5 research outputs found

    Modular AWG-based Optical Shuffle Network

    Full text link
    This paper proposes an arrayed-waveguide grating (AWG) based wavelength-division-multiplexing (WDM) shuffle network. Compared with previous optical shuffle networks, our proposal is compact, easy to implement, highly scalable, and cost effective

    A Transponder Aggregator with Efficient Use of Filtering Function for Transponder Noise Suppression

    Full text link
    Colorless, directionless, and contentionless reconfigurable optical add/drop multiplexing (CDC-ROADM) provides highly flexible physical layer network configuration. Such CDC-ROADM must operate in multiple wavelength bands which are being increasingly implemented in optical transmission systems. The operation in C+L bands requires switch devices used in CDC-ROADM to also be capable of multiband operation. Recent studies on wavelength division multiplexing (WDM) systems have pointed out the impact of amplified spontaneous emission (ASE) noise generated by signals of different wavelengths, which causes OSNR degradation. Therefore, it is desirable to filter out the ASE noise from different transponders when multiplexing multiple wavelengths at the transmitter side, especially in a system with non-wavelength selective combiners such as directional couplers and multicast switches. The use of transponder aggregators with filtering functions, such as the M x N wavelength selective switch (WSS), is preferable for this filtering. However, the downside of these devices is that it is difficult to provide economical multiband support. Therefore, we propose an economical transponder aggregator configuration by allowing a certain amount of ASE superposition and reducing the number of filtering functions. In this paper, we fabricated a prototype of the proposed transponder aggregator by combining silica-based planar lightwave circuit technology and C+L band WSS, both commercially available, and verified its feasibility through transmission experiments. The novel transponder aggregator is a practical solution for a multiband CDC-ROADM system with improved OSNR performance.Comment: 10 pages, 11 figures. Submitted to IEEE Journal of Lightwave Technology for possible publicatio

