1,165 research outputs found

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Distributed Clustering Based on Node Density and Distance in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are special type of network with sensing and monitoring the physical parameters with the property of autonomous in nature. To implement this autonomy and network management the common method used is hierarchical clustering. Hierarchical clustering helps for ease access to data collection and forwarding the same to the base station. The proposed Distributed Self-organizing Load Balancing Clustering Algorithm (DSLBCA) for WSNs designed considering the parameters of neighbor distance, residual energy, and node density.  The validity of the DSLBCA has been shown by comparing the network lifetime and energy dissipation with Low Energy Adaptive Clustering Hierarchy (LEACH), and Hybrid Energy Efficient Distributed Clustering (HEED). The proposed algorithm shows improved result in enhancing the life time of the network in both stationary and mobile environment

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    LBR: Load Balancing Routing Algorithm for Wireless Sensor Networks

    Full text link
    • …
    corecore