is a new transmission mode which increases spectral efficiency by employing information-driven transmit antenna selection. This performance is realized at a reduced hardware complexity and cost because only a single radio-frequency transmit chain is necessary. A measurement campaign is performed to assess the characteristics of spatial modulation over a body-centric communication channel, transmitting from a walking person with textile antennas integrated into the front and back sections of a garment, towards a base-station in realistic conditions. In the transmitted frames, additional spatial multiplexing as well as space-time coded data blocks are included. The off-body communication link is analyzed for line-of-sight as well as non line-of-sight radio wave propagation, comparing the characteristics of the different transmission modes under equal propagation conditions and for an equal channel capacity of 2 bit/s/Hz

    Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna

    Get PDF
    A new textile wearable wireless node, for operation in the 2.45 GHz industrial, scientific and medical (ISM) band, is proposed. It consists of a dual-polarised textile patch antenna with integrated microcontroller, sensor, memory and transceiver with receive diversity. Integrated into a garment, the flexible unit may serve for fall detection, as well as for patient or rescue-worker monitoring. Fragile and lossy interconnections are eliminated. They are replaced by very short radiofrequency signal paths in the antenna feed plane, reducing electromagnetic compatibility and signal integrity problems. The compact and flexible module combines sensing and wireless channel monitoring functionality with reliable and energy-efficient off-body wireless communication capability, by fully exploiting dual polarisation diversity. By integrating a battery, a fully autonomous and flexible system is obtained. This novel textile wireless node was validated, both in flat and bent state, in the anechoic chamber, assessing the characteristics of the integrated system in free-space conditions. Moreover, its performance was verified in various real-world conditions, integrated into a firefighter garment, and used as an autonomous body-centric measurement device

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Realization and MIMO-link measurements of a transmit module for spatial modulation

    Get PDF
    This paper describes the realization of a circuit that transmits a data stream, through spatial modulation in the 2.45 GHz frequency band. The development of the transmitter includes RF circuit design with components such as a PLL synthesizer, Tx-DAC and IQ-modulator. A microcontroller, integrated into the circuit and programmed in C, is at the heart of the system. In this hardware system, developed specifically for spatial modulation, data is BPSK modulated and transmitted through an RF switch connected to two antennas. It can differ for every symbol which antenna is used, according to an extra series of information bits that are to be transmitted. Here the number of the selected antenna encodes the extra information bit per symbol, which not only results in a doubling of the data rate but also realizes diversity. Spatial modulation allows these features with only a single hardware transmit chain, resulting in low-cost and low-complexity hardware. At the receiving side, the extra information bits are decoded by assessing the channel used for each symbol. This practical system has been thoroughly tested by means of different measuring campaigns. The measurement results show that spatial modulation is correctly demodulated at the receiving side and forms an effective way to realize affordable MIMO systems

    Throughput sensitivity to antenna pattern and orientation in 802.11n networks

    Get PDF
    • …
    corecore