    Design, monitoring and performance evaluation of high capacity optical networks

    Get PDF
    Premi Extraordinari de Doctorat, promoci贸 2018-2019. 脌mbit de les TICInternet traffic is expected to keep increasing exponentially due to the emergence of a vast number of innovative online services and applications. Optical networks, which are the cornerstone of the underlying Internet infrastructure, have been continuously evolving to carry the ever-increasing traffic in a more flexible, cost-effective, and intelligent way. Having these three targets in mind, this PhD thesis focuses on two general areas for the performance improvement and the evolution of optical networks: i) introducing further cognition to the optical layer, and ii) introducing new networking solutions revolutionizing the optical transport infrastructure. In the first part, we present novel failure detection and identification solutions in the optical layer utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filter-less Optical Networks (FON). In addition, at the subsystem level we propose an Autonomic Transmission Agent (ATA), which triggers local or remote transceiver reconfiguration by predicting Bit-Error-Rate (BER) degradation by monitoring State-of-Polarization (SOP) data obtained by coherent receivers. I have developed solutions to push further the performance of the currently deployed optical networks through reducing the margins and introducing intelligence to better manage their resources. However, it is expected that the spectral efficiency of the current standard Single-Mode Fiber (SMF) based optical network approaches the Shannon capacity limits in the near future, and therefore, a new paradigm is required to keep with the pace of the current huge traffic increase. In this regard, Space Division Multiplexing (SDM) is proposed as the ultimate solution to address the looming capacity crunch with a reduced cost-per-bit delivered to the end-users. I devote the second part of this thesis to investigate different flavors of SDM based optical networks with the aim of finding the best compromise for the realization of a spectrally and spatially flexible optical network. SDM-based optical networks can be deployed over various types of transmission media. Additionally, due to the extra dimension (i.e., space) introduced in SDM networks, optical switching nodes can support wavelength granularity, space granularity, or a combination of both. In this thesis, we evaluate the impact of various spectral and spatial switching granularities on the performance of SDM-based optical networks serving different profiles of traffic with the aim of understanding the impact of switching constraints on the overall network performance. In this regard, we consider two different generations of wavelength selective switches (WSS) to reflect the technology limitations on the performance of SDM networks. In addition, we present different designs of colorless direction-less, and Colorless Directionless Contention-less (CDC) Reconfigurable Optical Add/Drop Multiplexers (ROADM) realizing SDM switching schemes and compare their performance in terms of complexity and implementation cost. Furthermore, with the aim of revealing the benefits and drawbacks of SDM networks over different types of transmission media, we preset a QoT-aware network planning toolbox and perform comparative performance analysis among SDM network based on various types of transmission media. We also analyze the power consumption of Multiple-Input Multiple-Output (MIMO) Digital Signal Processing (DSP) units of transceivers operating over three different types of transmission media. The results obtained in the second part of the thesis provide a comprehensive outlook to different realizations of SDM-based optical networks and showcases the benefits and drawbacks of different SDM realizations.Se espera que el tr谩fico de Internet siga aumentando