2,696 research outputs found

    Towards Very Large Aperture Massive MIMO: a measurement based study

    Get PDF
    Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few measurements have showed the potential of Massive MIMO in practice. We investigate the properties of measured Massive MIMO channels in a large indoor venue. We describe a measurement campaign using 3 arrays having different shape and aperture, with 64 antennas and 8 users with 2 antennas each. We focus on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO capability within a same user device with user proximity effect. We see a good channel resolvability with confirmation of the strong effect of the user hand grip. At last, we highlight that propagation conditions where line-of-sight is dominant can be favorable

    Reconfigurable Antennas in mmWave MIMO Systems

    Full text link
    The key obstacle to achieving the full potential of the millimeter wave (mmWave) band has been the poor propagation characteristics of wireless signals in this band. One approach to overcome this issue is to use antennas that can support higher gains while providing beam adaptability and diversity, i.e., reconfigurable antennas. In this article, we present a new architecture for mmWave multiple-input multiple-output (MIMO) communications that uses a new class of reconfigurable antennas. More specifically, the proposed lens-based antennas can support multiple radiation patterns while using a single radio frequency chain. Moreover, by using a beam selection network, each antenna beam can be steered in the desired direction. Further, using the proposed reconfigurable antenna in a MIMO architecture, we propose a new signal processing algorithm that uses the additional degrees of freedom provided by the antennas to overcome propagation issues at mmWave frequencies. Our simulation results show that the proposed reconfigurable antenna MIMO architecture significantly enhances the performance of mmWave communication systems

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Linear Capacity Scaling in Wireless Networks: Beyond Physical Limits?

    Full text link
    We investigate the role of cooperation in wireless networks subject to a spatial degrees of freedom limitation. To address the worst case scenario, we consider a free-space line-of-sight type environment with no scattering and no fading. We identify three qualitatively different operating regimes that are determined by how the area of the network A, normalized with respect to the wavelength lambda, compares to the number of users n. In networks with sqrt{A}/lambda < sqrt{n}, the limitation in spatial degrees of freedom does not allow to achieve a capacity scaling better than sqrt{n} and this performance can be readily achieved by multi-hopping. This result has been recently shown by Franceschetti et al. However, for networks with sqrt{A}/lambda > sqrt{n}, the number of available degrees of freedom is min(n, sqrt{A}/lambda), larger that what can be achieved by multi-hopping. We show that the optimal capacity scaling in this regime is achieved by hierarchical cooperation. In particular, in networks with sqrt{A}/lambda> n, hierarchical cooperation can achieve linear scaling.Comment: 10 pages, 5 figures, in Proc. of IEEE Information Theory and Applications Workshop, Feb. 201
    • …
    corecore