exponencialmente debido a la continua aparici贸n de gran cantidad de aplicaciones innovadoras. Las redes 贸pticas, que son la piedra angular de la infraestructura de Internet, han evolucionado continuamente para transportar el tr谩fico cada vez mayor de una manera m谩s flexible, rentable e inteligente. Teniendo en cuenta estos tres objetivos, esta tesis doctoral se centra en dos 谩reas cruciales para la mejora del rendimiento y la evoluci贸n de las redes 贸pticas: i) introducci贸n de funcionalidades cognitivas en la capa 贸ptica, y ii) introducci贸n de nuevas estructuras de red que revolucionar谩n el transporte 贸ptico. En la primera parte, se presentan soluciones novedosas de detecci贸n e identificaci贸n de fallos en la capa 贸ptica que utilizan trazas de espectro 贸ptico obtenidas mediante analizadores de espectros 贸pticos (OSA) de baja resoluci贸n (y por tanto de coste reducido). Se demuestra la efectividad de las soluciones desarrolladas para detectar e identificar fallos derivados del filtrado imperfecto en las redes 贸pticas de conmutaci贸n de espectro (SSON), as铆 como fallos relacionados con el l谩ser transmisor en redes 贸pticas sin filtro (FON). Adem谩s, a nivel de subsistema, se propone un Agente de Transmisi贸n Aut贸nomo (ATA), que activa la reconfiguraci贸n del transceptor local o remoto al predecir la degradaci贸n de la Tasa de Error por Bits (BER), monitorizando el Estado de Polarizaci贸n (SOP) de la se帽al recibida en un receptor coherente. Se han desarrollado soluciones para incrementar el rendimiento de las redes 贸pticas mediante la reducci贸n de los m谩rgenes y la introducci贸n de inteligencia en la administraci贸n de los recursos de la red. Sin embargo, se espera que la eficiencia espectral de las redes 贸pticas basadas en fibras monomodo (SMF) se acerque al l铆mite de capacidad de Shannon en un futuro pr贸ximo, y por tanto, se requiere un nuevo paradigma que permita mantener el crecimiento necesario para soportar el futuro aumento del tr谩fico. En este sentido, se propone el Multiplexado por Divisi贸n Espacial (SDM) como la soluci贸n que permita la continua reducci贸n del coste por bit transmitido ante 茅se esperado crecimiento del tr谩fico. En la segunda parte de esta tesis se investigan diferentes tipos de redes 贸pticas basadas en SDM con el objetivo de encontrar soluciones para la realizaci贸n de redes 贸pticas espectral y espacialmente flexibles. Las redes 贸pticas basadas en SDM se pueden implementar utilizando diversos tipos de medios de transmisi贸n. Adem谩s, debido a la dimensi贸n adicional (el espacio) introducida en las redes SDM, los nodos de conmutaci贸n 贸ptica pueden conmutar longitudes de onda, fibras o una combinaci贸n de ambas. Se eval煤a el impacto de la conmutaci贸n espectral y espacial en el rendimiento de las redes SDM bajo diferentes perfiles de tr谩fico ofrecido, con el objetivo de comprender el impacto de las restricciones de conmutaci贸n en el rendimiento de la red. En este sentido, se consideran dos generaciones diferentes de conmutadores selectivos de longitud de onda (WSS) para reflejar las limitaciones de la tecnolog铆a en el rendimiento de las redes SDM. Adem谩s, se presentan diferentes dise帽os de ROADM, independientes de la longitud de onda, de la direcci贸n, y sin contenci贸n (CDC) utilizados para la conmutaci贸n SDM, y se compara su rendimiento en t茅rminos de complejidad y coste. Adem谩s, con el objetivo de cuantificar los beneficios e inconvenientes de las redes SDM, se ha generado una herramienta de planificaci贸n de red que prev茅 la QoT usando diferentes tipos de fibras. Tambi茅n se analiza el consumo de energ铆a de las unidades DSP de los transceptores MIMO operando en redes SDM con tres tipos diferentes de medios de transmisi贸n. Los resultados obtenidos en esta segunda parte de la tesis proporcionan una perspectiva integral de las redes SDM y muestran los beneficios e inconvenientes de sus diferentes implementacionesAward-winningPostprint (published version

    Processamento 贸tico e digital de sinal em sistemas de transmiss茫o com multiplexagem por divis茫o espacial

    Get PDF
    The present thesis focuses on the development of optical and digital signal processing techniques for coherent optical transmission systems with spacedivision multiplexing (SDM). According to the levels of spatial crosstalk, these systems can be grouped in the ones with and the ones without spatial selectivity; drastically changing its operation principle. In systems with spatial selectivity, the mode coupling is negligible and therefore, an arbitrary spacial channel can be independently routed through the optical network and post-processed at the optical coherent receiver. In systems without spatial selectivity, mode coupling plays a key role in a way that spatial channels are jointly transmitted and post-processed at the optical coherent receiver. With this in mind, optical switching techniques for SDM transmission systems with spatial selectivity are developed, whereas digital techniques for space-demultiplexing are developed for SDM systems without spatial selectivity. With the purpose of developing switching techniques, the acoustic-optic effect is analyzed in few-mode fibers (FMF)s and in multicore fibers (MCF)s. In FMF, the signal switching between two arbitrary modes using flexural or longitudinal acoustic waves is numerically and experimentally demonstrated. While, in MCF, it is shown that a double resonant coupling, induced by flexural acoustic waves, allows for the signal switching between two arbitrary cores. Still in the context of signal switching, the signal propagation in the multimodal nonlinear regime is analyzed. The nonlinear Schr枚dinger equation is deduced in the presence of mode coupling, allowing the meticulous analysis of the multimodal process of four-wave mixing. Under the right conditions, it is shown that such process allows for the signal switching between distinguishable optical modes. The signal representation in higher-order Poincar茅 spheres is introduced and analyzed in order to develop digital signal processing techniques. In this representation, an arbitrary pair of tributary signals is represented in a Poincar茅 sphere, where the samples appear symmetrically distributed around a symmetry plane. Based on this property, spatial-demultiplexing and mode dependent loss compensation techniques are developed, which are independent of the modulation format, are free of training sequences and tend to be robust to frequency offsets and phase fluctuations. The aforementioned techniques are numerically validated, and its performance is assessed through the calculation of the remaining penalty in the signal-to-noise ratio of the post-processed signal. Finally, the complexity of such techniques is analytically described in terms of real multiplications per sample.A presente tese tem por objectivo o desenvolvimento de t茅cnicas de processamento 贸tico e digital de sinal para sistemas coerentes de transmiss茫o 贸tica com multiplexagem por diversidade espacial. De acordo com a magnitude de diafonia espacial, estes sistemas podem ser agrupados em sistemas com e sem seletividade espacial, alterando drasticamente o seu princ铆pio de funcionamento. Em sistemas com seletividade espacial, o acoplamento modal 茅 negligenci谩vel e, portanto, um canal espacial arbitr谩rio pode ser encaminhado de forma independente atrav茅s da rede 贸tica e p贸s-processado no recetor 贸tico coerente. Em sistemas sem seletividade espacial, o acoplamento modal tem um papel fulcral pelo que os canais espaciais s茫o transmitidos e p贸s-processados conjuntamente. Perante este cen谩rio, foram desenvolvidas t茅cnicas de comuta莽茫o entre canais espaciais para sistemas com seletividade espacial, ao passo que para sistemas sem seletividade espacial, foram desenvolvidas t茅cnicas digitais de desmultiplexagem espacial. O efeito ac煤stico-贸tico foi analisado em fibras com alguns modos (FMF) e em fibras com m煤ltiplos n煤cleos (MCF) com o intuito de desenvolver t茅cnicas de comuta莽茫o de sinal no dom铆nio 贸tico. Em FMF, demonstrou-se num茅rica e experimentalmente a comuta莽茫o do sinal entre dois modos de propaga莽茫o arbitr谩rios atrav茅s de ondas ac煤sticas transversais ou longitudinais, enquanto, em MCF, a comuta莽茫o entre dois n煤cleos arbitr谩rios 茅 mediada por um processo de acoplamento duplamente ressonante induzido por ondas ac煤sticas transversais. Ainda neste contexto, analisou-se a propaga莽茫o do sinal no regime multimodal n茫o linear. Foi deduzida a equa莽茫o n茫o linear de Schr枚dinger na presen莽a de acoplamento modal, posteriormente usada na an谩lise do processo multimodal de mistura de quatro ondas. Nas condi莽玫es adequadas, 茅 demonstrado que este processo permite a comuta莽茫o 贸tica de sinal entre dois modos de propaga莽茫o distintos. A representa莽茫o de sinal em esferas de Poincar茅 de ordem superior 茅 introduzida e analisada com o objetivo de desenvolver t茅cnicas de processamento digital de sinal. Nesta representa莽茫o, um par arbitr谩rio de sinais tribut谩rios 茅 representado numa esfera de Poincar茅 onde as amostras surgem simetricamente distribu铆das em torno de um plano de simetria. Com base nesta propriedade, foram desenvolvidas t茅cnicas de desmultiplexagem espacial e de compensa莽茫o das perdas dependentes do modo de propaga莽茫o, as quais s茫o independentes do formato de modula莽茫o, n茫o necessitam de sequ锚ncias de treino e tendem a ser robustas aos desvios de frequ锚ncia e 脿s flutua莽玫es de fase. As t茅cnicas referidas foram validadas numericamente, e o seu desempenho 茅 avaliado mediante a penalidade remanescente na rela莽茫o sinal-ru铆do do sinal p贸s-processado. Por fim, a complexidade destas 茅 analiticamente descrita em termos de multiplica莽玫es reais por amostra.Programa Doutoral em Engenharia Eletrot茅cnic

    Design, monitoring and performance evaluation of high capacity optical networks

    Get PDF
    Internet traffic is expected to keep increasing exponentially due to the emergence of a vast number of innovative online services and applications. Optical networks, which are the cornerstone of the underlying Internet infrastructure, have been continuously evolving to carry the ever-increasing traffic in a more flexible, cost-effective, and intelligent way. Having these three targets in mind, this PhD thesis focuses on two general areas for the performance improvement and the evolution of optical networks: i) introducing further cognition to the optical layer, and ii) introducing new networking solutions revolutionizing the optical transport infrastructure. In the first part, we present novel failure detection and identification solutions in the optical layer utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filter-less Optical Networks (FON). In addition, at the subsystem level we propose an Autonomic Transmission Agent (ATA), which triggers local or remote transceiver reconfiguration by predicting Bit-Error-Rate (BER) degradation by monitoring State-of-Polarization (SOP) data obtained by coherent receivers. I have developed solutions to push further the performance of the currently deployed optical networks through reducing the margins and introducing intelligence to better manage their resources. However, it is expected that the spectral efficiency of the current standard Single-Mode Fiber (SMF) based optical network approaches the Shannon capacity limits in the near future, and therefore, a new paradigm is required to keep with the pace of the current huge traffic increase. In this regard, Space Division Multiplexing (SDM) is proposed as the ultimate solution to address the looming capacity crunch with a reduced cost-per-bit delivered to the end-users. I devote the second part of this thesis to investigate different flavors of SDM based optical networks with the aim of finding the best compromise for the realization of a spectrally and spatially flexible optical network. SDM-based optical networks can be deployed over various types of transmission media. Additionally, due to the extra dimension (i.e., space) introduced in SDM networks, optical switching nodes can support wavelength granularity, space granularity, or a combination of both. In this thesis, we evaluate the impact of various spectral and spatial switching granularities on the performance of SDM-based optical networks serving different profiles of traffic with the aim of understanding the impact of switching constraints on the overall network performance. In this regard, we consider two different generations of wavelength selective switches (WSS) to reflect the technology limitations on the performance of SDM networks. In addition, we present different designs of colorless direction-less, and Colorless Directionless Contention-less (CDC) Reconfigurable Optical Add/Drop Multiplexers (ROADM) realizing SDM switching schemes and compare their performance in terms of complexity and implementation cost. Furthermore, with the aim of revealing the benefits and drawbacks of SDM networks over different types of transmission media, we preset a QoT-aware network planning toolbox and perform comparative performance analysis among SDM network based on various types of transmission media. We also analyze the power consumption of Multiple-Input Multiple-Output (MIMO) Digital Signal Processing (DSP) units of transceivers operating over three different types of transmission media. The results obtained in the second part of the thesis provide a comprehensive outlook to different realizations of SDM-based optical networks and showcases the benefits and drawbacks of different SDM realizations.Se espera que el tr谩fico de Internet siga aumentando exponencialmente debido a la continua aparici贸n de gran cantidad de aplicaciones innovadoras. Las redes 贸pticas, que son la piedra angular de la infraestructura de Internet, han evolucionado continuamente para transportar el tr谩fico cada vez mayor de una manera m谩s flexible, rentable e inteligente. Teniendo en cuenta estos tres objetivos, esta tesis doctoral se centra en dos 谩reas cruciales para la mejora del rendimiento y la evoluci贸n de las redes 贸pticas: i) introducci贸n de funcionalidades cognitivas en la capa 贸ptica, y ii) introducci贸n de nuevas estructuras de red que revolucionar谩n el transporte 贸ptico. En la primera parte, se presentan soluciones novedosas de detecci贸n e identificaci贸n de fallos en la capa 贸ptica que utilizan trazas de espectro 贸ptico obtenidas mediante analizadores de espectros 贸pticos (OSA) de baja resoluci贸n (y por tanto de coste reducido). Se demuestra la efectividad de las soluciones desarrolladas para detectar e identificar fallos derivados del filtrado imperfecto en las redes 贸pticas de conmutaci贸n de espectro (SSON), as铆 como fallos relacionados con el l谩ser transmisor en redes 贸pticas sin filtro (FON). Adem谩s, a nivel de subsistema, se propone un Agente de Transmisi贸n Aut贸nomo (ATA), que activa la reconfiguraci贸n del transceptor local o remoto al predecir la degradaci贸n de la Tasa de Error por Bits (BER), monitorizando el Estado de Polarizaci贸n (SOP) de la se帽al recibida en un receptor coherente. Se han desarrollado soluciones para incrementar el rendimiento de las redes 贸pticas mediante la reducci贸n de los m谩rgenes y la introducci贸n de inteligencia en la administraci贸n de los recursos de la red. Sin embargo, se espera que la eficiencia espectral de las redes 贸pticas basadas en fibras monomodo (SMF) se acerque al l铆mite de capacidad de Shannon en un futuro pr贸ximo, y por tanto, se requiere un nuevo paradigma que permita mantener el crecimiento necesario para soportar el futuro aumento del tr谩fico. En este sentido, se propone el Multiplexado por Divisi贸n Espacial (SDM) como la soluci贸n que permita la continua reducci贸n del coste por bit transmitido ante 茅se esperado crecimiento del tr谩fico. En la segunda parte de esta tesis se investigan diferentes tipos de redes 贸pticas basadas en SDM con el objetivo de encontrar soluciones para la realizaci贸n de redes 贸pticas espectral y espacialmente flexibles. Las redes 贸pticas basadas en SDM se pueden implementar utilizando diversos tipos de medios de transmisi贸n. Adem谩s, debido a la dimensi贸n adicional (el espacio) introducida en las redes SDM, los nodos de conmutaci贸n 贸ptica pueden conmutar longitudes de onda, fibras o una combinaci贸n de ambas. Se eval煤a el impacto de la conmutaci贸n espectral y espacial en el rendimiento de las redes SDM bajo diferentes perfiles de tr谩fico ofrecido, con el objetivo de comprender el impacto de las restricciones de conmutaci贸n en el rendimiento de la red. En este sentido, se consideran dos generaciones diferentes de conmutadores selectivos de longitud de onda (WSS) para reflejar las limitaciones de la tecnolog铆a en el rendimiento de las redes SDM. Adem谩s, se presentan diferentes dise帽os de ROADM, independientes de la longitud de onda, de la direcci贸n, y sin contenci贸n (CDC) utilizados para la conmutaci贸n SDM, y se compara su rendimiento en t茅rminos de complejidad y coste. Adem谩s, con el objetivo de cuantificar los beneficios e inconvenientes de las redes SDM, se ha generado una herramienta de planificaci贸n de red que prev茅 la QoT usando diferentes tipos de fibras. Tambi茅n se analiza el consumo de energ铆a de las unidades DSP de los transceptores MIMO operando en redes SDM con tres tipos diferentes de medios de transmisi贸n. Los resultados obtenidos en esta segunda parte de la tesis proporcionan una perspectiva integral de las redes SDM y muestran los beneficios e inconvenientes de sus diferentes implementacione
    corecore